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Series Editor’s Introduction

Survey research is now a major enterprise both in the academic world
and beyond. It is a basic tool in every social science and related discipline
and is the foundation for such major research enterprises as the National
Election Studies, the National Opinion Research Center’s General
Social Survey, and the Michigan Survey Research Center’s extensive
consumer surveys. It is frequently used in applied settings of all sorts,
both for descriptive purposes and as a base for evaluation efforts. Last
but certainly not least, it has achieved extraordinary visibility because of
its use in political campaigns.

The foundation of survey research, of course, lies in sampling proce-
dures. No matter how good the questions asked and no matter how
elegant the analysis, little knowledge will be gained if the sample itself is
poorly designed and executed. Despite the obviousness of these state-
ments, one might think that sampling is simply a technical matter best
left to statisticians. My view is quite different. While sampling statisti-
cians are crucial to many projects, researchers directing and using
surveys for substantive purposes should have at least a reasonable grasp
of sampling principles. That is why we are so happy to add Graham
Kalton’s Introduction to Survey Sampling to our series.

Kalton’s book takes a fine middle road toward explaining sampling
procedures. It is not designed with the sampling statistician in mind.
Rather, it is a highly readable text that will be understandable to those
with a reasonable grasp of elementary statistics. All of the concepts are
carefully illustrated, providing readers with a firm understanding of the
major components of survey design. Animportant feature of the book is
that it includes coverage of practical considerations. Sections on sam-
pling frames and nonresponse, for example, could be ignored were it not
for the problems one encounters in practice.

The fine coverage both of sampling theory and numerous practical
problems make Kalton’s book a valuable text for the beginning reader
as well as for those who have previously learned some sampling theory.

—Richard G. Niemi
Series Co-Editor



INTRODUCTION TO
SURVEY SAMPLING

GRAHAM KALTON
University of Michigan

1. INTRODUCTION

Sample surveys are nowadays widely accepted as a means of providing
statistical data on an extensive range of subjects for both research and
administrative purposes. Numerous surveys have been conducted to
develop, test, and refine research hypotheses in such disciplines as
sociology, social psychology, demography, political science, economics,
education, and public health. Central governments make considerable
use of surveys to inform them of the conditions of their populations in
terms of employment and unemployment, income and expenditure,
housing conditions, education, nutrition, health, travel patterns, and
many other subjects. They also conduct surveys of organizations such as
manufacturers, retail outlets, farms, schools, and hospitals. Local
governments equally make use of surveys for local planning purposes.
Market researchers carry out surveys to identify markets for products,
to discover how the products are used and how they perform in practice,
and to determine consumer reactions. Opinion polls keep track of the
popularity of political leaders and their parties and measure public
opinion on a variety of topical issues.

In view of the currrent widespread use of surveys, it is somewhat
surprising that the sample survey as we know it today has only a short
history. This history is largely confined to the present century, and much
of the growth in the use of surveys has occurred since the 1930s. During

AUTHOR’S NOTE: I would like to thank Dick Niemi, Keith Rust, Tom Smith and Doug
Zahn for their advice and suggestions on a draft version of this paper. Special thanks go to
my wife, Francis, for her help in preparing the manuscript.
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this century considerable advances have been made in all aspects of
survey methodology, and in particular in sampling methods, which are
the subject of this paper. At the beginning of the century statisticians
were debating whether anything less than a complete enumeration of
a population would suffice, given that this was feasible in principle
(O’Muircheartaigh and Wong, 1981). Since that time sampling has be-
come widely accepted, and an impressive array of sampling methods has
been devised to enable efficient and economic samples to be drawn in a
variety of practical settings.

The design of a survey involves many interrelated decisions on such
factors as the mode of data collection (whether by face-to-face inter-
view, telephone interview, or self-completion form), the framing of the
questions to be asked, and the method of processing the data, as well as the
sample design (see, for instance, Moser and Kalton, 1971; Warwick and
Lininger, 1975). Although this paper is concerned only with sample
design, it needs to be recognized that in practice the sample design must
be developed as an integral part of the overall survey design. In particu-
lar, the economics involved in the data collection process exert a consid-
erable influence on the choice of sample design.

One of the first steps in survey design is to define the population to be
studied. Here the term “population” is used in the technical sense of the
totality of the elements under study, where the “elements” are the units
of analysis. The elements may be persons, but they could alternatively be
households, farms, schools, or any other unit. The population definition
needs to be precisely and carefully specified according to the survey
objectives, because the results will depend on the definition adopted.
Consider, for instance, a survey to be carried out in a city to discover the
degree of support for the introduction of a new bus system. Should the
survey be confined to persons living within the city boundaries? What is
the minimum age for the population to be surveyed? Should residents
ineligible to vote in city elections be included? Should visitors living
temporarily in the city be excluded, and if so, how are they to be defined?
A variety of questions like these arise in defining most populations,
making the definitional task less straightforward than it might at first
appear.

Itis a useful exercise to start by defining the population as the ideal one
required to meet the survey objectives—the farget population. This
definition is then often modified to the survey population to take account
of practical constraints. For instance, many national surveys in the United
States would ideally include servicemen based abroad, people living in
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Hawaii and Alaska, and people living in hospitals, hotels, prisons, army
barracks, and other institutions. However, the severe problems involved
in collecting responses from such persons frequently lead to their exclu-
sion from the survey population. The advantage of starting with the
ideal target population is that the exclusions are explicitly identified,
thus enabling the magnitude and consequences of the restrictions to be
assessed.

Once the population has been defined, the question of taking a
sample from it can be addressed. One possibility, of course, is to take a
complete enumeration of all the elements in the population, but this is
seldom appropriate. To collect data from only a part of the population is
clearly less costly and, providing the estimates are sufficiently precise,
sampling is thus more economic. A sample inquiry can also be con-
ducted and processed more speedily, leading to more timely reporting.
Furthermore, by concentrating resources on only a part of the popula-
tion, the quality of the data collection may be superior to that of a
complete enumeration. As a result, a sample survey may in fact produce
more accurate results. For these reasons, unless the population is small,
sampling is almost always used.

The subject of sample design is concerned with how to select the part
of the population to be included in the survey. A basic distinction to be
made is whether the sample is selected by a probability mechanism or
not. With a probability sample, each element has a known, nonzero
chance of being included in the sample. Consequently, selection biases
are avoided, and statistical theory can be used to derive properties of the
survey estimators. Nonprobability sampling covers a variety of proce-
dures, including the use of volunteers and the purposive choice of
elements for the sample on the grounds that they are “representative” of
the population. The weakness of all nonprobability sampling is its
subjectivity, which precludes the development of a theoretical frame-
work for it. A sample of volunteers or a representative sample chosen by
an expert can be assessed only by subjective evaluation, not by
assumption-free statistical methods. In view of this weakness, this paper
isrestricted to probability sampling. Some discussion of nonprobability
sampling is, however, included in Chapter 13.

An essential requirement for any form of probability sample is the
existence of a sampling frame from which the sampled elements can be
selected. In a simple case, when a list of all the population elements is
available, the frame may be the list. When there is no list, the frame is
some equivalent procedure for identifying the population elements.
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Area sampling provides a good illustration of such a frame. With this
technique, each element of the population is associated with a particular
geographical area (e.g., people or houscholds are associated with the
area of their residence, or main residence if they have more than one).
Then a sample of areas is drawn, and either all elements in the selected
areas are included in the survey or a sample of these elements is included
(see Chapter 12). The general organization of the sampling frame and
the information it contains about the population elements often have a
strong influence on the choice of sample design. Defects in the frame,
such as a failure to cover all the elements in the survey population, can
have harmful effects on the sample. Sampling frames are discussed in
more detail in Chapter 8.

A variety of probability sampling techniques have been developed to
provide efficient practical sample designs. Among the most widely used
are systematic sampling, stratification, multistage (cluster) sampling,
and probability proportional to size sampling. The following sections
discuss these techniques separately for ease of exposition, but in prac-
tice they are employed together in what often become complex designs.
Two examples are given in Chapter 12 to illustrate how the techniques
may be combined. We begin with relatively simple techniques suitable
for sampling small, compact populations and later turn to the more
complex techniques needed for sampling larger, more widespread
populations.

2. SIMPLE RANDOM SAMPLING

Simple random sampling (SRS) provides a natural starting point for
a discussion of probability sampling methods, not because it is widely
used—it is not—but because it is the simplest method and it underlies
many of the more complex methods. As a prelude to defining simple
random sampling, we will introduce the notation that the sample size is
given by n and the population size by N. Then, formally defined, simple
random sampling is a sampling scheme with the property that any of the
possible subsets of n distinct elements from the population of N ele-
ments is equally likely to be the chosen sample. This definition implies
that every element in the population has the same probability of being
selected for the sample, but the definition is more stringent than this. As
we will see later, more complex sampling methods are also often equal
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probability selection methods (epsem), but with such designs the joint
probabilities of sets of elements being selected are not equal, as they are
with SRS.

We will discuss simple random sampling in terms of a specific appli-
cation. Suppose that a survey is to be conducted in a high school to find
out about the students’leisure habits. A list of the school’s 1872 students
is available, with the list being ordered by the students’ identifica-
tion numbers. These numbers range from 0001 to 1917, with a few
gaps in the sequence occurring because some students allocated
numbers have since left the school. Suppose that an SRS of n = 250 is
required for the survey. (The choice of n is discussed in Chapter 11.)

One way to draw the required SRS would be by a lottery method.
Each student’s name or identification number is put on one of a set of
1872 identical discs. The discs are placed in an urn, they are thoroughly
mixed, and then 250 of them are selected haphazardly. If these opera-
tions were perfectly executed, the selected discs would identify an SRS
of 250 students. Although conceptually simple, this method is cumber-
some to execute and it depends on the assumption that the discs have
been thoroughly mixed; consequently, it is seldom used.

Another way of selecting the SRS is by means of a table of random
numbers. These tables are carefully constructed and tested to ensure
that in the long run each digit, each pair of digits, and so on, appears
with the same frequency. An extract from a table of random numbers
produced by Kendall and Smith (1939) is given in Table 1.

Since the student identification numbers contain four digits, we need
to select the random numbers in sets of four. In practice, one should
start at some casually chosen point in the table, but here for simplicity
we will start at the top left-hand corner. We will then proceed down the
first set of four columns, down the second set of four columns, and so
on. Numbers outside the range of the student numbers (0001-1917), and
numbers within range but not associated with a current student, are
ignored. The first four numbers in the table (6728, 8586, 4010, 9455) do
not yield selections, so the first student selected is 1163 (provided this
student is still at the school). Continuing through the table, the only
other selections from this part of the table are 0588 and 0385. It is
already clear that the selection of 250 students in this way is a tedious
task, requiring a large selection of random numbers, most of which are
nonproductive.

The waste of so many random numbers can be avoided by associating
each student with several random numbers instead of just one; provided
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TABLE 1
Random Sampling Numbers

SOURCE: Kendall, M. G. and B. B. Smith, Tables of Random Sampling Numbers.
Copyright © 1939 by Cambridge University Press. Reprinted by permission.

that all the students are associated with the same number of random
numbers, the sample remains an SRS. Here each student could be
associated with five four-digit random numbers. A simple scheme is for
student 0001 to be associated also with 2001, 4001, 6001, and 8001;
student 0002 also with 2002, 4002, 6002, 8002; and so on through student
1917, whois associated also with 3917, 5917,7917, and 9917. Then, again
starting at the top left-hand corner of the table, the selected students are
6728 = student 0728; 8586 = student 0586; 4010 = student 0010; 9455 =
student 1455; 1163 = student 1163, and so on.

In drawing the sample using a table of random numbers it is possible
for an element to be selected more than once. This possibility does not
exist with the lottery method described above, because when an ele-
ment’s disc was drawn from the urn it was not replaced to be given a
further chance of selection. It would, however, also exist with the lottery
method if at each draw the selected disc were replaced in the urn before
the next selection was made. If sampling is carried out without replace-
ment, the sample must contain n distinct elements, but with sampling
with replacement the sample of size n may contain less than n distinct
elements. When the sampling procedures described here are conducted
with replacement, the sampling method is known as unrestricted ran-
dom sampling or simple random sampling with replacement. When they
are conducted without replacement, the method is known as simple
random sampling without replacement or just simple random sampling.
The selection of a simple random sample without replacement from a
table of random numbers involves simply ignoring repeat selections of
an element already in the sample. Since sampling without replacement
gives more precise estimators than sampling with replacement we will
concentrate on the without replacement method.

Having selected the SRS of 250 students, we will now assume that the
data have been collected and that we have responses from all those
sampled (issues of nonresponse are taken up in Chapter 9). The next step
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is to summarize the individual responses in various ways to provide
estimates of characteristics of interest for the population, for instance,
the average number of hours of television viewing per day and the
proportion of students currently reading a novel. At this point we need
to introduce some notation. Following a common convention in the
survey sampling literature, capital letters are used for population values
and parameters, and lower-case letters for sample values and estimators.
Thus Y, Ya, . . . Yn denote the values of the variable y (e.g., hours of
television viewing) for the N elements in the population, and yi1, y2, . .. ya
are the values for the n sampled elements; in general the value of variable
y for the i element in the populationis Y; i=1,2, ... N), and that for
the i element in the sample is y; (i=1, 2, . . . n). The population mean is
given by

_ N
Y=2 Y/N
i=1
and the sample mean by
: v
y=ZXZ y./n
=

In survey sampling the element variance of the y variable in the popula-
tion is generally defined as

2_ N A2
s?=2 (%-DIN-1)
i=
and the sample element variance as
n
= 2 0;-9)/a- 1)

Sometimes, however, the population element variance is defined with a
denominator of N rather than (N—1), in which case it is denoted by
N
0.2 = l§1 (Yi _?)Z/N

(ie., o> = (N - 1)S?/N).
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Suppose that we wish to use the data collected in the survey to
estimate the mean number of hours of television viewing per day for all
students in the school, Y. This raises the question of how good the
sample mean ¥ is as an estimator of Y. With Y being unknown, this
question is unanswerable for a specific estimate from a particular sam-
ple; instead, reliance has to be placed on the properties of the estimator
on average over repeated applications of the sampling method. Observe
here that the term estimate is used for a specific value, while estimator is
used for the rule of procedure used for obtaining the estimate. In the
present example an estimate of 2.20 hours of television viewing may be
computed by substituting the values obtained from the sampled stu-
dents in the estimator § = Xy;/ n. Statistical theory provides a means of
evaluating estimators but not estimates. The following paragraphs
briefly review the theory of statistical inference in the context of SRS;
for a more complete discussion of statistical inference the reader is
referred to a statistics text, e.g., Blalock (1972).

The properties of sample estimators are derived theoretically by
considering the pattern of results that would be generated by repeating
the sampling procedure an infinite number of times. In the present
example, suppose that the operations of drawing an SRS of 250 students
from the 1872 students and then calculating the sample mean for each
sample were carried out an infinite number of times (of course, replacing
each sample in the population before drawing the next sample). The
resulting set of sample means would have a distribution, known as the
sampling distribution of the mean. Provided that the sample size is not
too small—often an n of 10 or 20 is sufficient—statistical theory shows
that this distribution approximates the normal distribution, and that the
mean of this distribution is the population mean, Y. If the mean of the
individual sample estimates over an infinite number of samples of the
given design equals the population parameter being estimated, then the
estimator is said to be an unbiased estimator of that parameter. Thus, in
the case of an SRS, ¥ is an unbiased estimator of Y.

Although the sampling distribution of ¥ is centered on Y, any one
estimate will differ from Y; hence, a measure of the variability of the
individual estimates around Y is needed. A common measure of varia-
bility is the standard deviation, the square root of the variance. In this
case, the required standard deviation is that of the sample means in the
sampling distribution. To avoid confusion with the standard deviation
of the element values, standard deviations of sampling distributions are
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known as standard errors. We denote the sample mean of an SRS by o
(with the subscript 0 to indicate simple random sampling), its standard
error by SE(¥o) and the square of the standard error, the variance of ¥o,
by V(o). For convenience, most sampling error formulae will be pre-
sented in terms of variances rather than standard errors. The variance of
a sample mean of an SRS of size n is given by

2
N-n o
V(y0)= N-1 n [1]
or equivalently by
2 2
N-n\S S
vop-(N5E) S -a-n el

where f = n/N is the sampling fraction.

These formulae show that V(Jo) depends on three factors: first,
(N - n)/(N - 1) or (1 - f), either of which is called the finite population
correction (fpc)—there is a negligible difference between these terms
when N is large; second, n, the sample size; and third S or o, the
alternative versions of the element variance of the y values in the
population. The fpc term reflects the fact that the survey population is
finite in size, unlike the infinite populations assumed in standard statisti-
cal theory, and that sampling is conducted without replacement. With an
infinite population or if sampling were conducted with replacement,
there would be no fpc term, in which case formula 1 would reduce to the
familiar form V(§o) = o*/ n. The fpc term indicates the gains of sampling
without replacement over sampling with replacement. For samples of
size 2 or greater, the fpc term is less than 1, which demonstrates that y
calculated from an SRS is more precise—that is, has a smaller variance
—than ¥ calculated from an unrestricted sample of the same size. In
many practical situations the populations are large and, even though the
samples may also be large, the sampling fractions are small. In this
situation the difference between sampling with and without replacement
is unimportant because, even if the sample is drawn with replacement,
the chance of selecting an element more than once is slight. This argu-
ment can also be expressed in terms of the fpc term. If the sampling
fraction (f) is say 1/ 10, the fpc term is 0.9 and its effect on the standard
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error is as a multiplier /1-£=0.95;iff=1/20,(1-£)=0.95and /1 -f
=0.97. These results show that if the sampling fraction is small, the fpc
term is close to 1 and has a negligible effect on the standard error. The
fpc term is commonly neglected (i.e., treated as 1) when the sampling
fraction is less than 1 in 20, or even 1 in 10.

The second factor in the formulae for V(o) is the sample size, n. As is
intuitively obvious, the larger the sample, the smaller is V(¥o). What is
perhaps less obvious is the fact that for large populations it is the sample
size rather than the sampling fraction that is dominant in determining
the precision of survey results. For this reason, a sample of size 2000
drawn from a country with a population of 200 million yields about as
precise results as a sample of the same size drawn from a small city of
40,000 (assuming the element variances in the two populations are the
same). It also follows from this line of argument that the gains from
sampling are greatest with large populations. Indeed, for very small
populations, the gains from sampling may not be worthwhile, even
though the fpc term has an appreciable effect in such cases. It may, for
example, turn out on balance to be more convenient to take all students
in a school of 200, rather than sample 175 of them.

The third factor in the formulae for V(o) is the element variance of
the y-values in the population, either o or S°. Clearly, if all the students
watch approximately the same amount of television, the mean of any
sample will be close to the population mean. However, if they differ
greatly in their viewing habits, there is a risk that the sample mean will
differ considerably from the population mean. Note that o® and S’ are
population parameters; hence, they are unknown quantities in a practi-
cal application. In order to estimate V(§o), an estimate of the population
element variance is needed. The advantage of using formula 2 for V(¥o),
expressed in terms of S, is that the familiar sample estimator s’ =
3(yi - ¥)*/(n - 1) is an unbiased estimator for S? (but not for o°). Thus
V(¥o) and SE(¥o) may be simply estimated by

v(p) = (1-Ds’/n (3]
and

se(7) = V(1 -DsZn [4]
with lower case letters for v(¥o) and se(o) to indicate sample estimators.

Having estimated the standard error, a confidence interval can be
calculated for the population mean. For instance, with a large sample,
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the 95% confidence interval for Y is ¥o & 1.96 se(Fo), where the 1.96 is
taken from a table of the normal distribution (95% of the normal distri-
bution falls within 1.96 standard deviations around the distribution’s
mean). As an illustration, suppose that the mean hours watching tele-
vision per day for the 250 sampled students is Jo = 2.192 hours, with an
element variance of s? = 1.008. Then a 95% confidence interval for Y is

250 ) 1.008
+ - = +
2.192_1.96\/(1 1872) 250 2.192+0.116

That is, we are 95% confident that the interval from 2.076 to 2.308
contains the population mean.

In addition to the mean, another parameter of common interest is the
proportion (or percentage) of the population with a particular attribute,
for instance the proportion of students currently reading a novel.
Results for a proportion follow directly from those for a mean, since a
proportion is just a special case of a mean. This may be seen by setting Y;
=1 if thei" element has the attribute and Y; =0 if not. Then Y= 3Yi/N is
simply P, the population proportion with the attribute, and the sample
mean y is the sample proportion p. Thus, in general, theoretical results
obtained for a sample mean apply also for a proportion. In the present
case of simple random sampling, since o is unbiased for Y, it follows
that po is unbiased for P. The standard error and variance formulae
given above for Jo can also be applied to po. However, since the y
variable takes values of only 0 or 1, the formulae for S2 and s2 can be
simplified in the case of a proportion to NPQ(N — 1) and npoqo/(n — 1),
respectively, where Q = 1—Pand qo = 1 —po. Using these simplifications,

Vo) =(1-0) op [5]
and
Po4
Vo) =(1-0 o (6]

If the fpc term can be neglected, and if n is large, v(po) reduces to the
popular form pogo/n. These formulae also apply with percentages, with
the modification that Q = 100 — P and qo = 100 — po.
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As anillustration, suppose that 165 of the 250 sampled students were
reading a novel, i.e., po= 66.0%. A 95% confidence interval for P is then

250 \ 66x 34
660196+ | [1- - 66.0+
\/( 1872 ) 2a9  06:0%5.5%

i.e., we are 95% confident that the interval 60.5% to 71.5% contains the
population percentage.

The preceding discussion reviews the steps involved in estimating a
population mean or proportion from an SRS and calculating an asso-
ciated confidence interval. The general approach is the standard one for
statistical inference from large samples, and the only distinctive feature
is the inclusion here of the fpc term. The approach can also be used for
the estimation of other population parameters.

3. SYSTEMATIC SAMPLING

Although the use of a table of random numbers to select the simple
random sample of 250 students as discussed in the previous section was
manageable, the operation was nevertheless somewhat laborious.
Moreover, it would have been more laborious had the population been
larger, the sample been larger, or the list of students not been ordered by
identification numbers. The widely used method of systematic sampling
provides a means of substantially reducing the effort required for sam-
ple selection. Systematic sampling is easy to apply, involving simply
taking every k™ element after a random start.

As a simple example, suppose that a sample of 250 students is
required from a school with 2000 students. The sampling fraction is
250/2000, or 1in 8. A systematic sample of the required size would then
be obtained by taking a random number between 1 and 8 to determine
the first student in the sample, and taking every eighth student there-
after. If the random number were 5, the selected students would be the
fifth, thirteenth, twenty-first, and so on, on the list.

The application of systematic sampling to the example in the last
section is slightly more complicated than above, because the sampling
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fractionis 250/ 1872 or 1in 7.488: thus, in this case the sampling interval,
7.488, is not a simple integer. Sometimes this problem can be satisfac-
torily handled by rounding the interval to an integer, with a resultant
change in the sample size. In this example a 1 in 7 sample would produce
asample of 267 or 268, while a 1 in 8 sample would produce a sample of
234, If the variation from the planned sample size caused by rounding is
not acceptable, alternative solutions are available. One is to round the
interval down (to 1 in 7), to start with a student selected at random from
the 1872 students in the population, and to proceed until the desired
sample size (250) has been achieved. With this procedure, the list is
treated as circular, so that the last listing is followed by the first. A
second solution is to use a fractional interval, rounding down each time
to determine the selection. In the present example, the random start is
chosen as a four-figure random number from 1000 to 7488—say, 3654.
Inserting a decimal place after the first figure gives 3.654, so that the first
selection is the third student. Adding 7.488 repeatedly to 3.654 gives
11.142, 18.630, 26.118, and so on. The subsequent selections are
then the eleventh, eighteenth, twenty-sixth, etc., students. The interval
between selected students is sometimes 7 and sometimes 8.

One way to identify the students selected for the systematic sample
would be to count through the list to find out which ones are the third,
eleventh, eighteenth, and so on, on the list. An alternative procedure
takes advantage of the student identification numbers. With this proce-
dure the sampling interval is continually added until the resulting total
exceeds 1917, the highest identification number. The rounded down
numbers determine the selected students as before; in cases in which
there is no student with the selected number, no selection is made. The
expected sample size remains at 250, but the achieved sample size may
deviate from this figure because of chance fluctuations in the fraction of
blank numbers sampled.

Like SRS, systematic sampling gives each element in the population
the same chance of being selected for the sample; i.e., it is an epsem
design. It differs, however, from SRS in that the probabilities of differ-
ent sets of elements being included in the sample are not all equal. For
instance, in the first example of a 1 in 8 sample, the probability that
elements 1 and 2 are both in the sample is 0, while the probability that
elements 1 and 9 are both in the sample is 1/8, since if element 1 isin the
sample element 9 is bound to be as well. The epsem property of sys-
tematic sampling implies that the sample mean is a reasonable estimator
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of the population mean. However, the unequal probabilities of sets of
elements means that the SRS standard error formulae are not directly
applicable with systematic sampling.

With the 1 in 8 systematic sample, the sampling distribution of a
mean or proportion is easily determined: Since there are only eight
different possible samples, each of which is equally likely, the sampling
distribution is the eight sample means or proportions, each with proba-
bility 1/8. A limitation of systematic sampling is that, unless some
assumption is made about the ordering of the list, the variability among
the values of the sampled elements does not provide a basis for estimat-
ing the variability of the sampling distribution. To demonstrate this
point consider again the estimation of the percentage of students cur-
rently reading a novel. Suppose that 1500 of the 2000 students are doing
s0, and that the school list happens to be ordered in repeated cycles of six
readers followed by two nonreaders. The samples associated with the
random starts from 1 to 6 would then contain all readers (p = 100%)
while those associated with the random starts 7 and 8 would contain no
readers (p = 0%). The sample estimator is in fact extremely imprecise,
with a true standard error of 43.3%. The internal variability within any
one of the eight possible samples is, however, zero, and hence it pro-
vides no indication of the magnitude of the standard error.

In order to estimate the standard error of estimators based on sys-
tematic samples, some form of assumption about the population needs
to be made. Sometimes it is reasonable to assume that the list is approx-
imately randomly ordered with respect to the survey variables, in which
case the sample can be treated as if it were a simple random sample; lists
arranged in alphabetical order may often be reasonably treated in this
way. Sometimes the list may be ordered in groups (e.g., students by
grade), with variability expected between groups in the levels of the
survey variables. In this case a systematic sample may be analyzed as if it
were a stratified sample (see Chapter 4). Survey samplers often re-
arrange the order of a list before drawing a systematic sample so as to
obtain the gains of proportionate stratification.

As illustrated above, systematic sampling performs badly when the
list is ordered in cycles of values of the survey variables and when the
sampling interval coincides with a multiple of the length of the cycle. If,
however, the sampling interval is not a multiple of the length of the
cycle, systematic sampling from a list ordered in cycles can fare well.
This can be seen by considering the effect of a 1 in 7 sample in the above
example of student readers. While sampling practitioners need to be
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alert to the potential dangers of systematic sampling when sampling
from lists with cyclical arrangements, such lists are rarely met in prac-
tice, and situations in which they may occur are usually easily recog-
nized. Systematic sampling is widely used in practice without excessive
concern for the damaging effects of undetected cycles in the ordering of
the list.

4. STRATIFICATION

A commonly encountered feature of survey sampling is that a certain
amount of information is known about the elements of the population
to be studied. In selecting an area sample of the United States, for
instance, information is available on the geographical location of the
area, whether it is an inner city, suburban or rural area, and census
information will provide a wealth of other information about the
area—for instance, its population at the previous census, its rate of
population change, the proportion of its population employed in manu-
facturing, and the proportion of its population with race reported as
“not white.” Supplementary information of this type can be used either
at the design stage to improve the sample design, or at the analysis stage
to improve the sample estimators, or both. This section discusses the use
of supplementary information to improve the sample design through the
technique of stratification.

The essence of stratification is the classification of the population
into subpopulations, or strata, based on some supplementary informa-
tion, and then the selection of separate samples from each of the strata.
The benefits of stratification derive from the fact that the sample sizes in
the strata are controlled by the sampler, rather than being randomly
determined by the sampling process. Often the strata sample sizes are
made proportional to the strata population sizes; in other words, a
uniform sampling fraction is used. This is known as proportionate
stratification. The division of the total sample between the strata does
not, however, have to be restricted.to a proportionate allocation;
disproportionate stratification is also possible. In this section we will
consider only the use of simple random sampling within strata, but as
will be seen later, other sampling methods can also be used.

The notation introduced earlier needs to be extended to cope with the
separate strata; this is done by adding a subscript h to existing symbols
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to denote the corresponding quantities in stratum h. Thus Ny is the
population size and nj is the sample size in stratum h, with N = 3Ny and
n = 3n, being the total population and sample sizes; f, = ny/ Ny, is the
sampling fraction in stratum h; Ys and §, are the population mean and
sample mean in stratum h; and S} and s} are the population element
variance and sample element variance in stratum h. It is useful to add a
new symbol Wi = Ni/ N for the proportion of the population in stratum
h, with ZW, = 1.

Given simple random sampling within strata, the preceding results
can be applied to each stratum separately to show that the ¥i’s are
unbiased for the Yy’s and that their variances and standard errors may be
estimated according to formulae 3 and 4. The new problems presented
by stratified sampling are how to combine the strata sample means to
produce an estimator of the overall population mean Y and how to
estimate the variance of this estimator. The solution to the first problem
is readily obtained by noting that Y can be expressed as SN,Ys/N =
3 W1 Ys. Hence an obvious estimator of Y is produced by substituting the
strata sample means ¥i’s for the unknown Yu’s. This unbiased estimator
is (with subscript st for stratified) ¥« = X Wy,

Selecting the samples in the various strata separately and indepen-
dently, the variance of §.: = % Ws¥h is given by standard statistical theory
as

V(Fa) = SWR V() 7]
With SRS within strata, this formula becomes
V(§x) = Wi - £:)St/nn 8]

on substituting formula 2 for V(¥i). An estimator of V(¥x) is then
obtained by substituting sh for the unknown S} in formula 8:

V(F) = EWi(1 - f)s2/na ]|

Proportionate Stratification

The above formulae apply for any allocation of the sample across the
strata. In the case of proportionate stratification, i.e., a uniform
sampling fraction with f, = f or na/ N, = n/N, these formulae simplify.
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Proportionate stratification is an epsem design in which ¥ reduces to
the simple sample mean

3y, ./n
hiyhl/

where yui is the y-value for the i sampled element in stratum h, and the
summation is over all the sampled elements. The variance of Vx in
equation 8 reduces in this case to

VFx) = (1 - )EWiSi/n=(1 -)S%/n [10]

where S% = ZW,S?is the weighted average within stratum variance.
Then V() may be estimated by

V(Ta) = (1 - )ZWish/n (11

It may be noted that the variance of the mean based on a propor-
tionate stratified sample—formula 10—is similar to that of a mean
based on a simple random sample—formula 2. The only difference is
that the population element variance S* in the SRS formula is replaced
by the weighted average within stratum variance S% in the proportionate
stratified formula. As an approximation with large N it can be shown
by a standard analysis of variance decomposition that

S?= S} + SWu(Ya - Y)?

Since the last term in this formula is a nonnegative quantity (a sum of
squared terms), it follows that S?=S2; in other words, a proportionate
stratified sample cannot be less precise than an SRS of the same size.
For a given total variability in the population, the gain in precision
arising from employing a proportionate stratified sample rather than an
SRS is greater the more heterogeneous are the strata means or, equiva-
lently, the more homogeneous are the element values within the strata.

As illustrated in the preceding discussion, simple random sampling
serves as a useful benchmark against which to compare other sample
designs. A commonly used measure for this comparison is the design
effect, the ratio of the variance of the estimator based on the complex
design to the variance of the estimator based on an SRS of the same size.
We denote the design effect of any estimator z by D*(2) = V(2)/ V(z).
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The design effect for the mean of a proportionate stratified sample is
thus D*(y) = S%/ S%, anumber no greater than 1 under the above approx-
imation. For some purposes the ratio of standard errors rather than
variances is a more appropriate measure; the square root of the design
effect is denoted by D(z). A sample estimate of a design effect for z is
denoted by d*(z). An alternative definition of the design effect makes the
comparison with unrestricted sampling rather than with simple random
sampling. This alternative has the attraction of comparing the complex
sample variance with that given in standard statistics texts. However,
since the difference in variances between SRS and unrestricted sampling
is only the fpc term (1 - f), which can generally be neglected, the
difference in definition is mostly of minor importance.

To illustrate the use of proportionate stratification we return to the
high school example of the previous chapters. We now suppose that the
list of students is divided into four separate lists, one for each grade level
(ninth, tenth, eleventh, and twelfth). The grades constitute the strata
from which separate samples are drawn. Columns 2 and 3 of Table 2 give
the numbers and proportions of the high school population in each
grade. Column 4 gives the sample sizes taken from each stratum under a
proportionate allocation with a uniform sampling fraction of 250/ 1872
or 1in 7.488. Columns 5, 6, and 7 give the sample totals, sample means,
and sample element variances in each of the strata for the number of
hours per day of television viewing. Columns 8 and 9 give the numbers
and proportions of sampled students in each stratum currently reading a
novel.

The overall sample mean of the number of hours per day of television
viewing can be computed from the general stratified formula as Wy,
but since the sample is a proportionate one, it can equally be calculated
as the simple sample mean

o = ZZyy/n = 548/250 = 2.192

In the same way, the overall sample percentage of students reading
novels can be calculated as pi = 1003/ n = 100(163/250) = 65.2%. The
variance of J.: can be calculated from formula 11 to give

250 ) 0.8808
=0.003053

"(yst)=(1" 1872) 250
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TABLE 2
Proportionate Stratified Sample of High School Students
(hypothetical data)
I 2 3 (@ &) 6) 7 8 €
Sy o 2

Stratum Np Wh np iyhx ¥h Sh Th Ph
9th grade 524 0.28 70 168 240 0.941 35 50%
10th grade 487 0.26 65 169 260 1.088 39 60%
11th grade 449 0.24 60 123 2.05 0.804 45 75%
12th grade 412 0.22 55 88 1.60 0.643 44 80%

Total 1872 1.00 250 548 163

and

se(¥,,) = 0.0553

Thus, a 95% confidence interval for Y is i & 1.96 se(s), or 2.08 to 2.30.
The estimated variance of p. can also be obtained from formula 11,
noting from earlier that s = nypnqs/(ns — 1) for a percentage. Then

250 ) 2160
v(pg) = (l - ——_1872) 250 7.486

and
se(pg,) = 2.736%

A 95% confidence interval for P is then given by p« & 1.96 se(ps) or
59.8% to 70.6%.

The design effects for J and ps may be estimated by s+/s”. In the case
of Ji, s* is approximately 1.008 (calculations not shown; see Cochran,
1977: section 5A11), so that d*(Js) = 0.8808/ 1.008 = 0.87. In other words,
an SRS of 250/0.87 = 286 is needed to give the same precision as this
proportionate stratified sample of 250. This sizable gain in precision of
the stratified design results from the marked variation in the mean
number of hours of television viewing of the different grades.
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In the case of p., s is approximately 2278, so that d*(ps) = 0.95. The
gains from stratification may appear smaller than expected, given the
substantial differences in the four strata percentages given in column 9
of Table 2. The relatively small gain with percentages is, however, the
rule, unless some strata with extremely high (say over 90%) or extremely
low percentages (under 10%) can be formed.

Disproportionate Stratification

Proportionate stratification is much used because it produces simple
estimators and because it guarantees that the estimators are no less
precise than those obtained from a simple random sample of the same
size. There are, however, situations in which a disproportionate alloca-
tion is helpful.

One purpose of disproportionate stratification is to achieve an alloca-
tion that maximizes the precision of the estimator of the population
mean within the available resources. The optimum allocation for this
purpose is to make the sampling fraction in a stratum proportional to
the element standard deviation in that stratum and inversely propor-
tional to the square root of the cost of including an element from that
stratum in the sample, i.c., fu & Su/\/Cy, where cs is the cost per sample
element in stratum h. As might be anticipated, this result indicates that
more heterogeneous strata and strata where costs are lower should be
sampled at higher rates. Often the costs do not differ between strata, so
that the optimum allocation reduces to f, & Sy, the so-called Neyman
allocation.

A practical difficulty to the use of optimum allocation is lack of firm
knowledge of the stratum element variances and costs on which the
allocation is based. Fortunately, reasonably accurate estimates suffice,
for the loss of precision associated with minor departures from the
optimum allocation is small. Another difficulty arises from the multi-
purpose nature of surveys, for what is an optimum allocation for one
estimator may be a poor one for another. Unlike the situation with
proportionate stratification, a disproportionate allocation can produce
less precise estimators than the same-sized simple random sample.

Another use of disproportionate stratification is to allocate a suffi-
cient sample size to certain strata in order that separate estimates of
adequate precision will be available for them. Sample estimates are
often required not just for the total population, but also for various
subpopulations, which are termed domains of study. When a small
stratum represents a domain of study, it is likely that a proportionate
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allocation will generate too small a sample from the stratum to produce
sufficiently precise estimators; the remedy is to sample from that stra-
tum at a higher rate.

Yet another situation that gives rise to a disproportionate allocation
is when the survey aims to make comparisons between the stratum
estimates rather than to aggregate them into an overall estimate. For
instance, the purpose of the high school survey might be to compare the
amounts of television viewing of the different grade levels rather than to
calculate an overall estimate. When there are only two strata, the
optimum allocation for estimating the difference between the stratum
means is

6N

n,  (5,Ve)

If, as is often-a reasonable approximation, stratum variances and costs
are equal, the optimum allocation reduces to n; = n,. Notice that, for
comparisons between strata, the stratum population sizes are irrelevant,
but they are important in forming the overall estimate. When both
comparisons and overall estimates are required, stratum sizes that differ
greatly can cause a conflict for the sample allocation. For instance, if
stratum variances and costs are equal and the first stratum comprises
90% of the population and the second 10%, the optimum allocation of a
sample of 500 for estimating the overall mean is 450 in the first stratum
and 50 in the second, whereas the optimum allocation for estimating the
difference between the two stratum means is 250 in each stratum. When
this situation arises, the optimum allocation for one purpose can be
extremely damaging for the other, but sometimes a reasonable com-
' promise solution can be found.

As an illustration of the analysis of a disproportionate sample, we
return once more to the high school example. The data in Table 3 have
been arranged to conform to those in Table 2, except for the modifica-
tions made to adjust for the revised, disproportionate allocation of the
sample in column 4. The chosen allocation divides the sample of 250 as
equally as possible between the four strata, as might be done if each
stratum were also to be treated as a domain of study (assuming that the
strata element variances and costs were equal).

The overall mean number of hours of television viewing is computed
from the formula ¥ = Z Wiy as 2.192, the same value as before. In this
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TABLE 3
Disproportionate Stratified Sample of High School Students
(hypothetical data)
(03] ) 3) (O] ) 6) D
Stratum N, Wy, n, Z¥ni Y sf,
1
9th grade 524 0.28 63 151.2 240 0.941
10th grade 487 0.26 63 163.8 2.60  1.088
11th grade 449 0.24 62 127.1 2.05 0.804
12th grade 412 0.22 62 99.2 1.60 0.643
Total 1872 1.00 250

case, the simple mean 3 3yu/n = 2.165 is not a valid estimate of Y: The
higher grades, which are overrepresented in the sample, report less
television viewing, and as a result, the simple mean underestimates Y.
The weighted mean corrects for the imbalance in the sample by weight-
ing by the population stratum proportions Wx. The variance of Vs,
estimated by formula 9, is v(¥.) = 0.003117, so that se(¥.) = 0.0558.
Comparing this standard error with that obtained with the proportion-
ate allocation (0.0553) shows that this disproportionate allocation pro-
duces a marginally less precise estimator of the overall population mean.

Choice of Strata

Two conditions need to be fulfilled for standard stratification: First,
the population proportions in the strata, the Wy’s, need to be known,
and second, it has to be possible to draw separate samples from each stra-
tum. Techniques for handling the situation in which stratification is
desired but these conditions are not met are discussed later. (See Chap-
ter 10 on poststratification and Chapter 7 on two-phase sampling.)
Provided that these conditions are met, there is considerable flexibility
in the ways in which the strata can be formed. The only other restriction
is that there must be at least one selection sampled from each stratum;
otherwise it would not be possible to calculate an unbiased estimator of
the overall population mean. If the sample is also to provide a standard
error estimate, there must be at least two selections per stratum.
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In practice, there often exists a considerable amount of information
about the population that can be used for stratification purposes, thus
providing a good deal of room for choice in how the strata are formed.
This choice is determined by the objectives for the stratification. For
gains in precision of the overall estimates, the strata should be formed to
be as internally homogeneous in terms of the survey variables as possi-
ble. If separate estimates are needed for small domains of study, each
domain should be placed in a separate stratum—or a set of strata—
which can then be sampled at a higher rate to produce the required
sample size. Sometimes it is useful to form strata within which different
sampling methods can be employed. In surveying the population of a
small city and its neighboring rural area, for instance, it may be desirable
to take a systematic sample of households in the urban stratum while
using area sampling in the rural stratum.

We return to the high school example to illustrate the joint use of
several stratification factors. We now assume that, in addition to grade
level, the following variables are available for use in stratification:
student’s sex, an overall academic performance score (categorized into
three classes—high, medium, and low), and area of residence (catego-
rized into three areas). Each of these variables is believed to be related to
the student’s amount of television viewing; in the case of area of resi-
dence, the justification for this belief is that the areas differ in their types
of housing, and area may therefore serve as a proxy for family social
class. There is no need to apply objective rules in using these variables
for forming strata. The strata may in fact be created in any subjective
way without risk of bias in the survey estimators; the use of probability
sampling within strata protects against selection bias. The measure of
success achieved in forming strata is their internal homogeneity, which

of course affects the standard errors of the survey estimators. In this
" example, sex may be thought to be an unimportant explanatory variable
for television viewing among ninth- and tenth-grade students, but an
important one among eleventh- and twelfth-grade students. On the
other hand, it may turn out that nearly all the eleventh- and twelfth-
grade students come from only one of the areas of residence, so this
variable is not a distinguishing factor for the older students. Taking
account of these points, we may then form the strata as follows: First
stratify the students by grade level; then within the eleventh and twelfth
grades separate the students into the three performance classes and
subdivide them into boys and girls, and within the ninth and tenth grades,



28

separate the students into the three performance classes and subdivide
them by the three areas of residence. This procedure produces 30 strata.
If some strata turn out to be too small (say less than 15 students, a
number that warrants 2 selections for a sample of 250 from a propor-
tionate design), they can be combined with adjacent strata.

A problem that arises from the formation of numerous strata with a
proportionate design is that the sample sizes required from some strata
may be small and fractional. For example, applying the required sam-
pling fraction of 1 in 7.488 to a stratum containing only 19 high school
students gives a required sample size of 2.54. While rounding large
sample sizes to the nearest integer will have only a negligible effect on
selection probabilities, this does not hold for such small numbers. A
common way to avoid the problem of fractional sample sizes is to
employ “implicit” rather than “explicit” stratification. Implicit stratifi-
cation involves listing the population by strata, then taking a systematic
sample throughout the list. By this means, the stratum of 19 students
would have either 2 or 3 selections, depending on the random number
chosen to start the procedure.

5. CLUSTER AND MULTISTAGE SAMPLING

In most sampling problems the population can be regarded as being
composed of a set of groups of elements. One sampling use for such
groups is to treat them as strata, as discussed in the previous section. In
this case, separate samples are selected from each group. Another
sampling use is to treat them as clusters, in which case only a sample of
them is included in the survey. If all the elements in selected clusters are
included in the sample, the method is known as cluster sampling. If only
a sample of elements is taken from each selected cluster, the method is
known as two-stage sampling. Often a hierarchy of clusters is used: First
some large clusters are selected, next some smaller clusters are drawn
within the selected large clusters, and so on until finally elements are
selected within the final-stage clusters. Thus, for instance, a survey of
students in a state might first select a sample of schools, then samples of
homeroom classes within selected schools, and finally samples of stu-
dents within selected classes. This general method is known as multi-
stage sampling, although it is also sometimes loosely described as cluster
sampling.
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Although strata and clusters are both groupings of elements, they
serve entirely different sampling purposes. Since strata are all repre-
sented in the sample, it is advantageous if they are internally homoge-
neous in the survey variables. On the other hand, with only a sample of
clusters being sampled, the ones selected need to represent the ones
unselected; this is best done when the clusters are as internally hetero-
geneous in the survey variables as possible. Proportionate stratification
is used to achieve gains in precision. On the other hand, except in special
circumstances, cluster sampling leads to a loss in precision compared
with an SRS of the same size. The justification for cluster sampling is the
economy it creates for sampling and data collection. Unless this econ-
omy permits a sufficient increase in sample size to more than offset the
associated loss in precision, the use of cluster sampling is inappropriate.

In this section, for simplicity, we make the unrealistic assumption
that all the clusters are of the same size, B. (The next section discusses
unequal-sized clusters.) From the A clusters in the population, a are
sampled by SRS, and all the elements in selected clusters are enumer-
ated. (Note: Wherever the letter “a” is underlined in the text, it signifies
that it is being used as a mathematical symbol, rather than an article.)
The sample size is n = aB and the sampling fraction is f = n/N =
aB/AB=a/ A. Inthe population, let Y,gdenote element Bin cluster e, let

— B
Yo = 2Yog/B

be the mean of cluster «, and let
7=33Y /N =Y /A
h af of a @
be the population mean. In the sample, the corresponding quantities are
_ B
B
and

5. =22y Jn= 2y
= n= a
Ye p Byaﬁ aya/
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With equal-sized clusters, the population mean is the simple mean of the
A cluster means and the sample mean is the simple mean of the a
sampled cluster means. As a consequence, the SRS of clusters can be
viewed as an SRS of a means from a population of A means. It therefore
follows immediately that ¥. is unbiased for Y and that its variance is
given from formula 2 as

a s;
VF,) = (1 - X)—S [12]
where
2 A 52
5} =2(%,- A -1

is the variance of the cluster means. It also follows that

a sa

wo-(1-2) % "

a

is an unbiased estimator of V(¥ ), where
2 =37y -9) M- 1)
522%™y

Comparing V(¥.) with the variance of the mean from an SRS of size n
= aB gives the design effect for y. as

The magnitude of D(¥:) depends on the ratio of the sizes of S and S?,
and this ratio depends on the way the clusters are formed. For instance,
suppose that the number of clusters A in the population is large and that
the clusters are formed at random, then S2, being the variance of means
of SRSs of B elements each, would be approximately S*/ B. Under these
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conditions, D*(y:) = 1, as might otherwise be anticipated. If, as generally
applies, the clusters are more internally homogeneous than would occur
from a random allocation, the cluster means will be correspondingly
more heterogeneous; hence Sawill be larger than S?/ B, so that D(5.) will
be greater than 1.

Aninformative alternative expression for the design effect of a cluster
sample mean is

DXy, )=1+(B-1)p [14]

where p is the intraclass correlation coefficient measuring the degree of
cluster homogeneity (Kish, 1965: section 5.4). If in a large population
the clusters are formed at random, p = 0; hence Dz(ic) = 1, as already
established. A negative value of p, indicating that the clusters are more
internally heterogeneous than would occur if they were formed at ran-
dom, is possible, but p cannot be less than ~1/(B - 1). A negative p
produces a design effect of less than 1, indicating that cluster sampling is
more precise than SRS in this case. In practice, however, negative p’s
occur extremely rarely. As a rule, p’ are small positive values (mostly
under 0.15), so that D*(§c) > 1. The maximum possible value of p is 1,
which occurs when within each cluster all the elements have the same
value.

As an illustration, we return again to the high school example. We
suppose now that at a particular hour the school comprises A = 78
classes each of B = 24 students, and that it is inexpensive and convenient
to have all the students in selected classes fill in the survey’s self-comple-
tion questionnaire at that hour. A sample of a =10 classes, producing a
sample of 240 students, is selected. The following numbers represent the
proportions of students reporting reading a novel in each of the ten
classes:

9 11 13 15 16 17 18 20 20 21

24724724724 247 24° 247 247 24’ 24

The overall proportion is p. = 160/240 = 66.7%. From formula 13 the
variance of this estimate, with p, =y and pc =¥, is given by

ﬂ) 002816 _ 0002455

v(pe) = (1’ 78/ 10
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so that se(pc) = 0.04955 or 4.96%. Since & is based on only 9 degrees of
freedom, the t distribution rather than the normal distribution should be
used in forming a confidence interval for the population percentage.
Thus a 95% confidence interval for P is 66.7 X 2.26(4.96) or 55.5% to
77.9%, where the figure 2.26 is the tabulated 95% point for the t distri-
bution with 9 degrees of freedom.

The value of v(pc) may be compared with the variance of the propor-
tion based on an SRS of the same size. This variance is given from
formula 6 by

= 0.0008106

) 240 | 0.6667 X 0.3333
v(po) = (‘ - 1872) 239

so that se(po) = 0.02847 or 2.85%. The design effect. for the cluster
sample proportion is thus

d’(pc) = 0.002455/0.0008106 = 3.029
Using formula 14 an estimate of p is then given by
b =[d*(pc) - 13/(B - 1) = 0.088

These results show that the positive intraclass correlation has caused the
cluster sample to be much less precise than an SRS of the same size.
Approximately, ignoring the effect of the fpc term, the cluster sample
needs to be three times as large as the SRS to give the same degree of
precision.

As formula 14 makes clear, the design effect of a cluster sample mean
depends on two factors, the intraclass correlation p and the cluster size
B. The sizable design effect in the above example comes about because
of a fair degree of homogeneity in the amount of television viewing
within classes—or, equivalently, a fair degree of heterogeneity between
classes—together with a class size of 24 students. Even if p is small, the
design effect can be large if the multiplier (B — 1) is large. Had the class
size been, say, only 8 with the same degree of homogeneity, the design
effect would have been reduced to 1.62. In practice, the value of p
generally tends to increase the smaller the cluster, but usually at a slow
rate so that the reduction in B exerts the dominant effect on the design
effect.
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With cluster sampling this argument suggests that, providing the
clusters are large enough to secure the required savings in costs of
sampling and data collection, the smaller the size of the clusters the
better. When, as often applies, there is a hierarchy of clusters, the
smallest ones meeting the requirements will generally be the preferred
choice. In the high school example, the students could be grouped by
grade levels or classes; here grade levels are too large to serve as clusters
for sampling purposes, and classes are the obvious choice. The problem
with cluster sampling is that, because clusters usually comprise existing
groupings that were formed for other purposes, the lowest level of
clustering still often yields clusters that are too large to be used effi-
ciently in cluster sampling. The obvious solution to this problem is to
divide the clusters into subclusters for sampling purposes; essentially
this is what is done in multistage sampling.

Consider a two-stage sample in whicha clusters are selected by SRS
from the A in the population, and then SRSs of b elements are taken
from the B elements in each selected cluster. The simple sample mean

., = EDyqin =35,
= n= a
Vis = Z%Yap aya/
is still an unbiased estimator of the population mean but note now that
_ b
ya = Ey‘xﬁ/ b

is the sample mean for cluster @, not the true mean for that cluster as it
was with complete cluster sampling. The variance of ¥y is

2 2
S S
o\ a a b b
V(yts)_(l' A) a +(1'B)ab
where

2 _AB S 12
S5 =22 (Yo~ Vo) 1AGB -1
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isthe average element variance within the clusters. The first term in this
formula is that for cluster sampling, and the second term represents the
additional variance accruing through the subsampling within selected
clusters. If b = B, the second term is zero and the formula reduces to the
variance of a cluster sample mean given by formula 12. If a= A, all the
clusters are included in the sample; hence they are strata. The first term
is zero when a = A, and the second term is the variance of the mean with a
proportionate stratified design as in formula 10: f = b/B, n = ab, and
Si=S.
An unbiased estimator of V(¥i) is given by

2 2
a\% a b\
T = - — — 3+ — - — —
VG (1 A)a A(l B)ab
where
z_g_ _z/ 1
sa—a(ya—Y) (a-1)
and

2_2ab _
sp = gg(yaﬁ -J)lab-1)

This formula is somewhat laborious to compute because sb involves
calculating the sample element variances in each of the selected clusters.
If the first-stage sampling fraction a/ A is small, the second term in v(Vis)
is small; hence, as an approximation, it may be dropped. This leads to
the estimator

v(Ji) = s2/a [15]

which is simple to compute. In essence, the approximation treats the
first-stage sampling as being carried out with, rather than without,
replacement. Providing the first-stage sampling fraction is small, as it
often is in practice, the approximation is adequate. The approximation
is widely used with complex sample designs, and it is employed in most
computer programs for sampling errors from such designs.
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Another approximation to the two-stage design considers each clus-
ter in the population as conceptually divided into B/b ultimate clusters
(UC:s) of b elements each. With the present design, in which subsampling
is conducted by SRS, the UCs are viewed as being formed by SRS
within each cluster. Within each cluster, first an SRS of b elements is
taken to comprise the first UC, then an SRS of b elements is taken from
the remaining elements to comprise the second UC, and so on until B/b
UCs are formed and all the elements are accounted for (we assume here
for simplicity that B/b is an integer so that the last UC is also of size b).
Then an SRS of UCs is drawn from the population of AB/b UCs, with
all the elements in the selected UCs being included in the sample. This
sample design is a close approximation to the two-stage design discussed
above. It differs in that the two-stage design selects only one UC from
each sampled cluster, whereas this restriction does not apply with the
ultimate cluster design. However, providing a/ A is small, the chance of
selecting two UCs from the same cluster with the ultimate cluster design
is small; under this condition the ultimate cluster design serves as a
satisfactory approximation to the two-stage design. The attraction of
the ultimate cluster sample design approximation is its simplicity: Itisa
sample of complete (ultimate) clusters, and the formulae for cluster
sampling can be immediately applied. Thus, for instance, an approxi-
mate variance estimate for V(¥.s) comes directly from formula 12 as

b X
a a
E)T [16]

v =(1-
where the sampling fractionis a/(AB/b)=ab/AB=n/N and s2is the var-
iance of the means of the sampled UCs. Under the condition of the
approximation to the two-stage design (i.c., that a/A is small), the fpc
term can be dropped, thus yielding the same variance estimator as the
with-replacement approximation.

For the ultimate cluster sample design, the design effect for the
sample mean is given from formula 14 as 1 + (b - 1) p, where p is the
intraclass correlation in the UCs and b is the size of the UCs. When the
UCs are formed by SRS, their expected homogeneity is the same as that
in the original clusters. Thus, as an approximation, the design effect for
the two-stage sample is

D'F)=1+(b-1)p [17]
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As formula 17 shows, if p is positive, the design effect declines as the
subsample size b declines: for a fixed total sample size n = ab, the smaller
the subsample size, and hence the larger the number of clusters included
in the sample, the more precise is the sample mean. However, the more
spread the sample is across clusters, the higher will be the survey costs,
and hence the smaller the sample that can be obtained for afixed budget.
These two factors have to be balanced against each other to determine
the optimum combination of the number of sampled clusters, a, and the
number of elements drawn from each selected cluster, b. For this pur-
pose, a model of the survey’s cost structure needs to be specified. A
simple cost model is C = aC, + nc, where C is the total cost, C. is the cost
per sampled cluster, and c is the cost per sampled element. Under this
model, the optimum choice for b that minimizes the variance of the
sample mean is approximately (Kish, 1965: section 8.3B)

G oa-p

b . =\/—
c p

opt

(18]

It follows from this formula that, other things being equal, the sample
should be more spread across clusters (i.e., a smaller value for b) the
greater the cluster homogeneity, the greater the element cost, and the
smaller the cluster cost. If, say, the relative cost C, /c is estimated at 17
and p = 0.07, bo = 15. Given the total budget, the number of clusters to
be sampled can then be determined.

The cost model used in the derivation of b is an oversimplified one,
but it is probably adequate for general guidance. More sophisticated
models can be used, but it is doubtful whether the added complexity is
worthwhile. The estimation of cost components proves to be extremely
difficult even for the simple model. In addition to costs, the estimation
of bop: also requires an estimate of p. This estimate may often be based
on past surveys involving similar variables and similar sample designs.
Since surveys are multipurpose, with different variables having differ-
ent values of p, the choice of b involves some degree of compromise
between several different optima.

The use of multistage sampling is justified by economies achieved in
sampling and data collection. The sampling economies are considerable
with area sampling, where the lists from which elements are selected
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need be compiled only in the selected final-stage clusters (e.g., city
blocks or smaller segments). With data collection by face-to-face inter-
viewing, multistage sampling can give substantial savings in interviewer
travel costs. If the population is a large, widely scattered one, a single-
stage sample would be thinly spread, whereas a multistage sample
concentrates the interviews in a number of locations. Clustering pro-
vides no significant data collection economies with telephone interview-
ing or mail questionnaires (unless face-to-face interviewing is used for
follow-up inquiries or to deal with nonrespondents), but with telephone
interviewing clustering can give sampling economies (see Chapter 12).

Suppose that a household survey is to be conducted by face-to-face
interviewing in a particular city. If the city is small and a list of house-
holds (or dwellings) is available, a single-stage sample, probably strati-
fied by area and other variables, may be the best choice. If the city is
small but no list is available, a two-stage design may be used to save
sampling costs; a stratified sample of city blocks might be selected at the
first stage, then dwellings might be listed and sampled. In a large city,
evenif alist is available, a two-stage sample is likely to be used to save on
interviewers’ travel time and costs. The larger the population, the
greater the number of sampling stages that are likely to be employed. A
sample for a national interview survey of the U.S. population will
generally employ three or more stages (see Chapter 12).

The preceding discussion has assumed for simplicity that clusters and
elements were selected by SRS. In practice, stratification is used at all
the stages of a multistage design for which useful stratification factors
are available, and systematic sampling is also commonly used. Indeed
stratification is more important for sampling clusters than for sampling
elements, because it can yield much greater gains in precision when
applied with clusters. In addition, many stratification factors are usually
available for stratifying clusters. Stratification of the first-stage clusters,
or primary sampling units (PSUs), in a multistage design is frequently
taken to the limit of forming as many strata as there are PSUs to be
sampled, and then selecting one PSU from each stratum (or implicit
stratum if systematic sampling from an ordered list is used). Sometimes
the sample of PSUs is further controlled by the technique of controlled
selection (Goodman and Kish, 1950; Hess et al., 1975).

When a single PSU is selected from a stratum, the variance within the
stratum cannot be directly estimated. To permit the estimation of sam-
pling errors, pairs of similar strata are commonly combined and treated
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as if each pair constituted a single larger stratum. This collapsed strata
technique leads to some overestimation of sampling errors, but provid-
ing the paired strata are closely similar, the overestimation should not be
serious. The collapsing of pairs of strata, each with a single primary
selection, sets up a design with two sampled PSUs in each stratum, a
design commonly known as a paired selection design. The PSUs in the
collapsed strata are usually treated as having been sampled with
replacement so that the simple with-replacement variance estimators
described earlier can be used.

6. PROBABILITY PROPORTIONAL TO SIZE SAMPLING

The last section assumed that the clusters were of equal size, but thisis
rarely so in practice. The natural groupings that the sampler takes
advantage of to serve as clusters almost always vary in size, often in a
major way. The classes in a high school will not all contain 24 students,
but may perhaps vary between 20 and 30; city blocks vary much more in
the number of households they contain, as also do counties (which are
frequently used as PSUs for national samples in the United States). The
difficulties this variation in size creates will now be explained and
methods will be described by which these difficulties can be overcome.

For ease of exposition we will use an artificially small example
involving the selection of an epsem sample of dwellings (the elements)
from a set of 9 city blocks (the PSUs); the example might be thought of
as one stratum in a much larger design. The 9 blocks contain 315
dwellings in total, and a sample of 21 is desired, implying an overall
sampling fraction of 1 in 15. At the first stage of sampling, 3 blocks are to
be drawn, and then dwellings are sampled within the selected blocks.
Initially we assume that the sizes of the blocks—i.e., the numbers of
dwellings they contain—are known without error. These sizes, with B,
denoting the number of dwellings in block e, are as follows:

Block: 1 2 3 4 5 6 7 8 9 Total

By 20 100 50 15 18 43 20 36 13 315
The first design to be considered takes an SRS of three blocks at the

first stage. Each block thus has a probability of 3/9 = 1/3 of being
selected. The selection probability for a dwelling can be obtained using
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the multiplication rule of probabilities. In general, with a two-stage
design the probability of element B in cluster « appearing in the sample
is

P(ap) = P(a)P(Bla) [19]

where P(a) is the probability of cluster @ being selected, and P(8| @) is
the probability of element 8 in cluster o being chosen at the second
stage, given that cluster a was selected at the first stage. This equation,
which can be extended to cover more sampling stages when necessary, is
sometimes known as the selection equation in the survey sampling
literature.

The current example requires an overall epsem design with f =
P(ap) = 1/15. With the clusters being selected with equal probabilities,
P(a)=1/3, it then follows from the selection equation that P(8| &) = 1/5.
In other words, the sampling rate at the second stage within each
selected block is 1/5. Consider now some possible samples that could
arise from this sample design. At one extreme the sampled blocks could
comprise the three smallest blocks—4,5, and 9—while at the other extreme
they could comprise the three largest blocks—2, 3, and 6. In the former case,
the application of the 1 in 5 sampling fraction within the sampled blocks
would yield a total sample of about 9 dwellings, and in the latter case it
would yield a total sample of about 39. On average, over all possible
simple random samples of three blocks that could be selected, the
sample size is 21, but the actual sample size achieved in a single applica-
tion may deviate substantially from this figure.

The substantial variability in possible sample size in this example is
partially accounted for by the unrealistically small sample of clusters
being taken. On the other hand, in other sampling problems the varia-
bility in cluster sizes may be much greater than in the blocks considered
here. It is clear that some control on the potential variability in sample
size is needed. While the sample size rarely needs to be specified exactly,
it does need to be kept within reasonable bounds.

One way to reduce the potential variability in sample size is to stratify
the clusters by size. In this example the blocks could be divided into
three strata according to size: One stratum would contain blocks 2, 3,
and 6, the second would contain blocks 1,7, and 8, and the third blocks
4, 5, and 9. Selecting one block from each stratum would reduce the
variability in sample size to extremes from about 15 (blocks 1 or 7, 6, and
9) to 31 (blocks 2, 5, and 8). With a larger number of selections,
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stratification by size usually achieves adequate control on sample size.
However, the use of size stratification reduces the amount of use that
can be made of other stratification factors. For this reason, an alterna-
tive procedure for controlling sample size, now to be described, is
generally preferred.

Let us specify the conditions that we would like the sample to satisfy
in the example: (1) It should be an epsem sample, (2) it should be
restricted to three blocks, and (3) the sample size should ideally be fixed
at n = 21, no matter which blocks are selected. The first and third
conditions imply that P(af) = 1/ 15 in the selection equation. The second
and third conditions are met if a sample of 7 dwellings is selected from
each of three selected blocks, irrespective of the blocks’ sizes; if this is
done, the selection probability at the second stage in sampled block a is
P(B| @) = 7/B,. Substituting P(aB) = 1/15 and P(8]a) = 7/B, in the
selection equation gives

1 7
— =P(a) » —
15~ @ g

which may be solved to give the probability of selection of block a as
P(a) = B,/105. Thus, all three conditions are met if the blocks are
sampled with probability proportional to their B, ’s, i.e., with probabil-
ity proportional to size (PPS).

In general, the selection equation for an epsem two-stage sample with
PPS selection is given by

o=t 5= (52)(5.)

where a PSUs are selected by PPS, b elements are sampled from each
selected PSU, n = ab, and N = 3B,.The equation can be extended to a
three-stage design, with a PSUs selected, b second stage units (SSUs)
sampled within-each selected PSU, and c elements sampled within each
SSU as

aBa

bB
-2+ () (22) ()

where now n = abc, Baﬁ is the size of SSU B in PSU a, and EBCYB =By
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The selection of the blocks with PPS can be achieved by cumulating
their sizes as follows:

Block: 1 2 3 4 5 6 7 8 9

By 20 100 50 15 18 43 20 36 13

Cumulative B,: 20 120 170 185 203 246 266 302 315

Using the cumulative totals, numbers are associated with each block:
Block 1 is allocated the 20 numbers from 001 to 020; block 2 the 100
numbers from 021 to 120; block 3 the 50 numbers from 121 to 170; and
so on. In this way each block is assigned as many numbers as its size B,,.
A random number chosen from 001 to 315 then selects a block with
PPS. If the random number were, say 197, block 5 would be selected.

Three random numbers could be drawn in the manner outlined above
to give the required 3 sampled blocks, but this with-replacement sam-
pling scheme gives a block a chance of being selected more than once.
Systematic sampling can be used to give a simple without-replacement
PPS sampling method. The total size, 315, is divided by the number of
selections to be made—3—to give the sampling interval of 105. A
random number up to 105 is chosen, say 047, to determine the first
selection, block 2. Then 105 is added to the random number to give 152,
making block 3 the second selection; adding 105 again gives 257, making
block 7 the third selection.

The ultimate cluster sampling approximation described in the last
section can also be used with a PPS design. Suppose that at the second
stage of the PPS design the b elements sampled from each selected PSU
are drawn by SRS. Then, for the matching ultimate cluster design,
within each of the population’s PSUs the UCs can be formed as before,
taking b elements by SRS to comprise the first UC, taking b elements by
SRS from the remainder to comprise the second UC, and so on until all
the elements are accounted for. In this way PSU « with B, elements is
divided into B,/b UCs. (We assume for simplicity that B,/b is an
integer.) An SRS of a UCs is then equivalent to the PPS without
replacement design, except that the ultimate cluster design may select
more than one UC from a PSU, whereas this is not possible with the
PPS design. Providing the chance of choosing two UCs from the same
PSU is small with the ultimate cluster sample, the difference between the
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two designs is negligible. The similarity between the two designs can
be seen by noting that with the ultimate cluster design the probability of
sampling a UC from PSU « is proportional to the PSU’s number of UCs,
B,/b (i.e., is proportional to the PSU’s size).

Since the PPS design is epsem and has a fixed sample size, the simple
sample mean

V= Egyaﬂln = Z9,/2

is an unbiased estimator of the population mean. The ultimate cluster
sample approximation gives a variance estimator for V(§,) from for-
mula 16, ignoring the fpc term, as

V() = si/a [21]

Also, the approximate design effect for the sample mean based on a
PPS design at the first stage and SRS at the second stage is given by
formula 17, namely [1 +(b - 1)p].

In practice, PPS sampling as described is seldom possible, because
the true sizes of the sampling units are usually unknown. Often,
however, good estimates are available from a recent census or some
other source, and on other occasions reasonable estimates may be made
by other means. Providing the estimated sizes, or measures of size, are
reasonably good, their-use in place of true sizes in a PPS selection
procedure can serve well. It is, however, important to distinguish between
the use of true sizes and estimated sizes; we will therefore reserve the
term “probability proportional to size” (PPS) sampling for cases in
which true sizes are employed, and will use the term “probability
proportional to estimated size” (PPES) sampling for other cases.
Estimated sizes, or measures of size, will be denoted by M,,.

Corresponding to formula 20, the selection equation for a two-stage
PPES design with a PSUs selected at the first stage is

P(e)=f= (;ﬁ‘:)(Mi) [22]




43

An important implication of this equation is that, in order for the
sample to be an epsem one, the sampling rate at the second stage is
(b/M,). Applying this rate to the B, elements in selected PSU « gives
an expected sample size from that PSU of b(B,/M,). This expected
sample size will vary from PSU to PSU depending on the ratio
(B,/M,), and will equal the desired sample size b only when M, = B,,
i.e., when the PSU’s estimated size equals its true size. This variability in
the sample taken from different PSUs has to be accepted to retain the
epsem property; the variability will be tolerable, providing the estimated
sizes are reasonably accurate.

As an illustration, suppose that the true sizes (B,) of the nine blocks
in the earlier example were not known. A rapid tour of the area provides
some rough estimates M, that are used in a PPES selection. The values
of M, are given below, with the expected sample sizes from each PSU,
assuming that the PSU was selected. These expected sample sizes are
calculated by applying the subsampling rate 7/ M, to the B, elements in
the cluster taken from the earlier figures. Once selected, the true size of a
PSU would be determined.

Block: 1 2 3 4 5 6 7 8 9
My: 30 110 s0 20 20 50 10 50 20
By: 20 100 50 15 18 43 20 36 13
Expected

sample size: 47 64 70 53 63 6.0 140 50 4.6

The expected sample sizes vary somewhat because of the inaccuracies
in the M,, but mostly the variability is reasonable. Notice, however, the
large expected sample size from PSU 7 if selected, which occurs because
that PSU’s true size (20) has been substantially underestimated. In
assigning measures of size, care needs to be taken to avoid gross under-
estimation, because of the difficulties created. Consider, for instance,
the situation of a block with an estimated 10 dwellings based on the last
census, where a recent high-rise building has just been completed with
800 new dwellings. Another notable feature of these expected sample
sizes is that most of them are below the b value of 7. The explanation for
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this lies in the fact that the M,’s tend to overestimate the B,’s: M, =360
compared with 3B, = 315. With an intended total sample of n = 21, the
overall sampling fraction was set at 21/360; the expected total sample
size is thus only (21/360)315 = 18.4. This discrepancy draws attention to
the need for a good estimate of the total population size.

As the preceding discussion shows, a consequence of using PPES
sampling is that the total sample size is not fixed, but is a random
variable that depends on which PSUs are selected. To emphasize this
fact, the total sample size will be represented by x rather than n, and the
sample mean by r = y/x, where y is the sample total for the y variable.
The sample mean is termed a ratio mean or ratio estimator because it is a
ratio of random variables. The ratio mean is not an unbiased estimator
of the population mean, but the bias is negligible when the variability in
x is sufficiently small. The bias can be safely ignored when the coefficient
of variation of x is less than 0.1, where the coefficient of variation is
defined as the standard error of x divided by its expected value, the
expected sample size.

The variance of the ratio mean is complicated by the fact that its
denominator is a random variable. As a result, only a large sample
approximation, based on what is sometimes called the Taylor expansion
ordelta method, is available. The appropriate use of this approximation
requires the coefficient of variation of x to be small, less than 0.2 and
preferably less than 0.1. The general form of the approximate variance
estimator for the ratio meanr = y/x is

V(1) = [v(y) + r'v(x) - 2re(x,y)]/x [23]

where c(x,y) is the sample covariance of x and y. In applying this
formula, appropriate formulae need to be substituted for v(y), v(x), and
c(x,y). As an illustration, consider an epsem stratified ‘multistage
design. Let yp,, be the sample total of the y variable for PSU « in stratum
h, let x;,, be the sample size in that PSU, let y;, be the total of the y
variable for the a;, sampled PSUs in stratum h, and let x; be the sample
size in that stratum. Then, using the with-replacement approximation,

_ 2
V() = Baysp,
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v(x)=Za,s
) hahxh

c(x,y)= %)ahsxyh

where

Syt = Z0ne = Ol M e = )
S)zch = E[xha = (Xy/2p)] 2/(31, -1

Sxyh = g[xha - (xh/ah)] [yha - (yh/ah)] /(ah -1

The generality of v(r) in formula 23 with the above substitutions
deserves note. The formula applies to any epsem stratified multistage
design. It applies no matter what probabilities are used for selecting the
PSUs and no matter what form of subsampling is employed within
selected PSUs. The formula applies to samples in which a nonstratified
selection of PSUs is taken (as the special case with only one stratum) and
to PPS samples where the sample size is fixed—when v(x) = 0 and
c(x,y) =0. It can be applied to ratio means and percentages based on the
total sample and on subclasses (¢.g., wage earners or married persons
only). The only restrictions are the need for the coefficient of variation
to be less than 0.2, and the need for the with-replacement approximation
to be suitable. By modifying the definitions of y, and x,, formula 23 can
be readily extended to apply to nonepsem designs. See Kish (1965:
chap. 6) for further discussion.

Before leaving the subject of PPS and PPES sampling, one further
illustration will be given to draw attention to some difficulties that are
often met in practice. For this purpose, the earlier example of sampling
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dwellings from three blocks is modified as follows. The three blocks are
now to be selected from ten with the following estimated sizes, M,,, with
M, =315:

Block: 1 2 3 4 5 6 7 8 9 10

My 20 120 45 15 18 43 5 0 36 13
As before, the desired sample size is 21, implying a desired subsample
size of b = 7. There are two problems with applying the previous
selection procedures to this population.

In the first place, the use of systematic sampling with an interval of
105 could lead to block 2 being selected twice. Since its size is greater
than the interval, it is bound to appear once in the sample, and it has a
probability of 15/105 = 1/7 of being chosen twice: if the random start lies
between 021 and 035, PSU 2 will be selected as the first selection and also
as the second selection, since adding 105 to a number in this range gives a
number no greater than 140, the upper number associated with block 2
in the cumulative totals. One solution is simply to accept the two
selections if they occur, taking two different subsamples from the block.
Another solution is to note that PSU 2 is bound to appear and is thus, in
effect, a stratum. It is then set aside as a separate stratum and its
elements are sampled at the overall sampling rate, here 1 in 15. Two
selections are then made from the remaining blocks with PPES, also at
the overall rate of 1/15. A reduction in the value of b is needed since now
with 2 selections from a stratum with XM, = 195, 2b/195 = 1/15, i.e.,
b=6.5. PSUs that are large enough to be certain to appear at least once
in the sample occur very often in practice. They are frequently treated as
separate strata and are termed, misleadingly, self-representing PSUs.

The overlarge PSUs are identified in the selection equation as those
with first-stage selection probabilities greater than 1; in the case of block
2 its selection probability is aM,/ XM, = (3 x 120/315) = 360/315. The
other commonly encountered problem with PPS or PPES selections is
undersized PSUs, which give rise to second-stage selection probabilities
b/M, in excess of 1. Block 7 falls in this category in the current example
since b = 6.5 and its measure of size is only 5. One simple way to handle
this problem is to link the block to a geographically adjacent one, and
treat the two as one cluster. This can be done in any convenient way
before the selections are made, or afterward if objective linking rules are
used (see Kish, 1965: 244-245). If there are many undersized PSUs and
linking would cause fieldwork difficulties, they may be placed in a
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separate stratum and sampled differently. Often the minimum PSU size
is setlarger than b in order to avoid the possible contamination effectsin
-data collection that could arise from sampling all (or a high proportion)
of elements in the PSU. With b = 6.5, a minimum PSU size of 13, for
instance, ensures that no subsampling rate exceeds 1/2.

Finally, note that M, = 0 for block 8, which therefore has no chance of
being selected into the sample. Since, however, M,, is only an estimated
size, perhaps being out of date, block 8 may now contain some dwell-
ings. A linkage of block 8 to an adjacent block is advisable to give any
dwellings now in block 8 a chance of selection. The use of this linkage
avoids the bias involved in having some population elements with zero
probabilities of appearing in the sample. An important feature of area
samples is that every piece of habitable land be given a chance of
selection if the sample is to be drawn some time after the measures of size
are determined.

7. OTHER PROBABILITY DESIGNS

In combination, the sampling methods discussed in the previous
chapters are sufficient to handle most sampling problems. There are,
however, three other design features that are applicable in certain cir-
cumstances and deserve some attention: two-phase sampling, replicated
sampling and panel designs. These three designs are reviewed in this
chapter.

Two-Phase Sampling

In two-phase, or double, sampling, certain items of information are
collected for an initial, or first-phase, sample, then further items are
collected at the second phase from a subsample of the initial sample. The
method may be extended to more phases (multiphase sampling), but for
most purposes two phases suffice.

One use for two-phase sampling arises when the levels of precision
needed for different estimates from a survey are not compatible, imply-
ing that different sample sizes would be appropriate. In this situation the
information required to form the estimates needing the larger sample
could be obtained from the first-phase sample, and that required to form
the other estimates could be obtained only from the second-phase
sample. Not only does this two-phase procedure have the potential for
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saving data collection and processing costs, it also reduces the burden
placed on some respondents. A familiar example of the use of two-phase
sampling in this way is provided by the U.S. Census of Population and
Housing. In recent censuses, basic demographic and other variables’
have been collected for the total population (the first-phase sample thus
being a complete enumeration), while additional variables have been
collected only for samples of the population.

Other uses of two-phase sampling arise when the sample designer
would like to use certain population data to produce an efficient design,
but when the expense of obtaining those data for all the population
would be too great. In such cases, it may sometimes be economical to
collect the data for a large first-phase sample, and then to use them in
selecting the second-phase sample. The first-phase sample may be used
in this way to provide stratification information, size measures for PPS
or PPES selection, or clustering for economies of data collection for the
second-phase sample. In assessing the efficiency of a two-phase design,
the costs of conducting the first-phase survey have to be recognized;
because of these costs, the second-phase sample size is necessarily
smaller than a single-phase sample. For this reason, two-phase designs
are usually helpful only when the first-phase element survey costs are
smaller than those for the second phase by a large factor. Sufficiently
large differences between first- and second-phase costs can occur when
different data collection procedures are used—perhaps data taken from
records, or collected by mail or telephone for the first phase, and then
face-to-face interviews or expensive measurements taken (as in some
medical surveys) at the second phase.

Two-phase sampling is often used for sampling rare populations—
that is, subgroups of the population for which no separate sampling
frame exists, such as Vietnam veterans, blacks, and the recently retired.
The design of good, economical, probability samples for rare popula-
tions is one of the most challenging tasks the survey sampler faces (see
Kish, 1965: section 11.4). One technique to consider is a two-phase
design in which the first-phase sample identifies the members of the rare
population inexpensively, and the survey items are then collected from
them at the second phase. In essence, the approach involves the use of
two-phase stratified sampling. The members of the first-phase sample
are allocated into two (or more) strata according to whether they are
members of the rare population or not. The strata are then sampled
disproportionately. If the first-phase identification of the rare popula-
tion is error-free, then the sampling rates may be set at 1 for the stratum
of members and at 0 for the stratum of nonmembers of the rare popula-
tion. If the identification is subject to er{'or, however, the sampling rate
in the second stratum needs to be nonzero in order to give members of
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the rare population falsely allocated to that stratum some chance of
being selected. When the first-phase screening is imperfect it is prefer-
able, where possible, to err in favor of false positives rather than false
negatives, since the former can be handled more easily. Thus, for exam-
ple, in a study of severe hearing loss among children, the initial home-
based screening used a less stringent definition of hearing loss with the
aim of ensuring that all children with severe hearing loss were included
in the second phase of the study, which involved measurements made
under controlled laboratory conditions.

An illustration of the use of two-phase sampling for clustering comes
from a survey of political attitudes among electors in a European city.
An alphabetical list of electors with their addresses was available as a
sampling frame. Since the city was a large one and the survey was to be
conducted by face-to-face interviewing, some clustering of the sample
was desired to reduce interviewers’ travel costs. In theory, the electors’
addresses could have been used to allocate the whole of the electorate to
clusters, but that would have been prohibitively expensive. Instead, a
sample of electors ten times larger than required was selected, this
sample was allocated to clusters of equal size based on geographical
proximity, and then one-tenth of the clusters were selected to comprise
the final sample.

Replicated Sampling

Inreplicated, or interpenetrating, sampling, the total sample is made
up of a set of replicate subsamples, each of the identical sample design.
Replicated sampling may be used for studying variable nonsampling
errors, such as the variability in the results obtained by different inter-
viewers and coders, and for facilitating the calculation of standard
errors. The essential feature for either use is that each subsample pro-
vides independent comparable estimates of the population parameters.

As a simple example of the use of replicated sampling for studying
variable interviewer effects, suppose that an SRS of 1000 is required,
with a team of 20 interviewers conducting the fieldwork. With an
unreplicated design, the sample of 1000 would be selected and allocated
between interviewers on grounds of general convenience and geographi-
cal proximity, perhaps with interviews in the more difficult areas being
assigned to the best interviewers. When one interviewer failed to secure a
response, the interview might be reissued to a more experienced inter-
viewer. As a result of this nonrandom assignment of interviewers,
differences in interviewers’ results may arise from interviewer effects,
from differences in the subsamples they interview, or from both; these
two sources of differences are confounded and cannot be disentangled.
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For asimple replicated design, the sample of 1000 could be selected as 20
independent SRS, each of size 50, with each interviewer then being
responsible for obtaining the 50 interviews in one of the replicates. Since
the replicates are comparable samples, any differences in the subsample
results beyond those likely to arise from sampling fluctuations can be
attributed to systematic differences between interviewers in the re-
sponses they obtain. The approach employed for distinguishing between
sampling fluctuations and real differences is that used in a standard
one-way analysis of variance (see, for instance, Iversen and Norpoth,
1976); however, the calculations are different when the replicates
employ complex sample designs.

To describe the calculations of interviewer variance, let y1, ¥z, . . . e
denote the means obtained from the c subsamples allocated to the
different interviewers. The variance of these ¢ means may be estimated
by vi = 2(¥, - 9)*/(c - 1) where § = 3y,/c is the mean of the sample
means. This estimator makes no assumption about the presence or
absence of systematic interviewer effects; when they are present, the
estimator will be expected to be larger than when they are absent. Under
the null hypothesis of no interviewer effects, SRS theory can be used to
provide another estimator of the variance of the y,’s: Ignoring the fpc
term, v(y,) s.,/ r from formula 3 where s., is the estimated element
variance in the v subsample, and r = n/c is the subsample size. An
average of the estimates of v(¥,,) across the c subsamples is given by v2 =
s /r where §° = E’.sy /c is the average of the within-subsample element
variance estimates. Comparison of v, and v, then provides a test of the
null hypothesis. This comparison is made by taking the ratio F=v;/v, =
rv1/5%, with a large value of F indicating the presence of interviewer
variance. The significance test for F greater than 1 is obtained using a
standard F-test with (c — 1) and c(r - 1) = (n - c) degrees of freedom. A
useful index of interviewer variance is the intraclass correlation coeffi-
cient p, measuring the proportion of the total variance in the y-values
that is accounted for by interviewer variance. The value of p may be
estimated by (F - 1)/(F - 1 + r). See Kish (1962) for an example.

The consequences of variation among interviewers are similar to
those of clustering; each interviewer’s assignment is in effect a separate
cluster. Thus, equivalent to the design effect for a cluster sample, the
effect of interviewer variance for the replicated design described above is
to multiply the SRS variance of the overall sample mean by [1+(r-1)p].
As with clustering, even a small value of p leads to a sizable multiplier if
r—the number of interviews conducted by each interviewer—is large.
The usual estimator of the variance of the overall mean from SRS
theory (formula 3) does not allow for the effects of clustering or of
interviewer variance. An attraction of the replicated sampling variance



51

estimator based on the variation between subsamples is that it
automatically encompasses the clustering effect of interviewer variance.
As shown below, this variance estimator is in fact vi/c, which is simply
the standard cluster sampling variance estimator, s&/ a, from formula 15
in a different guise.

The cost of using replicated sampling to study systematic interviewer
effects, or interviewer variance, comes from the need to give interviewers
randomly chosen, rather than the most efficient, assignments. The ease
of conducting interviewer variance studies depends on the general
survey conditions; they are, for instance, much more readily incorpo-
rated into telephone than face-to-face surveys, and in face-to-face
surveys they are simpler to conduct with small, compact populations. A
completely random assignment of interviews across a multistage sample
of a widely dispersed population would clearly create excessive inter-
viewer travel costs, but completely random assignments are not
required. Some form of restricted replication—for instance, random
interviewer assignments within PSUs or strata—can still permit the
estimation of interviewer variance.

The second use of replicated sampling, to provide simple variance
estimates, employs much the same reasoning as above. Given c estimates
7), 22, . . . Zc of parameter Z, obtained from independent replicates of the
same design, the variance of the mean of the estimates z = 3z, / c is given
by

V(@) =V(z,)/c

and V(z,) may be estimated from the c values as
vi=3(z, -2/~ 1)

Thus

v(Z) = ni/c=3(z, -2)*/c(c - 1) [24]

provides a general formula for estimating variances from replicated
designs. It can be applied to any form of statistic (such as index
numbers, correlation and regression coefficients, as well as simple
means and percentages), and the subsample design can be of any
complex form (such as a stratified multistage PPS design).

A small problem with the use of formula 24 is that it gives the variance
of the average of the replicate values Z. This average value is not in
general the same as the estimator obtained by pooling the subsamples
into one large sample, Z, and Z is as a rule the preferred estimator. In



52

practice, however, the difference between Z and 7 is usually slight. A
commonly adopted procedure is to compute Z and use v(zZ) from
formula 24, or a slight variant of it, to provide a variance estimate for Z.

A more serious problem centers on the choice of ¢, the number of
replicates to be employed. If a small value of c is chosen, the replicated
variance estimator v(z) will be imprecise, and this imprecision will affect
the width of the confidence interval for the parameter being estimated.
With c replicates, v(Z) has (c - 1) degrees of freedom; hence, in forming
confidence intervals, the t distribution with (c - 1) degrees of freedom
should be employed. As anillustration of this effect, consider an SRS of
1000 elements. The 95% confidence interval for Y obtained from the
conventional approachis y =+ 1.96s/ \/n, where 1.96 is taken from a table
for the normal distribution. With a replicated design with 10 subsamples
of 100 each, the 95% confidence interval is y £ 2.26+/v1/ 10, where 2.26 is
taken from a table for the t distribution with 9 degrees of freedom. With
a replicated design with 4 subsamples of 250 each, the 95% confidence
interval is § & 3.18+/vi/4, where 3.18 comes from a table for the t
distribution with 3 degrees of freedom. Since in each case the standard
error estimator is unbiased for the true variance of ¥, the replicated
variance estimator with 10 replicates leads to a confidence interval that is
on average 15% larger, and that with 4 replicates to a confidence interval
that is on average 62% larger, than that based on the conventional
variance estimator. To obtain a reasonably precise variance estimator, a
relatively large value of c is needed, perhaps around 20 to 30 or more. On
the other hand, the greater the value of c, the less stratification that can
be employed. This situation occurs because each subsample must take at
least one selection from each stratum. The restriction on stratification is
especially harmful with multistage designs. As an illustration, suppose
that 60 PSUs are selected. With a conventional design, the PSUs would
probably be divided into 60 strata with one selection per stratum, or
perhaps 30 strata with two selections per stratum. With a replicated
design with 10 replicates, the maximum number of strata is reduced to
only 6.

In summary, the benefit of a simple and general variance estimator
with replicated sampling is bought at the cost of some loss of
precision: Either c is small and the precision of the variance estimator
suffers from limited degrees of freedom, or cis large and the precision of
the survey estimator itself suffers through the loss of stratification. For
these reasons, simple replicated sampling as described is not greatly used
in practice. Instead, pseudoreplication techniques have been developed
to enable stratification to be employed to the point of the paired
selection design, yet also to give variance estimates of reasonable
precision. These techniques are described in Chapter 10.
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Panel Designs

It has been implicitly assumed thus far that the samples are being
designed for cross-sectional surveys with one round of data collection.
There are, however, many survey objectives that require data to be
collected at two or more points of time. While the preceding sample
designs remain applicable, some additional sampling considerations
arise when the time dimension is included.

One purpose of several rounds of data collection is to measure
changes over time. An important distinction needs to be made here
between gross and net changes, the former referring to changes at the
element level and the latter to changes in the aggregate. If measures of
individual changes are needed—as for example in a study to examine in
detail the effects of changing leisure activities on blood pressures—then
the data must be collected for the same sampled elements on each round.
If only net changes are required—as perhaps in a study to chart the
changes in popularity of a political leader—then the data do not have to
be collected from the same elements. Even with net changes, however, it
may be more efficient to retain the same sample.

Another purpose of conducting surveys at several points of time is to
collect information when it is readily accessible and can be reported
accurately. Thus, for instance, in a survey requiring a detailed account-
ing of annual household incomes, several interviews may be taken
during the course of the year in order to collect information while it is
fresh in the respondents’ minds. Again, a study investigating the
association between children’s preschool upbringing and school per-
formance would almost certainly need to collect data on preschool
upbringing as it takes place and then later collect data on school
performance. It would be unsafe to rely on retrospective reports of
preschool training, because it would be imperfectly remémbered and
because the memory may be distorted by the results of school
performance.

A panel or longitudinal survey, in which data are collected from the
same sampled elements on more than one occasion, raises some further
issues in addition to those applying with a cross-sectional survey. One
issue is the mobility of the sampled elements. In most panel surveys,
some of the elements—often persons or households—will move during
the life of the panel. These movers need to be retained in the panel in
order to keep intact the probability sample selected at the start, and this
requires the development of effective tracing methods. Since some
movers will leave the sampled PSUs of a multistage design, mobility will
cause an increase in data collection costs for later rounds of a survey
employing face-to-face interviewing.
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A second issue that needs to be faced with panel surveys is that
populations change over time; some elements in the original population
leave while others enter. Consider, for example, a long-term panel
survey of the health of a particular community. At the start, a
probability sample of members of the community is drawn, and they are
followed for several years. During this time the community’s population
will change: Some of the original members will leave, through death or
because they move out of the community, while new members will
enter—births and movers into the community. The main problem
created by leavers is the reduction in sample size; the panel remains a
probability sample of that part of the orginal population that still lives in
the community. The problem with entrants, on the other hand, is that
they are not represented in the sample. In consequence, the sample is not
a probability sample of all the community’s population as it exists at
later rounds of data collection. When a population has a significant
proportion of new entrants and when cross-sectional results are needed
for the population present at a later round, a supplement sample of
entrants is needed. An added complexity occurs when the element of
analysis is a grouping such as a household or family. A sizable
proportion of households or families is likely to change composition
over even such a short period as a year, creating severe conceptual and
practical problems in a panel survey.

Another concern with panel surveys is that repeated interviewing
may have adverse effects on respondents. Some may object to the
burden and refuse to remain in the panel, thus causing a bias in the panel
membership (see Chapter 9 on nonresponse). Others may be influenced
by their panel membership with regard to the survey’s subject matter so
that they give untypical responses. This panel conditioning effect can,
for instance, occur in consumer panels in which respondents are asked
to report their household purchases on a regular basis. The act of
reporting can make respondents more price conscious; hence they may
alter their patterns of purchases. A related risk in a panel study asking
for the same information repeatedly is that respondents may remember
their previous responses and attempt to give consistent answers.

A widely used method to alleviate some of the problems of panels is to
limit the length of panel membership by using some form of panel
rotation. As a simple example, each member of the panel might be
retained for three rounds of the survey. For each round, one-third of the
sample from the previous round would be dropped, and a new one-third
would be added: the new third would be included also in the following
two rounds. Thus, using letters to represent the three parts of the
sample, the first round sample is, say ABC, the second round BCD, the
third round CDE, the fourth round DEF, and so on. In this way there is
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a two-thirds overlap in sample membership between adjacent rounds
and a one-third overlap between rounds that are one round apart.

As observed earlier, a panel design may be useful but is not essential
for estimating net change. Consider the simple estimator ¥, - §; of the
change in mean level of variable y between times 1 and 2. The variance of
this difference is given in general by

V2 -51) = V@) + V) - 2RVVE) VGE2) [25]

where R is the product-moment correlation coefficient between the
sample means ¥, and y2. With independent samples on the two rounds
of the survey, R = 0. With overlapping samples R is not 0; it is generally
positive, but on occasion it can be negative. The last term in formula 25
reflects the gains (R positive) or losses (R negative) in the precision of
the estimator of change through using a panel design.

To obtain further insight into the effect of sample overlap on the
measurement of change, consider the simple case of a static population
and simple random sampling with a sample of size of n on each occasion;
furthermore, assume—as is often a reasonable approximation—that the
element variances on the two occasions are equal (i.e., SZ= Sz2 = 8%, and
ignore the fpc term. Then, with a partial overlap of a proportion P in the
two samples, the general formula 25 reduces to

V(2 - §1) = 28*%(1 - PR)/n

where R is the correlation between the elements’ y values on the two
occasions. The situations of independent samples and of complete
overlap are special cases of this formula, the first with P = 0 and the
second with P = 1. When P =0, the variance of the difference is simply
2S?/n, so that the ratio of the variance of the difference with a panel
design to that with two independent samples is (1 - PR). As an
illustration, suppose that the correlation in individuals’ political atti-
tudes (or perhaps blood pressures) for the two occasions is 0.75. Then
the completely overlapping panel would reduce the variance of y2 - i
by a multiplying factor of (1 - 0.75) = 0.25. A partial overlap of
two-thirds (rotating out one-third) would reduce the variance by a fac-
tor of [1 -(0.75x2/3)]= 0.50. If the correlations across time are high,
the gains of the panel design in measuring change are thus considerable.
In the case of a rotating panel design, further gains can be achieved by
using a more complex estimator of the change (see Kish, 1965: 463-464).
Note, however, that if R is negative—as would occur if the y variable were
the purchase of a consumer durable in the last month—then the panel
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design leads to aloss of precision in measuring change. If, say, R =-0.2,
and with complete overlap P = 1, then (1 - PR) = 1.2, so that the
variance of the change is 20% larger with the panel design than with two
independent samples.

Finally, we should note that the gains from positive correlations in
nonindependent samples shown in formula 25 are not confined to the
situation where the same elements are kept in a panel. Designs that
retain the same clusters but select different elements can also be helpful
for measuring changes, although the degree of correlation R will
generally be less than that occurring when the same elements are
retained. A useful design for avoiding the need to follow movers is to
sample dwellings rather than households; a household moving out of a
sampled dwelling is then replaced in the panel by the incoming
household.

8. SAMPLING FRAMES

The sampling frame is a major ingredient of the overall sample
design. At minimum it provides a means of identifying and locating the
population elements, and it usually contains a good deal of additional
information that can be used for stratification and clustering. The
organization of the frame also often exerts a strong influence on the
sample design. Areal clustering is, for instance, greatly assisted by
having a frame arranged in suitable geographical units, and stratifi-
cation is helped by having a frame separated into groups formed by the
relevant stratification factors. Frequently listed frames are stored in
computer files, with the considerable benefit that they can be readily
rearranged to meet sampling requirements.

The ideal sampling frame would list each population element once
and once only, and would contain no other listings. In practice this ideal
is seldom realized, and the survey sampler has to be on the lookout for
imperfections. Kish (1965: 53-59) provided a useful fourfold classifi-
cation of potential frame problems and possible solutions. The four
problems are

—missing elements: when some population elements are not included
on the frame;
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—clusters: when some listings refer to groups of elements, not to
individual elements;

—blanks or foreign elements: when some listings do not relate to
elements of the survey population;

—duplicate listings: when some population elements have more than
one listing.

These problems and their solutions are discussed and illustrated below.

Missing Elements

With the student survey we assumed the existence of a list of the
school’s students. The first question to be asked about this frame is
whether it includes all the students in the target population. Missing
elements may occur because a frame is inadequate, meaning that it is not
intended to cover the whole of the target population, or because it is
incomplete, meaning that it fails to include some elements from the
target population that it is supposed to cover. The distinction between
inadequacy and incompleteness is of practical importance because the
former category is often more easily recognized. The school list would
be inadequate if it deliberately excluded part-time students who are part
of the target population; it would be incomplete if it was out-of-date and
hence failed to include some new students.

Missing elements present the most serious frame problem because,
unless a remedy is found, these elements have no chance of being
selected for the sample, which thus fails to represent the total target
population. Sometimes the problem may be sidestepped by defining the
survey population to exclude the missing elements. This imperfect
solution is often used when the excluded group is a negligible proportion
of the total population, when the exclusion will have only minimal effect
on the survey objectives, and when no simple alternative solution is
available. A preferable solution is to find supplementary frames to cover
the missing elements, for instance, lists of special students and new
entrants. This solution can create the problem of duplicates because
some elements may appear on more than one list, but this lesser problem
may be handled by one of the methods discussed below.

Often no suitable supplementary frame is available for the missing
elements, and then a solution involving some form of linking procedure
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may be sought. Linking procedures aim to attach missing elements to
specified listings in a clearly defined way. When a listing is selected, its
element and any missing element or elements linked to it are treated as
being sampled as a cluster. Linking thus gives rise to the problem of
clusters, which may be treated by one of the procedures outlined below.
Suppose, in our school sample, that the sampling frame comprises
alphabetical lists of the students present at the original enrollment for
each of the classes. A possible linking for missing students would then be
to define each listing as representing the named student together with
any student missing from the class list coming after that student and
before the next listed student in the alphabetical order. To cover
missing students at the start of the alphabet, the list may be treated as
circular; thus, any missing student coming after the last listed student or
before the first listed student is linked to the last student on the list. This
form of linking is an example of what is known as a half-open interval, a
procedure that can also be applied in other contexts. One well-known
application is for sampling dwellings from lists of dwellings in street
order, with each side of the street being taken separately; using the
half-open interval, missing dwellings may be linked to the last listed
dwelling preceding them.

Clusters

As indicated above, one cause of the frame problem of listings of
clusters of elements is the use of a linking solution for missing elements.
Clusters also occur in other circumstances—for instance, when a sample
of persons or households is required but the sampling frame is a list of
dwellings. One solution is to include all the elements in the selected
clusters in the sample. This solution has the benefit of giving the ele-
ments the same chance of appearing in the sample as their listings; in
particular, if listings are sampled by epsem, the elements are also
sampled by epsem. When the elements are households and the clusters
are dwellings this solution often works well because of a combination of
two features: First, most dwellings contain only one household, and
when there is more than one the number is small; second, conducting
interviews with more than one household in a dwelling seldom gives rise
to fieldwork difficulties.

The “take-all” solution is a sample of complete clusters, and, as
discussed earlier, cluster sampling leads to a large design effect when the
average size of the clusters is large and when the intraclass correlation
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within the clusters is high. If the design effect is large, subsampling
within clusters may be usefully employed to reduce its magnitude. With
some types of cluster another major reason for subsampling is a concern
about contamination of responses within a cluster. This concern often
leads to a requirement of subsampling only one element per sampled
cluster. It arises in particular in attitude surveys when the elements are
persons and the clusters are households (or dwellings): If two or more
respondents are interviewed in a household, the responses of later
respondents may well be influenced by discussions about the contents of
the interview with earlier respondents. Later respondents may also be
less willing to cooperate, perhaps refusing to take part more often,
because they have learned about the contents and length of the inter-
view. When a single element is selected from a cluster (listing) containing
B, elements, each element’s selection probability is (1/B,) P(e), where
P(e) is the selection probability for the cluster. If the clusters are
sampled by epsem, the sample of elements is nonepsem; hence weighting
adjustments are needed in the survey analysis (see Chapter 10).

To avoid selection bias the sampling of elements from sampled
clusters must be carried out by a strict probability mechanism. Consider
the common problem of selecting one respondent from the eligible
members of a household for a face-to-face interview survey. In this case
it is highly desirable that the interviewer carry out the random selection
during the first contact with the household so that, if the chosen
respondent is available, the interview can be completed at that call. One
possible procedure would be for the interviewer to list the eligible
members on a numbered form, and then to select one using a table of
random numbers. The serious drawback to this procedure is that it is
uncheckable, with the danger that interviewers may sometimes mis-
apply it in order to select available and cooperative respondents.

An alternative, widely used procedure for selecting a respondent
from a household is commonly known as the Kish selection grid. The
basis of this objective and checkable procedure is that the interviewer
records the eligible household members in a clearly defined order on a
numbered list, with the questionnaire containing a table from which the
interviewer then reads off the number of the person selected. A con-
venient unambiguous way for ordering the household members is to list
them by age within sexes. Since only relative ages are needed for the
ordering, it is seldom necessary to ask for exact ages; generational
differences are usually sufficient to determine age orderings within
sexes. As a simple illustration of the procedure, suppose that the survey
is one of wage earners and that it is reasonable to assume that no
household contains more than four wage earners. On a particular ques-
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tionnaire, the table giving the interviewer instructions on which wage
earner to interview might be as follows:

If the number of wage earners in the
household is: 1 2 3 4

Interview wage earner numbered: 1 2 2 3

The numbers in the second row are varied across the questionnaires
according to the scheme in Table 4.

In a one-wage-earner household, that wage earner is always selected.
In a two-wage-earner household, the first listed wage earner is inter-
viewed if the questionnaire contains Table A, B, or C, and the second
wage earner is interviewed if it contains Table D, E, or F. From the
second column of Table 4, which gives the proportion of the question-
naires that have a particular table, it can be seen that the proportion of
questionnaires with Table A, B, or Cis !4, and that with Table D, E, or
Fis 1. Thus, in two-wage-earner households, each of the wage earners is
equally likely to be selected for the sample. In the same wayj, it can be
seen that in three-wage-earner households each of the three is equally
likely to be selected, and in four-wage-earner households each of the
four is equally likely to be selected. Thus, although the selection of one
wage earner from a household results in wage earners in households
containing different numbers of wage earners having unequal selection
probabilities, the Kish selection grid gives equal selection probabilities
to all wage earners in a given household.

As described here, the procedure assumes a maximum of four wage
earners per household. A larger maximum can be specified, but then
more tables are needed. When sampling adults from U.S. households, a
maximum of six is often taken. Kish (1965: 399) gives eight tables that
can be used when this maximum is adopted. These tables provide equal
probabilities for all members within households of size 1, 2, 3, 4, and 6,
but the probabilities for members within households of size 5 are not
exactly equal. In the few households with more than six members, some
members go unrepresented. These deficiencies are sufficiently small to
be of no practical importance.

If, as is often the case, the clusters are sampled with epsem, the first
solution to the cluster problem—taking \all elements in the selected
clusters—yields an epsem sample of elements. However, this solution is
often unacceptable because of the risk of contamination. The second
solution—selecting one element at random from selected clusters—
avoids the risk of contamination but at the cost of changing the selection
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TABLE 4
Set of Six Tables for Selecting One Wage Earner from a Household

If the number of wage earners in

the household is
1 2 3 4
Proportion of
Table Questionnaires Interview wage earner numbered:

A 1/4 1 1 1 1
B 1/12 1 1 1 2
C 1/6 1 1 2 2
D 1/6 1 2 2 3
E 1/12 1 2 3 3
F 1/4 1 2 3 4

probabilities. A third solution uses two-phase sampling to take only one
element per cluster and to retain an epsem sample. With this solution, a
first-phase sample of clusters is selected and the elements in these
clusters are listed. The second-phase sample selects elements from the
list. Thus, for instance, suppose that the clusters are households, with no
household containing more than six adults. A first-phase sample of
households is selected to provide a list of at least six times as many adults
as are needed for the survey. A systematic sample of the required
number of adults would then take no more than one adult from a
household.

Blanks and Foreign Elements

Blanks and foreign elements are listings for elements that no longer
exist in the population (such as persons who have died or emigrated or
dwellings that have been demolished) or listings for elements that are
correctly on the frame but outside the scope of the survey (such as
unemployed people in a survey of wage earners). For simplicity of
exposition we will use the term “blanks” to cover both blanks and
foreign elements.

The method of handling blanks is straightforward—simply to ignore
the selection if a blank is drawn. This method has already been illus-
trated in the high school example, where some student numbers were
blanks because the students had left the school. The major consequence
of blanks on the sampling frame is that the sample size is smaller than
the number of selections, since some blanks will be drawn and omitted.
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This point needs to be borne in mind in determining the sampling
fraction needed to generate the desired sample size. A common error
with systematic sampling is to substitute the next element on the list
when a blank is sampled. This procedure should be avoided since it
increases the selection probability for the next element: That element
would be selected either if it is selected directly or if the preceding blank
is selected. With systematic sampling, the sampling interval should be
repeated throughout the population, with blanks simply being dropped
from the sample.

It is of practical importance to distinguish between the situation in
which the blanks can be identified as such from the sampling frame and
that in which they cannot be so identified. In the former case they can
be deleted as they are sampled, but in the latter case they have to be
contacted before they can be deleted. A sample of men from a listing of
men and women may, for instance, be able to eliminate all, or nearly all,
the women at the selection stage by means of their first names; but, with
a survey of 40-64-year-olds it may be necessary to conduct screening
interviews to determine whether selected individuals fall in the survey
population. The difficult problem of sampling rare populations arises
when the survey population comprises only a small fraction of the
frame, and when the frame does not provide the means to identify
elements in the survey population. As already noted, one way of identi-
fying a sample of a rare population is to use a two-phase design, using a
relatively cheap screening process at the first phase to identify elements
in the rare population.

Duplicate Listings

Duplicate listings often arise when the sampling frame is composed of
several lists, for then some elements may appear on more than one list.
They also arise when the elements of analysis are groupings, such as
households, and when the listings are of individual components, such as
persons. The problem created by duplicates is that the elements’
selection probabilities vary with their numbers of listings. One possibility
is to remove the duplicates from the whole frame, but this is often not
feasible. A second possibility is to employ unique identification,
associating each element with one of its listings in a clearly defined way
(e.g., the first listing, or the oldest listing) and treating the other listings
for that element as blanks. This procedure is, for instance, used in
sampling households from the Register of Electors in Britain. In urban
areas, the electors are numbered and listed in polling district areas by
street address. A sample of electors is readily taken by systematic
sampling using the elector numbers. If a sampled elector is the first one
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listed at an address, that address is taken, while the selection of a second
or subsequent elector at an address is treated as a blank. Then, handling
the cluster problem by the take-all procedure, all households in the
selected addresses are included in the sample. °

Sometimes the organization of the sampling frame or the information
it contains does not readily permit the use of unique identification. In
such- cases, unique identification could be applied during fieldwork,
asking respondents to provide information on their listings. Generally,
however, a substantial proportion of the survey costs is employed in
making contact with respondents, so that it is uneconomical to reject
some selections as blanks at interview. An alternative is to accept all
selections and to use weighting in the analysis to adjust for the unequal
selection probabilities (see Chapter 10).

9. NONRESPONSE

Probability sampling avoids selection bias by giving each element on
the sampling frame a known and nonzero probability of selection. The
methods for dealing with frame problems described in the last section
were developed to help to eliminate, or at least reduce, biases resulting
from frame deficiencies. Given a good frame, a probability sample of the
population may be drawn, but there still remains the need to collect the
survey data from the sampled elements. Failure to collect the survey
data from some sampled elements, or nonresponse, is a major survey
problem that seems to have grown in recent years as the public has
become less willing to participate in surveys (see, for instance, Steeh,
1981).

The cause of concern about nonresponse is the risk that nonrespon-
dents will differ from respondents with regard to the survey variables, in
which case the survey estimates based on the respondents alone will be
biased estimates of the overall population parameters. To obtain a more
thorough understanding of this nonresponse bias, we will consider a
simple model in which the population is divided into two groups—those
who are certain to respond and those who are certain not to do so; these
two groups may be thought of as the response and nonresponse strata.
Since, in practice for some elements in the population, chance plays a
part in determining whether they respond or not, the model is oversim-
plified, but it will suffice for present purposes. Also, for simplicity, we
assume that the survey calls for a complete enumeration of the popula-
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tion. Suppose that the aim of the survey is to determine Y, the total
population mean. This mean may be expressed as

Y=W.Y: + Wa¥a

where Y;and Y are the means for the response and nonresponse strata
(the subscripts r for respondents and m for “missing”), and W; and Wn,
are the proportions of the population in these two strata (W, + W, = 1).
Since the survey fails to collect data for the nonrespondents, it produces
the estimate Y.. The difference between Y: and the population parameter

being estimated, Y, is.
Y -Y=Y,-WY, +W_ Y )
=Y,(1-w)-w_Y_
=w,(Y,-Y,) [26]

This difference, which is the bias arising from using the respondent
mean in place of the overall mean, is seen to depend on two factors: W,
the proportion of nonrespondents in the population, and (Y: - Yx), the
difference between the means of respondents and nonrespondents. If the
response and nonresponse strata were randomly formed, the respondent
and nonrespondent means would be equal in expectation, and there
would be no nonresponse bias. In practice, however, it is dangerous to
assume that the missing responses are missing at random; indeed, there
are often good grounds for believing otherwise. Therefore, the only way
to make sure that the nonresponse bias is not sizable is to keep the
nonresponse stratum sufficiently small to guarantee that when (Y. - Yu)
is multiplied by Wn, the result cannot be large. Following this line of
argument, the survey researcher needs to make strenuous efforts to
minimize the amount of nonresponse.

In discussing nonresponse in surveys, it is useful to distinguish
between two main levels at which it can arise: total (or unit) nonresponse
occurs when no information is collected for a sampled element, and item
nonresponse occurs when some but not all the information is collected.
Total nonresponse is often termed simply “nonresponse.” We will
consider total nonresponse first and afterward turn to item nonresponse.

With interview surveys, total nonresponse can be classified into these
categories: refusal to be interviewed; noncontact because the intended
respondent is unavailable (not at home) or cannot be located; incapacity
of the intended respondent to take part in the survey for reasons such as
illness, deafness, or inability to speak the language; and even completed
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questionnaires being lost in transit or processing. Of these, refusals and
not-at-homes are the dominant causes, with the others being of minor
significance in most general population surveys. With mail surveys, a
few members of the sample may send a reply to indicate their refusal to
take part, in a few cases a neighbor or relative may reply to say that the
intended respondent is too ill to respond, and some questionnaires may
be returned by the post office as undeliverable. However, all that is
known about most mail survey nonresponse is simply that the question-
naire has not been returned. The lack of response may be the result of
one of several reasons, such as a definite decision to refuse, a failure to
get around to completing the questionnaire, or the questionnaire’s
failure to reach the respondent.

A variety of procedures is used in survey design in an attempt to
minimize the number of refusals, and even the choice of mode of data
collection is often influenced by the relative risks of refusals with differ-
ent modes. With interview surveys interviewers are carefully trained in
approaches to use to avoid refusals, and they are instructed to return to
conduct an interview at a time more convenient to the respondent if
necessary. Attempts to persuade the sample members of the value of the
survey are generally made, often supported by reference to a prestigious
sponsor; good sponsorship is likely to be particularly effective with a
mail survey. Assurances of anonymity and confidentiality are generally
provided to eliminate any fears the respondents may have about the use
of their responses. Questionnaires are usually organized to start with
simple nonthreatening questions to avoid the risk that the respondent
will terminate the interview when immediately faced with a taxing or
embarrassing question. The proportion of refusals varies greatly,
depending on the subject matter of the survey, the length of the ques-
tionnaire, and the skills of the survey research team.

Not-at-homes in interview surveys are treated by callbacks. In face-
to-face surveys, interviewers are commonly instructed to make at least
four callbacks if unable to contact a respondent, with the callbacks
having to be made on different days and at different times of day,
including some evening calls. The interviewers are also encouraged to
make additional calls if they find themselves in the neighborhood.
Appointments can be useful in increasing the chance of contacting a
respondent at a subsequent call. Callbacks are much more readily
accomplished in telephone surveys; hence the number of calls made is
generally much larger than in face-to-face surveys. The comparable
procedure to the callback in mail surveys is the follow-up—i.e., sending
out further correspondence to those who have not replied. The follow-
up is, however, not aimed at dealing with not-at-homes but simply with
encouraging responses. A common strategy is to send a “reminder
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letter” to those who have not replied after a given period (perhaps two
weeks) and then to send a further reminder with a second copy of the
questionnaire to those who still have not replied after a further period.
Follow-ups have proved to be a valuable means of increasing the pro-
portion of responses to mail surveys. See Dillman (1978) on other ways
of stimulating mail survey responses.

The response rate for a survey is defined as the ratio of the number of
questionnaires completed for eligible elements to the number of eligible
elements in the sample. While this definition might appear straight-
forward, some difficulties can be encountered in dealing with blank or
foreign elements. According to the definition, such ineligible elements
should be excluded from both the numerator and denominator of the
rate, but it is not always possible to determine whether a sampled
element is a not-at-home or a blank. Thus, for instance, with a random-
digit-dialing telephone sample a number from which no response is
obtained on repeated calls may be a nonworking or business number (a
blank) or a household that is out on each call. Similarly, in a survey of
youths aged 18 to 24, a sampled household from which no response is
obtained may or may not contain one or more members of the survey
population. In practice, such cases are often treated differently from one
survey to another, thus producing noncomparable response rates. For
this reason, reported response rates should be critically examined to see
how they were computed.

Nowadays response rates for uncomplicated face-to-face surveys
carried out by nongovernment survey organizations are about 70%-
75%, with variability around this range according to the survey condi-
tions. As a general rule, refusals constitute the majority of the non-
responses with the rest being mostly not-at-homes. Telephone surveys
usually experience somewhat lower response rates than face-to-face
surveys, with refusal being the dominant reason for nonresponse.
Telephone surveys are also subject to “break-off” interviews, in which
the respondent stops the interview before it is completed. Response rates
in mail surveys are extremely varied, ranging from as low as 10% to over
90%. This variation depends in part on the efforts made with follow-ups,
and on the subject of the survey and its relevance to the survey
population.

At the current levels of nonresponse, the risk of nonresponse bias
cannot be ignored. Moreover, there is often evidence that nonresponse
is not evenly spread across the population, but is more heavily concen-
trated among subgroups. Nonresponse rates in face-to-face interview
surveys are, for instarnce, commonly found to be much higher in inner
cities than elsewhere. As a consequence of this differential nonresponse,
the distribution of the achieved sample across the subgroups will deviate
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from that of the selected sample. This deviation is likely to give rise to
nonresponse bias if the survey variables are also related to the sub-
groups. If subgroups with differential nonresponse rates can be identi-
fied, an attempt can be made to compensate for the potential nonre-
sponse bias by weighting adjustments in the analysis, as described in the
next section. It should, however, be noted that these adjustments only
redress the distribution of the sample for the known imbalances, and
there can be no guarantee that they will remove—or even reduce—any
nonresponse bias. They eliminate nonresponse bias only when the non-
respondents are a random subset of the total sample in each subgroup
with regard to the survey variables—an unlikely occurrence in practice.
Thus, although weighting adjustments may go some way toward com-
pensating for nonresponse, they do not provide a full solution to the
problem. The use of weighting adjustments in the analyses does not
obviate the need for strenuous efforts to secure a high response rate in
data collection.

Item nonresponse, which is evidenced by inappropriate gaps in the
data records for responding elements, may occur for a variety of rea-
sons. Survey informants may not know the answers to certain questions
or they may refuse to answer some questions because they find them
sensitive, embarrassing, or they consider them irrelevant to the per-
ceived survey objectives. Under the pressure of the survey interview, the
interviewer may incorrectly skip over a question or fail to record an
answer. Even when an answer is recorded on the questionnaire, it may
be rejected during editing prior to analysis because it is inconsistent with
other answers. The extent of item nonresponse varies according to the
nature of the item and the mode of data collection. Often simple demo-
graphic items have few nonresponses, but items on income and expendi-
tures may experience item nonresponse rates of 10% or more; extremely
sensitive or difficult questions may be subject to high item nonresponse
rates.

One common procedure for handling item nonresponse is to confine
each analysis to those cases with responses to the items involved in that
analysis. When dealing with univariate analyses, total and item non-
response rates may be simply combined with this procedure. Thus,
formula 26 for the bias of using the respondent mean to estimate the
population mean may be applied, with the modification that Wy, is now
defined as the number of eligible elements failing to provide an answer
to the item—through either total or item nonresponse—divided by the
total number of eligible elements. The concerns about bias from total
nonresponse thus apply equally to item nonresponse.

Corresponding to the weighting adjustments for total nonresponse,

various imputation methods have been devised to try to compensate for
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the bias of item nonresponse. These methods operate by assigning
values for the missing responses, using the responses to other items on
the questionnaire as auxiliary information to aid in this process. One
method divides the sample into classes on the basis of the responses to
otherrelevant items, and then assigns the respondent class mean for the
item in question for all the item nonresponses in that class. This method
compensates for differential item nonresponse rates across the classes,
and, with regard to estimating the population mean, it is equivalent to
the weighting adjustments for total nonresponse based on the same
classes.

The disadvantage of the class mean method is that it distorts the
distribution of the item, creating spikes at the class means where all the
item nonresponses are placed and, as a consequence, attenuating the
variance of the distribution. A variant of this method that avoids this
distortion is to assign for each item nonresponse one of the item
responses in the same class. One version of this method, used by the U.S.
Bureau of the Census, is sometimes known as the “traditional hot deck
method.” The classes are determined, and a single value of the item is
assigned to each class, perhaps based on a previous survey. Then the
current survey records are taken sequentially. If a record has aresponse
for the item, its value replaces the value stored for its class. If the record
has a missing response, it is assigned the value currently stored in its
class. This method has a major attraction of computing economy
because all the imputations are made from a single pass through the data
file. It suffers the disadvantage, however, that a single response may be
donated to several nonresponses; this will occur when within a class a
record with a missing value is followed by one or more other records
with missing values. Another version of this method minimizes the
multiple use of responses by first sorting all the records into classes and
then matching responses and nonresponses; this version also avoids the
need to specify start-up values. It is the basis of a sophisticated imputa-
tion method used by the Bureau of the Census for the March Income
Supplement of the Current Population Survey (Welniak and Coder,
1980). ’

Another type of imputation method employs a regression equation to
predict the missing values, using the responses to other items on the
questionnaire as predictor variables and .determining the regression
coefficients from the respondent sample. The imputed values can be
taken as the predicted values from the regression, but when this is done
the variance of the item distribution will be attenuated, as with the class
mean method. A modification of this procedure to avoid this attenua-
tion generates the imputed values by adding random residuals to the
regression predictions.
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A major benefit of imputation is that a data set with no missing values
is constructed, a feature that greatly facilitates survey analyses. It is,
however, important for the survey analyst to be aware of the fact that
imputation has been used. Imputed values should be flagged in the data
set so that the analyst can distinguish between real and imputed values.
A survey data set containing imputed values should not be analyzed
uncritically as if all the data were real values. One reason is that this
procedure will attribute greater precision to the survey estimates than is
justified. A second reason is that while imputation is likely to reduce the
biasing effects of item nonresponse on univariate analyses, it can distort
the associations between variables and hence have damaging effects on
multivariate analyses. See Kalton and Kasprzyk (1982) for a review of
imputation procedures and their effects on survey estimators.

10. SURVEY ANALYSIS

The analysis of survey data can employ any of a wide range of
statistical techniques, many of which are discussed in other papers in
this series. This section does not attempt to review these techniques, but
instead discusses only the special considerations involved in analyzing
data obtained from a complex sample design. The two topics treated
here are the use of weights in survey analysis and the calculation of
sampling errors for estimates based on complex sample designs.

Weights

Weights are used to assign greater relative importance to some
sampled elements than to others in the survey analysis. Weights are
needed when the sampled elements are selected by unequal probability
sampling; they are also used in poststratification and in making adjust-
ments for total nonresponse. We start with an illustration of the use of
weights in the analysis of a nonepsem design, and afterward discuss
other applications.

To illustrate the application of weighting procedures with a manage-
able example, we will consider a small sample size of ten. Suppose that
the only list available for selecting a sample of students in a college is the
combination of the class registers for each of the courses. An equal
probability sample of listings is taken from this list—say by systematic
sampling—with the associated student then beingincluded in the sample.
Let the total number of listings be 970, with a 1 in 97 sample of them
yielding the sample of ten listings. Since the majority of students take
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more than one course and since they differ in the numbers of courses
they take, the epsem sample of listings produces a nonepsem sample of
students. The greater the number of courses a student takes, the greater
is the student’s selection probability.

Suppose that one objective of the survey is to estimate the mean
number of textbooks purchased, with the numbers of textbooks pur-
chased by the ten students and the numbers of courses they are taking
being given in Table 5. The simple mean number of textbooks purchased
is Jyi/n = 47/10 = 4.70. This is clearly a biased estimate of the mean
number of books purchased by all the students in the college because of
the unequal selection probabilities and the association between the
selection probabilities and textbooks purchased. Inspection of the data
in Table 5 shows that the more courses attended, the more textbooks the
student is likely to buy, so that the simple sample mean will tend to
overestimate the population mean. To compensate for the nonepsem
design, weights that are inversely proportional to the selection probabil-
ities are needed. If an element’s selection probability is pi, the weight
should be k/p;, where k is any constant chosen for convenience.

One obvious choice for k is k = 1, so that the weight w; = 1/pi. Thus,
with the listings being sampled at a rate of 1 in 97, the weights for the
sampled students would be 97/ r;, where r; is the number of courses taken
by the i student. Student 1 would have a weight of 97, student 2 a
weight of 48.5, student 3 a weight of 32.3, and so on. The choice of
k=1 can be useful when estimates of population totals are required, such
as the total number of textbooks purchased by the college’s students, for
with k = 1 the population total is simply estimated by the weighted
sample sum Zwiyi. However, often the selection probabilities are small
and awkward numbers to handle, in which case an alternative choice of
k may be used to simplify the weights. If a value other than k = 1 is used,
the weighted sample sum wiy: has to be divided by k to estimate the
population total; however, no adjustments are needed for means, per-
centages, variances, and other statistics that are averaged over the
sampled values.

A second obvious choice of weights is to make them equal to the
reciprocals of the numbers of courses taken, 1/t since it is the variable
number of courses that gives rise to the unequal selection probabilities.
These weights would then be 1.00 for the first student, 0.50 for the
second, 0.33 for the third, and so on. This scheme, which implicitly
employs a value of k = 1/97, is entirely acceptable, but it requires some
rounding for 1/3. To avoid this rounding, the weights adopted in Table
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5 are set equal to 12/ri (implicitly choosing k = 12/97). When weights are
used the sample mean is defined as

?w = ZWiYi/ Wi

Here §w = 217/ 54 = 4.02, a value appreciably smaller than the seriously
biased simple mean y = 4.70.

Since w = Zw; in the denominator of J is not fixed but would vary
from sample to sample, the weighted mean is aratio mean. As discussed
in Chapter 6, the ratio mean is a biased estimator of the population
mean, but the bias is negligible providing the coefficient of variation of
the denominator is less than 0.1. Treating the sample of listings as an
SRS and ignoring the fpc term, the variance of the weights may be
estimated by

v(W) = ns? = nZ(wi - W)*/(n - 1) = 624/9 = 69.33

Thus the estimated coefficient of variation of w is given by

se(w) _ Vv(w) _ 8327

=0.15
w w 54

cv(w) =

Although in excess of 0.1, this coefficient of variation is small enough'to
ensure that the bias of the ratio mean is not appreciable. Since the
coefficient declines with increasing sample size, it would clearly not be a
matter of concern with a realistic larger sample size.

The estimated variance of the weighted mean is also that of a ratio
mean, as discussed in Chapter 6. For the application of the theory of the
ratio estimator, J» may be written as u;/ %w; = u/w, where the variable
u; is defined as u; = wiyi. Then, providing the coefficient of variation of w
is less than 0.2, an approximate variance estimator for yy is given by

V(Tw) = [V(u) + Fv(W) - 2§wc(u,W)]/ W’

which is simply equation 23 in the current notation. Using the data in
Table 5, the following calculations may be made:

v(u) = nE(y, - T)%/(n - 1) =3241/9 = 360.11

c(u,w) = n}j(ui -u) (wi -W)/(n-1)=52/9=5.78
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TABLE 5§
Number of Textbooks Purchased and Number of Courses
Being Taken by the Ten Sampled Students (hypothetical data)

Number of Number of
Student Textbooks Courses Weight
Number 640 (i) wi=12/r uj = wiyj
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2
_ 3241 (217) 624 (217) (52) 2
= —_— —_— —_— _ —_— =
v(7,,) [ 5 54 5 2 52 5 /54 =0.4915

and se(yw) = 0.70.

It is useful to compare the precision of this nonepsem sample with
that of an SRS of the same size. For this purpose an estimate of the
element variance of the numbers of textbooks purchased is needed. An
estimate of this quantity is provided by

)
Zwy(y; - Vi)
2 n ivi w
= = 4.382 27
Sw n-1 Zw; (271

Thus, for an SRS of 10 the variance of the sample mean is estimated,
ignoring the fpc, by v(¥o) = s2/ 10 = 0.4382. The estimated design effect for
the nonepsem sample is then

d%(¥w) = V(Tw)/ V(o) = 0.4915/0.4382 = 1.12

indicating an increase of variance of about 12% as a result of the unequal
selection probabilities. A loss of precision is usual when unequal selec-
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tion probabilities occur as a result of frame deficiencies, and the loss can
be substantial when the selection probabilities vary a great deal. For this
reason, substantial variability in selection probabilities should be
avoided whenever possible in this type of situation.

As a second example of the need for weights in dealing with a
sampling frame deficiency, consider the frame problem of listings of
clusters of elements. Suppose that an epsem sample of a dwellings is
selected from the A dwellings in a city, and that one adult is sampled at
random from each selected dwelling using the Kish selection grid. The
probability that adult 8 in dwelling « is selected for the sample is given
by the selection equation

P(ap) = P()P(B| @) = (a/ A)(1/B,)

where B, is the number of adults in dwelling &. To compensate for the
adults’unequal selection probabilities, weights proportional to 1/P(af8)
= AB,/a are needed in the analysis. One obvious simple choice of
weighting scheme for this case is to assign a weight to each sampled adult
equal to the number of adults in his or her dwelling (i.e., B,). (Although
these weights are theoretically needed, in practice they are often not used
because they vary little, the variation in number of adults per dwelling
being slight. Thus they generally have only a negligible effect on the
survey estimates [see Kish, 1965: 400]).

Another example of a sample design that gives rise to unequal selec-
tion probabilities is disproportionate stratification. Chapter 4 described
how an estimate of the population mean can be computed by first
calculating the sample means in each stratum and then combining these
estimates into a weighted average J« = 2 W¥». An alternative procedure
is to assign weights to each sampled element, with the same weight for all
elements in one stratum, but different weights between strata, and then
to use yw. The weights are made proportional to the inverses of the
selection probabilities in each stratum,; i.e., wyi = kNi/ 0y for all sampled
elements in stratum h. It then follows that

Yo = %:‘zi:whiyhi/ TIwy, = ithyh/ ﬁth = ‘Ewhyh

so that §,, and ¥: are equivalent. In this case . is not a ratio mean since
its denominator is a fixed constant. The use of ¥, rather than J: has an
advantage of computational convenience: Once weights have been
assigned, standard computer programs for weighted data can be applied
to obtain the survey estimates.
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Weighting may also be applied in a similar way with the technique of
stratification after selection, or poststratification. With this technique,
knowledge of the population distribution of some supplementary varia-
ble (or variables) is used in the analysis to improve the precision of the
sample estimators. Thus, for instance, if the age distribution of the
population is known from a recent census, the sample can be divided
into age groups, the means of survey variable y can be calculated for
each age group (1), and these means can be combined into the overall
estimate ¥ps = % Wh¥h, where Wi is the proportion of the population in
age group h. As with disproportionate stratification, the poststratified
mean can be alternatively expressed as a weighted mean, where each
element is assigned a weight proportional to Ni/n:s. Ignoring for the
moment issues of nonresponse and noncoverage, poststratification
adjusts the sample distribution across the strata, which is subject to
chance fluctuations, to make it conform to the known population
distribution. Providing the expected sample sizes in the poststrata are
ten or more, the variance of the poststratified mean is approximately
equal to that of a proportionate stratified mean based on the same
strata. Poststratification is useful in situations where the W, are known
but where the stratum to which each element belongs cannot be deter-
mined at the selection stage. Prior stratification cannot be used in such
situations; however, information can be collected from sampled ele-
ments during the survey to enable them to be allocated to strata, thus
allowing the use of poststratification. Poststratification can also be
usefully employed to take advantage of additional stratification factors
beyond those used at the design stage. As with proportionate stratifica-
tion, gains in precision from poststratification accrue to the extent that
there is heterogeneity between, or equivalently homogeneity within, the
strata in terms of the survey variables.

Weighting of a sample to a known population distribution adjusts
not only for sampling fluctuations but also for nonresponse and non-
coverage (the failure of some elements to be included on the sampling
frame). If, say, the nonresponse rate is higher among young people, or if
more of them are missing from the sampling frame, weighting the
sample to make if conform to a known age distribution compensates for
these factors. It should be observed here, however, that the compensa-
tion is achieved by weighting up the respondents in the given age groups.
To the extent that there are differences in the survey variables between
the respondents and nonrespondents in each age group, some non-
response bias will remain.

Like poststratification, the preceding weighting adjustment for non-
response and noncoverage requires knowledge of the population distri-



75

bution of some auxiliary variable, such as age, from an external source.
Another type of nonresponse adjustment depends only on internal
information in the sample, but that information has to be available for
both respondents and nonrespondents. Information on the strata or
PSUs in which the elements are located is often used for this type of
adjustment. Suppose, for instance, that the sample is divided into geo-
graphical regions and, within regions, into classes according to whether
the sampled element is situated in a rural, suburban, or central-city
location. With an epsem sample, adjustments for variation in non-
response rates across the resulting classes can be made by assigning
weights of nn/ru to the respondents in class h, where nu is the total sample
size selected, and m is the achieved sample of respondents, in that class.
These adjustments make the respondent sample distribution conform to
the total sample distribution across the classes, again with the respon-
dents in a class being weighted up to represent the nonrespondents in
that class. This type of adjustment is addressed only at nonresponse—
not at noncoverage.

In practice, the development of weights can become a complicated
task, because a combination of adjustments is often required. In the first
place, weights may be assigned to adjust for unequal selection prob-
abilities, then these weights may be revised to adjust for differential
response rates within classes of the sample, and finally further revisions
may be made to adjust the sample distributions to known population
distributions. Careful attention is needed to the development of weights,
because serious errors are easily made.

Sampling Errors

As we have seen in the discussion of various sample designs, the
extent of sampling error in survey estimators depends on the survey’s
sample design. The regular standard error formulae found in statistics
texts and incorporated in most computer programs relate only to un-
restricted sampling (simple random sampling with replacement). These
formulae should not be applied uncritically with other sample designs,
for which they may produce overestimates or, more often, underesti-
mates of the sampling error.

In the case of simple random sampling without replacement, the
variance of the sample mean is smaller than that of the mean from an
unrestricted sample of the same size by the factor (1 - f), the finite
population correction term. When the population is large, the sampling
fraction f is usually small, and the fpc term is approximately 1. In this
situation the standard error formulae for unrestricted sampling may be
applied satisfactorily with an SRS design.
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A proportionate stratified design with SRS within strata gives esti-
mators that are at least as precise as those produced by an SRS design;
the estimators will be more precise to the extent that the strata are
internally homogeneous with regard to the survey variable under con-
sideration. The application of the standard error formulae for unre-
stricted sampling with this type of design will thus tend to overstate the
sampling error in the survey estimates. When the fpc term can be
neglected and when the gains in precision from stratification are small,
the use of the unrestricted sampling standard error formulae may serve
adequately. Before placing reliance on these formulae it is, however,
advisable to carry out some checks to determine whether it is reasonable
to ignore the gains from stratification.

The situation with disproportionate stratified sampling is more com-
plex in two respects. In the first place, since disproportionate stratifica-
tion is a nonepsem design, the application of the unrestricted sampling
standard error formulae requires the use of weighted estimates of the
population parameters involved. For instance, the standard error of a
sample mean from an unrestricted sample is o/ \/n; if this formula were
applied with a nonepsem design, the population element variance o
should be estimated by the weighted s3 given in equation 27. Second, the
effect of disproportionate stratification on the precision of the survey
estimates is not clear-cut as in the case of proportionate stratification:
Disproportionate stratified sampling may yield estimators that are more
precise or less precise than those obtained from an unrestricted sample
of the same size, depending on the allocation of the sample across the
strata. Assuming survey element costs are the same for all strata, opti-
mum (Neyman) allocation of the sample for estimating the population
mean of a particular variable will produce a sample mean at least as
precise as one based on a proportionate allocation, and more precise
when the element variance of the variable varies across strata. The
unrestricted sampling standard error formula will therefore tend to
overestimate the sampling error of this mean. The use of the unrestricted
sampling standard error formulae may, however, tend to underestimate
the sampling errors of other estimates from this design.

Often disproportionate stratification is used to provide separate
estimates for various domains of study, with the strata representing the
smaller domains being sampled at higher rates in order to give adequate
domain sample sizes. This use of disproportionate allocation often leads
to a loss of precision in the overall estimates, and the loss can be severe
when some domains are sampled at much higher rates. As a simple
illustration, consider two strata, each of which is a domain of study for
which separate estimates are required, with one stratum containing 90%
and the other 10% of the population, and suppose for simplicity that the
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two strata have the same means and variances. If samples of the same
size are selected from each stratum, weights in the ratio of 9:1 are
required for the two strata in forming overall estimates. Ignoring the fpc
term, the effects of these weights is to increase the variance of the overall
sample mean by a factor of 1.64 compared with an unrestricted sample
of the same size. When a marked variation in weights is needed to adjust
for unequal selection probabilities, a substantial loss in precision can
result. In consequence, the use of the unrestricted sampling standard
error formulae can seriously underestimate the sampling errors of the
survey estimates.

Clustering leads to a loss of precision compared with an SRS of the
same size whenever the cluster intraclass correlation coefficient p is
positive, as is almost always the case. The loss depends both on the
magnitude of p and on the average subsample size selected per cluster, as
discussed in Chapter 5. When the average subsample size is large, the
loss can be serious even when p is relatively small. The unrestricted
sampling standard error formulae thus tend to underestimate, oftento a
substantial extent, the sampling errors of estimates based on multistage
clustered samples.

In practice, sample designs are often complex, involving both multi-
stage sampling and some form of stratification at each of the sampling
stages. Frequently proportionate stratification and epsem, or approxi-
mately epsem, designs are used. The common empirical finding from
sampling error computations that have been performed for estimates
based on such designs is that the losses of precision from clustering tend
to outweigh the gains from proportionate stratification, so that the
complex sample design provides less precise estimators than an unre-
stricted sample of the same size; that is, the design effects are greater than
1. The magnitude of the design effect depends on a multitude of factors,
including the nature of the clusters, the average subsample size per
cluster, the stratification used, the variable or variables under study and
the form of the estimator. Thus, for instance, in national area probabil-
ity samples, design effects for means and proportions of basic demo-
graphic variables such as age and sex are generally near 1, reflecting the
fact that geographical clusters exhibit little internal homogeneity in
these variables. Design effects for socioeconomic and related variables,
however, are generally greater than 1 because of the tendency of people
in the same socioeconomic group to live in the same neighborhoods.
Design effects for means or proportions of a subclass of the population
that is fairly evenly spread across the clusters—termed a “crossclass”™—
are as a rule less than those for the equivalent means or proportions
based on the total sample. Design effects for the differences between two
subclass means are usually lower than the design effects for the subclass
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means themselves. Design effects for regression coefficients are often
similar to those for differences between means. Whatever the estima-
tors, however, design effects with complex sample designs are nearly
always greater than 1, sometimes only slightly but sometimes substan-
tially. The use of the unrestricted sampling standard error formulae thus
generally overstates the precision of survey results based on such
designs.

In recent years a number of computer programs have been developed
to calculate sampling errors of estimates based on complex sample de-
signs; see Kaplan and Francis (1979) for a list of some such programs.
Mostly these programs treat the primary sampling units (PSUs) as being
sampled with replacement, although in practice sampling without
replacement is generally used. Treating the PSUs as if they had been
sampled with replacement leads to an overestimate of variance, but the
amount of overestimation is slight providing the first-stage sampling
fraction is small. The major advantages of the with-replacement
assumption are computing economy and generality. As shown in Chap-
ter 5, if the first-stage sampling fraction is small, the standard error of
the sample mean may be simply estimated from the variation between
PSU totals; no estimates need to be made of the sampling variation
within the PSUs, a feature that creates a substantial computational
saving. More important, however, is the generality that goes with the
assumption: Under the with-replacement assumption a single standard
error formula for a particular estimator applies, no matter what form of
subsampling is used within the PSUs. Thus, for instance, the same
formula applies whether the elements are sampled (1) by SRS within the
selected PSUs, (2) by systematic or stratified sampling, or (3) with
further sampling stages and stratification. This generality is appealing
not only because a single program will produce the standard error of a
given estimator for any form of subsample design but also because the
user of the program is not required to supply the program with details
about the subsample design. The use of these programs requires only
that each survey data record contains a code to indicate to which PSU it
belongs, together with provision of information about the first-stage
stratification.

Several general approaches exist for estimating sampling errors of
estimators based on complex sample designs. One of these is the Taylor
expansion or delta method, which has already been referred to in the
discussion of the ratio mean in Chapter 6 (see formula 23). The basic
procedure is to obtain a linear approximation for the estimator, and
then to use the variance estimator for the linear approximation to
estimate the variance of the estimator itself. The approach is most easily
applied, and most widely used, for simple estimators. Many of the
programs for computing variances of sample means, proportions, sub-
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class means and proportions, and differences between means and
between proportions from complex sample designs use this method. As
noted in Chapter 6, the appropriate use of the Taylor expansion method
for estimating the variance of a ratio mean or proportion requires that
the coefficient of variation of the denominator of the ratio is less than
0.2. Most programs provide the values of this coefficient in their print-
outs; especially in the case of subclass analyses, these values should be
routinely reviewed to check that they are sufficiently small.

An alternative approach to standard error estimation is to design the
sample to permit standard error estimates to be computed simply for
any survey estimate. As described in Chapter 7, the method of replicated
sampling achieves this objective by constructing the total sample as a
combination of a set of independent replicates, each of an identical
sample design. The variation between the individual replicate estimates
then provides the basis of a simple standard error estimate for the
combined sample estimate, no matter what the complexity of that
estimate or of the replicate sample design. As already discussed, the
serious drawback to the use of simple replicated sampling with multi-
stage designs is the conflict between the need for sufficient replicates to
provide standard error estimates of adequate precision and the desire to
use a good deal of stratification to produce precise survey estimates; as a
consequence of this conflict, simple replicated sampling is seldom
adopted. In its place, techniques of pseudoreplication have been devel-
oped to take advantage of the simple replicated standard error estimator
while providing as precise estimates of standard errors as possible and
avoiding the restriction on stratification. We will briefly describe the
method of balanced repeated replications (BRR), which is sometimes
known as half-sample replication (Kish and Frankel, 1970, 1974;
Frankel, 1971; McCarthy, 1966).

The method of balanced repeated replications is generally employed
with a paired selection design in which exactly two PSUs are sampled
from each stratum. As has been noted earlier, in many multistage
designs PSUs are stratified to the point of selecting one PSU per
stratum, in which case the collapsed strata technique is needed for
variance estimation purposes; collapsing pairs of strata approximates
the actual design by a paired selection design. With BRR, the two PSUs
selected in each stratum are treated as having been sampled indepen-
dently. Viewed from the perspective of replicated sampling, the sample
can be considered as made up of two replicates, one comprising one of
the two PSUs—selected at random—from each stratum and the other
comprising the remaining PSUs. If z’ denotes the sample estimate of the
parameter Z (e.g., a regression coefficient) based on the first replicate, or
half-sample, and z” the corresponding estimate based on the second half
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sample, or complement, then from replicated sampling theory a
variance estimate forZ = (2’ +z")/ 2 is given from equation 24 with c =2 by

V@) =z -2+ (2" -20/2 [28]

In practice, the overall estimate used for Z is Z, obtained by pooling the
two half-samples, but Z and Z are usually extremely close. Hence, as an
approximation, Z may be replaced by Z in the above variance estimator.

The limitation of the simple replicated sampling variance estimator is
that, being based on only one degree of freedom, it is too unstable to be
of any real practical utility. The solution to this problem used in BRR is
to repeat the process of forming half-samples from the parent sample, to
compute variance estimates each time, and then to calculate the average
of the variance estimates obtained. Thus, if z{ denotes the sample esti-
mate of Z based on the t™ half-sample and z% that based on its comple-
ment, a variance estimator for Z is given by

v(@) = 3[(# - 2" + (% - 2]/ 2T

averaging over T half-samples and their complements, and replacing Z
in equation 28 by Z.

The above reasoning explains the “repeated replications™ part of
BRR. The “balanced” part relates to the manner in which the half-
samples are chosen. The T half-samples are not chosen independently,
but rather are chosen in a balanced way that produces an efficient
overall variance estimator. In order to employ full balance, the number
of half-samples T selected has to be greater than or equal to the number
of strata and also a multiple of four. Thus, for instance, with 22 strata
(i.e., 44 PSUs in the paired selection design), T = 24 half-samples are
needed for full balance; with 47 strata, T =48 half-samples are needed. If
the calculation of z involves a good deal of computation, and if the
number of strata is great, the computations needed for all the half-
samples required for full balance may be excessive; in this case, various
techniques are available to achieve partial balance with a smaller set of
half-samples.

Jackknife repeated replications (JRR) is another variance estimation
technique for use with complex sample designs (Frankel, 1971; Kish and
Frankel, 1974). Like BRR, it employs a repeated-replications approach.
With the JRR method, a replicate is constructed by dropping out a
single PSU and weighting up the other PSUs in its stratum to retain the
sample distribution across the strata. This operation is repeated a
number of times, dropping a different PSU on each occasion. When the
total number of sampled PSUs, a, is small, each one of them may be



81

dropped out in turn to create a replicates, but this completeness is not
essential. All that is required is that at least one PSU is dropped from
each stratum; if this is not done for one or more strata, the variance
contribution of those strata will not be represented in the overall vari-
ance estimate. Letting z: denote the estimate of Z based on the t™
replicate formed from stratum h, a JRR variance estimator for Z is
given by

__H ' 2
VD)= 2 Z -Gy -2,

where a, is the number of sampled PSUs in stratum h, and t, is the
number of replicates formed by dropping PSUs from stratum h. When
each of the PSUs in the sample is dropped in turn, t, = an. As this
formula shows, an advantage of JRR over BRR is that it can readily
handle designs other than the paired selection design (for which a = 2).

All the preceding variance estimation methods involve approxima-
tions, but simulation studies have shown that they all give reasonable
results. The choice between them is largely to be made in terms of
computing economy, availability of programs, and applicability for the
required estimates and for the sample design employed. The Taylor
expansion method is often preferred for relatively simple estimates, and
BRR and JRR have the advantage of being readily applied for estimates
of any complexity. The BRR method is mainly restricted to the paired-
selection design, but this design fits most samples in practice. Where it
does not, JRR may be preferred.

Surveys usually collect data on an extensive set of variables and
produce numerous results on the variables and their relationships. Even
with the availability of sampling error programs, it is seldom possible to
compute standard errors for all the estimates in a survey report; even if it
were possible to compute them, the report would become unwieldly if
they were all included. For these reasons, survey analysts usually com-
pute only the standard errors of major results, together with a selection
of other standard errors. These computations are then used to develop
generalized models from which other standard errors can be inferred
(see, for instance, Kish, 1965: 574-582).

Further details on the practical estimation of survey sampling errors
-and the use of generalized sampling error models are provided in a
review paper by Kalton (1977). The paper by Kish and Frankel (1974)
discusses sampling error estimation methods with survey samples and
presents results from a simulation study comparing the Taylor expan-
sion, BRR and JRR methods.
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11. SAMPLE SIZE

One of the first questions that arises in sample design is, “What
sample size is needed?” The discussion of this question has been left until
now because it depends on several aspects of the preceding material.

To describe the basic ideas, consider a simple example of a face-to-
face interview survey that is to be conducted to estimate the percentage
of a city’s population of 15,000 adults who say they would make use of a
new library if one were built. To determine an appropriate sample size, it
is first necessary to specify the degree of precision required for the
estimator. This is no easy task, and initially the degree of precision
required is often overstated. Suppose, for instance, the initial specifica-
tion calls for an estimator that is within 2% of the population percentage
with 95% probability; in other words, the 95% confidence interval
should be the sample percentage plus or minus 2%. This specification
thus requires that 1.96 SE(p) = 2%, where p is the sample percentage.
Assuming initially the use of simple random sampling, and ignoring the
fpc term, SE(p) = \/PQ/n’, where P is the population percentage,
Q =100 - P, and n’' is the initial estimate of the sample size. Thus
1.964/PQ/n’ = 2 or n’ = 1.96’PQ/ 2. In order to determine n’, a value is
needed for P. Since PQ is largest at P = Q = 50%, a conservative choice is
to set P equal to a percentage as close to 50% as is likely to occur.
Suppose that P is thought to lie between 15% and 35%; then the
conservative choice is P = 35%. With this choice, n’ = 2185. If this initial
sample size were small compared with the population size, so that the
fpc term could be ignored, it would be the required sample size. In the
present case, however, the fpc term should not be neglected. A revised
estimate of the sample size to take account of the fpc term is obtained,
with N = 15,000, as

n = Nn’/(N + ') = 1907

Theabove calculation assumes simple random sampling, and a modification
is needed for other sample designs. The modification consists of multi-
plying the SRS sample size by the design effect for the survey estimator
under the complex design. If a list of the city’s adults were available in
the above example, then an unclustered proportionate stratified sample
might well be used. In this case, a somewhat smaller sample might
suffice because of the gains in precision arising from the stratification.
As has been noted earlier, however, the gains from proportionate strati-
fication are generally small when estimating a percentage, so the reduc-
tion in sample size will often be modest. Say, in the present case, that the
design effect for the sample percentage with a proportionate stratified
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design is predicted to be 0.97. Then the required sample size for an
unclustered proportionate stratified design to give a confidence interval
of within 2% is 0.97 x 1907 = 1850.

If no list of the city’s adults or dwellings is available, area sampling
may be needed, perhaps first sampling city blocks, then listing dwellings
within blocks, sampling dwellings in selected blocks, and finally sam-
pling one (or more) adults from each selected dwelling. Stratification and
PPS selection would almost certainly be used in such a design. Suppose
that with a stratified multistage design in which an average of ten adults
are to be sampled from each PSU (block), the design effect is predicted
to be about 1.3. Then the required sample for this design would be 1.3 x
1907 = 2479.

Another factor that needs to be included in the calculation of sample
size is nonresponse. Suppose that the response rate is predicted to be
75%. Then the selected sample size needed to generate the achieved
sample of 2479 adults with the multistage design has to be set at
2479/0.75 = 3305. Of course, this adjustment serves only to produce the
desired sample size; it does not address the problem of nonresponse bias.

Having reached this point, the researcher may decide to review the
initial specification of precision to see if it can be relaxed. Suppose that,
on reflection, a confidence interval of +-3% is deemed acceptable. Then
the selected sample size can be substantially reduced to 1581. In practice,
the level of precision required for an estimator is seldom cast in concrete.
In consequence, the sample size is usually determined from a rough-and-
ready assessment of survey costs relative to the level of precision that
will result. It should be noted that the selected sample size depends on
predictions of a number of quantities, such as the percentage of the
population who say they would use the library, the design effect, and the
nonresponse rate. Errors in predicting these quantities cause the survey
estimator to have a level of precision different from that specified, but
that is the only adverse effect; the estimator remains a reasonable
estimator of the population parameter.

Having fixed the required sample size, the next step is to determine
the sampling fraction to be used. If the sample is to be drawn from the
list of the city’s 15,000 adults, consideration will need to be given to the
possibility of blanks (deaths and movers out of the area) and foreign
elements on the list as well as to the consequences of any linking
procedure that might be employed in dealing with missing elements. If,
say, 4% of the listings are blanks and no linking is employed, the
sampling fraction will need to be set at 2479/(0.96 x 15,000)=0.172, or 1
in 5.81, to yield a sample of 2479. In practice, this sampling fraction may
then be rounded for convenience, perhaps to 1 in 5.8 oreven 1in 6, to
yield expected samples of 2483 or 2400, respectively.
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In the case of the multistage area sample, the sample design calls fora
sample of dwellings, with one adult sampled per dwelling. Suppose that
at a recent census the city contained 6500 occupied dwellings. This figure
should first be updated to correct for changes that have occurred since
the census date, and also adjusted for any differences between the survey
and census definitions of the city boundaries. Suppose that, as aresult of
these adjustments, the current number of occupied dwellings in the city
is estimated to be 6750. In addition to these adjustments, allowance also
needs to be made for the fact that the survey’s sampling operations will
probably fail to attain as complete a coverage of the city’s dwellings as
the census enumeration; the coverage rate for the sample might, say, be
estimated as 95% of that of the census. Using this coverage rate, a
sampling fraction of 2479/(0.95 x 6750) =0.3866, or 1 in 2.59 dwellings, is
needed to give the desired sample of 2479 adults. As before, the sampling
rate may be rounded for convenience to 1in 2.6, accepting a marginally
smaller expected sample size (2466) for the use of a simpler rate.

While the above example has served to bring out a number of the
issues involved in choice of sample size, it is nevertheless an oversimpli-
fied representation. In practice surveys are multipurpose, with a sub-
stantial number of estimators needing to be considered. Moreover, these
estimators are required not only for the total sample but also for a wide
range of subclasses, perhaps for different regions of the country, for
people in different age groups or different educational levels, and so on.
A major reason for the large samples typical of many surveys is the need
to provide adequate precision for subclass estimators and for differences
between subclass estimators. Larger samples permit finer divisions of
the sample for subclass analysis, and, in general, the larger the sample
the more detailed the analysis that can be conducted. The choice of
sample size often depends on an assessment of the costs of increasing the
sample compared with the possible benefits of more detailed analyses.

12. TWO EXAMPLES

This section describes two sample designs in order to illustrate how
the preceding techniques can be combined in practical applications. One
example is a sample design for a national face-to-face interview survey
in the United States and the other is a sample design for a telephone
interview survey.

A National Face-to-Face Interview Survey

Both the Survey Research Center (SRC) at the University of Michi-
gan and the National Opinion Research Center (NORC) at the Univer-
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sity of Chicago maintain national probability sample designs for their
face-to-face interview surveys of individuals, families, households and
sometimes other units of inquiry. These sample designs are revised every
decade to take advantage of up-to-date data provided by the decennial
Census of Population and Housing. After the 1980 census, the two
organizations collaborated to select their master samples according to a
common sample design. The following paragraphs describe this design,
which is a stratified multistage area sample using selection with proba-
bilities proportional to estimated size (PPES) at the various stages.

The primary sampling units (PSUs) for the NORC/SRC national
sample design are Standard Metropolitan Statistical Areas (SMSAs),
counties, or groups of counties with a minimum 1980 census population
of 4000 persons. The sixteen largest SMSAs (e.g., New York, Chicago,
San Francisco, Boston, St. Louis, and Atlanta) are included in the
sample with certainty. They are “self-representing PSUs,” which are
properly treated as strata. According to the following procedure, a
sample of 68 PSUs was selected from the remaining PSUs by PPES
sampling, where the size measure is the PSU’s number of occupied
housing units in the 1980 census. First, the PSUs were separated into 68
strata of approximately equal sizes (i.e., containing approximately
equal numbers of housing units). These strata were formed by first
dividing the PSUs into the four census regions (North Central, North-
east, South, and West) and within regibns into SMSAs and non-SMSAs.
The SMSAs were further stratified by geographical location and by the
sizes of their largest cities. The non-SMSAs were further stratified by
geographical location and by their overall sizes. One PSU was then
selected with PPS from each of the 68 strata, with further control being
applied to the pattern of selections across strata to ensure a good
representation of PSUs in terms of other control variables, such as
percentage Black in the rural deep South and percentage Hispanic in the
West. (For a description of the technique of controlled selection, see
Goodman and Kish, 1950; Hess et al., 1975.)

The next operation in the sampling procedure was the selection of
smaller clusters within the 16 self-representing SMSAs and 68 sampled
PSUs. The clusters chosen for this purpose were blocks in urban areas
for which the census provides block statistics and enumeration districts
elsewhere. A minimum size of 48 housing units was set for these clusters;
where sizes fell below this minimum, geographically adjacent clusters
were combined. These clusters comprise the second-stage units within
the sampled PSUs, with six of them being selected from each sampled
PSU for the main samples of each survey organization (SRC and
NORC). Within the self-representing SMSAs, these clusters are in fact
the PSUs. Six clusters were selected for each organization in each of the
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eight smallest self-representing SMSAs, but the large self-representing
SMSAs warranted a greater number of sampled clusters. For instance,
24 clusters were selected in the New York SMSA and 18 clusters in the
Los Angeles SMSA for the main samples of each organization.

The selection of clusters within the self-representing SMSAs and
sampled PSUs was carried out by PPES sampling, again with the 1980
numbers of occupied housing units as the measures of size. Systematic
sampling from an ordered list of clusters was used to give the gains of
implicit stratification for the variables employed in the ordering. Within
aself-representing SMSA or sampled PSU the clusters were ordered by
county, by minor civil division (in some cases), by census tract or
enumeration district number and by block number. Counties were
ordered according to size and geography. In the twenty states for which
information was available on the size and median family income of
minor civil divisions (local government units such as cities and towns),
the divisions were ordered by size and median income. Blocks and
enumeration districts were sorted by census tract number and then by
block or enumeration district number to generate a geographical
ordering.

The sampled clusters resulting from this process varied markedly in
size from 50 occupied housing units up to 700 or more. A further stage of
sampling was employed in the larger clusters to reduce them to a more
manageable size. This stage first required these clusters to be partitioned
into clearly defined segments, with approximate measures of size being
assigned to each segment. This operation was based on a scouting of the
clusters by SRC and NORC field staff, in which they made a field count
of the distribution of occupied housing units. Then one segment was
selected from each large cluster with PPES.

The final stage of the sample design involved a listing by the field staff
of the housing units in all the selected segments. These listings are then
available for use as the frame for the selection of samples for a number of
surveys. The method of sampling from the listings may well differ
between surveys, and it may also differ between large and small seg-
ments. Itis, of course, important to address the problem that the listings
become out of date as time passes.

For other descriptions of national area sample designs, the reader is
referred to U.S. Bureau of the Census (1978) for a description of the
sample for the Current Population Survey, and to Kish (1965: chaps. 9
and 10).

A Telephone Interview Survey

The use of telephone interviewing for social surveys of the general
U.S. population has increased substantially in recent years, at least in
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part in response to the existing high penetration of telephones. With
about 93% of houscholds having telephones in their housing units,
telephone numbers provide an attractive sampling frame for many
surveys. In considering a telephone survey, it should nevertheless be
recognized that some 7% of households are not covered, and that these
households are more heavily concentrated among low-income house-
holds, households in which the head is nonwhite and under 35, and
households located in the South (Thornberry and Massey, 1978). In
cases in which the survey’s objectives require good representation of
these subgroups, a telephone sample may need to be augmented by
another sample—perhaps an area sample—in a dual frame design (see,
for instance, Groves and Lepkowski, 1982).

Given that a survey of the general population is to be conducted by
telephone, the question arises of what sampling frame to use for tele-
phone households. One obvious choice is the published telephone di-
rectories, but they prove to be inadequate because so many telephone
numbers are not listed. Over 20% of residential numbers are not
included in the directories, because (1) they are recent movers, (2) the
subscribers have paid to be unlisted, or (3) a clerical error was made in
the preparation of the directory. Recognizing the potential bias result-
ing from these missing elements, various modifications have been sug-
gested to sampling telephone numbers from directories, such as taking
the sampled telephone number and adding a constant to the last digit or
taking the number and substituting a random number for the last two
digits (see Frankel and Frankel, 1977). Such methods do not, however,
give each household a known and nonzero probability of selection, as
required for probability sampling; consequently, they may produce
biased estimates.

An alternative sampling frame is to take the set of all possible
telephone numbers. In the United States telephone numbers are com-
posed of ten digits in three parts, such as 301-555-1212, where the first
part is the area code, the second part is the central office code, and the
last four digits are the suffix. There are just over 100 area codes and over
30,000 central office codes (i.e., combinations of area and central office
codes) in operation. Within a central office code 10,000 suffixes are
available for use, but the majority of them are nonworking numbers and
nonresidential numbers for businesses, pay telephones, and the like.

One way of sampling residential telephone numbers from this sam-
pling frame would be to select an area code/ central office code combina-
tion at random from a list of such combinations (an up-to-date list of
these combinations is available from the Long Lines Department of
American Telephone and Telegraph [AT&T]), and then to select a
four-digit random number from 0000 to 9999 to constitute the suffix for
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the telephone number. This simple version of a random-digit dialing
(RDD) procedure gives complete coverage of all residential numbers,
but it suffers from the problem of many blanks (nonworking numbers)
and foreign elements (nonresidential numbers) on the sampling frame.
These blanks and foreign elements can of course simply be rejected, with
the remaining sample constituting a valid probability sample of the
residential numbers, but the procedure is costly because of the calls
needed to eliminate the nonresidential numbers: On average about five
telephone numbers need to be sampled to produce each residential
number.

An alternative RDD scheme designed to reduce the number of
unproductive calls is described by Waksberg (1978). This scheme views
the frame of telephone numbers as a set of banks of 100 numbers each,
the banks being defined by the area code/central office code combina-
tion and the first two digits of the suffix. Thus, within each area
code/central office code combination, there are 100 banks of 100
numbers, that is, suffixes 0000-0099, 0100-0199, 0200-0299, . . ., 9900-
9999. These banks are then used as PSUs in a two-stage design. The
banks are sampled with equal probability, and one number is selected at
random within the bank. If that number is not a residential number, the
bank is rejected. If it is a residential number, an interview is attempted
and additional random numbers are selected within the bank until a
specified number of households is drawn.

With the Waksberg scheme, the probability that the o™ bank is
selected and accepted is proportional to the proportion of residential
numbers it contains, B,/100, where B, is the number of residential
numbers in the bank. The probability of a specified residential number
being selected given that bank « is accepted is (b + 1)/B,,, where b is the
number of additional residential numbers taken if the first number is a
residential number. Thus the selection equation for residential number
Bin bank a is

B
o b+1 b+1
PEH* 100 " B, ~ 100

Thus the scheme is an epsem one if exactly b additional residential
numbers are selected per bank. In effect, the banks are PSUs sampled
with exact PPS, size being the number of residential numbers in the
PSU, and a fixed number of residential numbers is then taken in each
selected PSU.

As we have seen, the use of two-stage sampling generally leads to less
precise survey estimates than would a single-stage sample of the same
size; that is, the design effect is almost always greater than 1. Two-stage



89

sampling is then justified only when the economies associated with its
use enable a sufficient increase in sample size to outweigh this loss of
precision. The justification for the use of the Waksberg scheme comes
from the greater proportion of residential numbers that it produces.
With this scheme about two out of three numbers selected within the
sample clusters are residential numbers, as compared with only one in
five overall with the simple scheme described earlier.

The opportunities for stratification with telephone sampling are lim-
ited by the lack of information on good stratification factors. The frame
of area code/central office code combinations available from AT&T
provides information only on the vertical and horizontal coordinates of
each exchange—a geographical unit covering either a group of central
office codes or a single central office code—and the number of central
office codes each exchange contains. From this information the sample
can be stratified geographically (using exchange geographical coordi-
nates) and by the size of exchange (using the number of central office
codes covered by an exchange as an index of its size). Groves and Kahn
(1979) provided further details and described the use of this information
for implicit stratification, ordering the list of area code/central office
code combinations by the stratification factors and then taking a sys-
tematic sample from the ordered list.

Some telephone surveys collect data on households, in which case the
interviewer has to conduct the interview with a designated respondent or
any one of a set of such respondents. Other surveys, however, collect
data for specified individuals, often any adult, in which case the residen-
tial telephone number identifies a cluster of elements. This frame prob-
lem is often handled by selecting one eligible individual at random, with
an appropriate weighting adjustment in the analysis. One way to pro-
ceed is to use the Kish selection grid as described in Chapter 8, but some
researchers believe that the listing of eligible individuals along with their
sexes and relative ages at the start of the interview (as the technique
requires) is difficult for interviewers to handle and may give rise to a high
refusal rate. Consequently, Troldahl and Carter (1964) have developed a
technique that avoids the listing and requires interviewers to collect data
only on the number of eligible individuals and the number of eligible
males (or females) in the household. The interviewer then refers to a
table with the number of eligible individuals along one axis and the
number of eligible males along the other, and reads off the designated
respondent from the appropriate cell; the cell may, for instance, specify
that the “oldest man” is to be selected. As with the Kish selection grid,
there are several versions of the table with different specifications of who
is to be selected, and the tables are varied across the sample. With the
Troldahl-Carter technique there are four tables, each of which is used
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with equal frequency. Bryant (1975) has suggested a modification of the
technique to compensate for a shortage of men in the sample; her
modification halves the use of one of the tables that selects a higher
proportion of women. Although not unbiased, these alternative proce-
dures are widely used in practice. (See Czaja et al., 1982, for a recent
experimental comparison.)

Telephone surveys also face the frame problem of duplicate listings,
for a small proportion of households have more than one telephone line.
This problem can be handled by collecting information from each
sampled household in the survey on its number of telephone numbers,
and thenincorporating a factor inversely proportional to this number in
the weight for the sampled household or individual.

13. NONPROBABILITY SAMPLING

Although this paper has focused predominantly on probability sam-
pling, the widespread use of nonprobability sampling methodsmakes it
inappropriate to avoid mention of them entirely. This section discusses
various types of nonprobability sampling, including the widely used
technique of quota sampling.

The major strength of probability sampling is that the probability
selection mechanism permits the development of statistical theory to
examine the properties of sample estimators. Thus estimators with little
or no bias can be used, and estimates of the precision of sample estimates
can be made. The weakness of all nonprobability methods is that no
such theoretical development is possible; as a consequence, nonproba-
bility samples can be assessed only by subjective evaluation. Moreover,
even though experience may have shown that a nonprobability method
has worked well in the past, this provides no guarantee that it will
continue to do so. Nevertheless, despite its theoretical weakness, various
forms of nonprobability sampling are widely used in practice, mainly for
reasons of cost and convenience.

One type of nonprobability sampling is variously termed haphazard,
convenience, or accidental sampling. Here are some examples:

—volunteer subjects for studies;

—the patients of a given doctor;

—the children in a particular school;

—interviews conducted on a street corner;

—the respondents to a pull-out questionnaire included in a magazine;
—persons calling in response to a television request for opinions.
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Inview of the considerable risk of bias with such samples, it is dangerous
to attempt to use their results to make inferences about general
populations.

A second type of nonprobability sampling is known as judgment or
purposive sampling, or expert choice. In this case the sample is chosen
by an expert in the subject matter to be “representative,” for instance,
when an educational researcher chooses a selection of schools in a city to
give a cross section of school types. In practice, different experts would
rarely agree on what constitutes a “representative” sample, and in any
case a judgment sample is subject to a risk of bias of unknown
magnitude.

The concern about the bias of survey estimators from a judgment
sample—or any nonprobability sample—increases with sample size.
Consider the comparison of a sample estimator from ajudgment sample
and that from a probability sample of the same size. If the sample size is
very small, the variance of the probability sample estimator will be large,
so that in relative terms the bias of the judgment sample estimator may
be unimportant. However, as the sample size increases the variance of
the probability sample estimator decreases, while the bias of the judg-
ment sample estimator may change little. This reasoning provides a
justification for nonprobability samples when the sample size is small,
with a change to probability sampling for larger sample sizes. Thus, for
instance, if a researcher can conduct a study in only one or two cities, it is
probably better to select the cities by expert choice rather than to rely on
the vagaries of random chance, which could easily result in an odd
sample. If, however, the sample size is increased to 50 cities, then a
carefully stratified probability sample would almost certainly be
preferable.

A third type of nonprobability sampling is known as quota sampling.
This technique, of which there are many variants, is widely used by
market researchers on the grounds that it is less costly, is easier to ad-
minister, and can be executed more quickly than a comparable proba-
bility sample. The essence of the technique is that interviewers are given
quotas of different types of people with whom they are to conduct
interviews. For instance, one interviewer may be assigned quotas of six
men under 35 years old, five men 35 and older, five employed women,
and eight unemployed women. The aim of assigning quotas of inter-
views in these four groups is to avoid, or at least control, the selection
biases that would occur if the interviewers were given a free hand in their
choice of respondents. The quota controls may be interrelated, as in the
example just given, or they may be independent—for instance, specify-
ing quotas of ten men and thirteen women, eleven persons under 35 and
twelve persons 35 and older.
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The early stages of sampling for a national quota sample are often
carried out by probability methods in exactly the same way as for a
national probability sample. The two types of sample then part com-
pany only at the final stage of selecting individuals for interview. With a
probability sample, interviewers are required to interview specified
persons selected by a probability mechanism, while with a quota sample
they have only to complete their quotas, often with additional controls
on the times of day at which they make their calls and on the routes they
follow. Quota sample interviewers may, for instance, be instructed to
seek eligible respondents for their unfilled quotas by working around
sampled blocks in a defined way from specified starting points, inter-
viewing no more than one respondent per dwelling.

In passing, it is worth commenting on the use of the control in quota
sampling of no more than one respondent per dwelling. While this
control spreads the sample across different dwellings and avoids the
fieldwork problems associated with multiple interviews in a dwelling, it
leads to an underrepresentation of individuals from large dwellings
(Stephenson, 1979). Probability samples also, of course, often select
only one person from each sampled dwelling; in their case, however, the
use of weights inversely proportional to the selection probabilities in the
analysis serves to correct for this underrepresentation.

The quota groups created by the controls in quota sampling are often
likened to strata, since both represent population groups from which
distinct samples are taken. Although the resemblance is instructive, it
should not mask the major difference between the two types of group-
ing, namely that within strata, elements are selected by probability
methods, and within quota groups they are not. This difference leads to
different criteria for forming strata and quota groups. Since probability
sampling avoids the risks of selection biases, the choice of strata needs to
be concerned only with increasing the precision of survey estimators; as
seen earlier, gains in precision are achieved by forming strata that are
internally homogeneous in the survey variables. On the other hand, with.
quota sampling the dominant concern is to form groups in a way that
minimizes selection biases. Forming quota groups that are internally
homogeneous in the survey variables can be helpful for this purpose, but
the chief consideration is to form groups that are internally homogene-
ous in the availability of their members for interview or, alternatively
expressed, to form groups that differ from one another in their
members’ availability. This latter consideration led the National Opin-
ion Research Center at the University of Chicago to employ the four
quota groups cited earlier for the surveys based on “probability sam-
pling with quotas” that it conducted in the 1960s and 1970s, namely:
men under 35 (or under 30); men 35 and older (or 30 and older);
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employed women; and unemployed women (Sudman, 1966; Stephen-
son, 1979). These controls were particularly designed to yield appro-
priate representation of the hard-to-find population groups of young
men and unemployed women. A tight geographical control on inter-
viewers’ routes within sampled blocks with probability sampling with
quotas was deemed sufficient to provide the samples with satisfactory
racial and economic compositions.

Having chosen the quota groups, the interviewers’ quotas are set by
reference to data available on the population distribution across the
groups, often derived from the decennial census. The quotas may be
made more or less the same for all interviewers, being set according to
the overall distribution of the survey population across the groups, or
they may be varied to match the specific distributions in the sample
areas in which the interviewers are working. To the extent that the data
from which the quotas are determined are inaccurate (perhaps because
they are out of date), the distribution of the quota sample will not
conform to the true population distribution across the groups. This
situation may be contrasted with a probability design that is self-
correcting for such inaccuracies.

It is sometimes argued that quota sampling avoids the problem of
nonresponse. In effect, however, what a quota sample does is to substi-
tute an alternative respondent for an unavailable or unwilling respon-
dent. As a consequence, although a quota sample produces the required
distribution across the quota controls, it underrepresents persons who
are difficult to contact or who are reluctant to participate in the survey.
It is in fact more likely to underrepresent such persons than is a proba-
bility sample since, with the latter, interviewers are required to make
strenuous efforts to secure interviews with the designated sample
members.

Two main features explain the widespread use of quota sampling,
despite its theoretical weaknesses. One is the lack of the need for a
sampling frame for selecting respondents within sampled areas. The
other is the avoidance of the requirement that interviewers make call-
backs to contact specified respondents. With a quota sample, if an
eligible person is unavailable when the interviewer calls, the interviewer
simply proceeds to the next dwelling. Both features give simplicity and
enable a survey to be carried out much more quickly with quota than
with probability sampling. An associated factor is the lower cost of a
quota sample. The cost of a quota sample, however, depends on the
extent of the controls imposed: the less restrictive the controls, the
lower the cost but, on the other hand, the greater the risk of serious
selection biases.
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14. CONCLUDING REMARKS

Survey sampling is a highly specialized and developed component of
the survey process. There is a wide range of techniques available, and
numerous pitfalls to avoid. The sampling novice needs to proceed with
great caution, since it is all too easy for the utility of survey results to be
seriously marred by mistakes made in sample design. For this reason,
when embarking on a survey, the wisest course for a researcher with
limited sampling knowledge is to consult an experienced practicing
survey statistician.

There is a substantial body of both theoretical and practical literature
on survey sampling. For reasons of space this paper presents only a
broad overview of the subject, with the limited aim of enabling the
reader to understand and appreciate the uses of the range of available
techniques. Those readers requiring a more detailed treatment of the
subject are referred to one of the specialist texts. Those by Kish (1965),
Hansen et al. (1953), and Yates (1981) are particularly recommended for
their discussions of sampling practice, and those by Cochran (1977),
Sukhatme and Sukhatme (1970) and Murthy (1967) for their treatments
of sampling theory. The notation and terminclogy used here have been
made mostly consistent with that in Kish (1965) in order to facilitate
cross-reference with that text. The book by Deming (1960), which
advocates the wide use of replicated sampling, contains much good
practical advice. At aless advanced level, the books by Raj (1972), Levy
and Lemeshow (1980) and Sudman (1976) are useful. Stuart (1976) has
illustrated the basic ideas of sampling nonmathematically with a small
numerical example, and the chapters on sampling in Moser and Kalton
(1971) provide an introduction to the subject.
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