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Chapter 1

Ordinary Differential Equations
(ODE)

1.1 General

e Economic Dynamics is concerned with the movement of economic
variables over time.

e There two ways of treating time in economics: discrete-time analysis
and continuous-time analysis.

¢ Differential equations belong to continuous-time analysis, difference
equations to discrete-time analysis.

1.2 Categories

Ordinary Differential Equations (ODE)
Partial Differential Equations (PDE)

1.3 Examples

Y (%) = 5y*(0) + x
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Lf (dfY’
—+|—] =1
dx? dx

Pf Pf
oxdy  Ox2

1.4 Syllabus
1. ODE of seperable variables
2. First Order Linear ODE
3. Bernoulli ODE
4. Linear ODE of higher order
5. Systems of Linear ODE
6. Stability Theory - Phase Portraits

7. Optimal Control

1.5 Separable ODE

| Y (x) = A) - By(x))|

Examples

Y (x) = 5x* - y(x)
y'(x) = 5x% + y(x), this is NOT a separable ODE

Solution of the above equation is called any function which satisfies it.

Any additional relation of the form y(x,) = yo, satisfied by the solution,
is called initial condition

1.1 Exercise: Solve the equation: y'(x) = 5x>y(x), y(0) = 1.
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d d
Yy (x) = 5x%y(x) = d—i = 5x%y(x) = Y 5x2ax
y

d B3 .
:>f—y:f5x2dx :>1n|y(x)|:%+c = | y(x) = Ce™
y

Remark: This is a general solution. Actually it is an infinite set of solu-

tions.

To find a specific solution we must use the initial condition.

5x3

.03 —
y0)=1=1=y0)=Ces =1=C=|yx)=e 3

1.2 Exercise: Find a demand function with constant elasticity.

Solution:
dD dD d dD d
eD:—-B:k:—:k—p:f—:k &L
dp D D p D p

=InD+C, = klnp+ C, = |D(p) = Cp*

1.3 Exercise: The rate of change of a population is proportional to the
current value of the population. Find the population. (Malthus)

Solution:

W N> DN = jedt = [N =) [dt =

InN = kt + C = N(t) = e**C = N(t) = Ce

To calculate the constant C, we use the fact that initially the population is

equal to Np.

N(0) =Ny = Ny = Cef® = C = Ny = | N(t) = Noe
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Figure 1.3: k< O

1.4 Exercise: The rate of change of a population is given by the equation:

Yy =yt)(a-byt) ., ab>0

Find the population. (Verhulst 1841)

Remark: This is a generalization of Malthus equation. Now, the param-
eter k is not constant, but depending from the current value of the popula-
tion.

Solution: The equation is of separable variables and it becomes:

dy dy dy
dt y(a - by) y(a - by)

1 _1/a+ b/a
y(a — by) y a-by

f fl/a f b/a B
y(a - by) a-by

b
= —1n|y|+(—5) lnla by|+ Cl

and thus:
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and

1

Figure 1.4: Verhulst

and after some manipulations we get:

y(t) =

a
b+ Ke @

Finally, using the fact that y(0) = yo we get:

a

y(t) =

Yo

— = b) e«

a
b

Remark: lim y(t) = a
t—+0c0 b

This is an asymptotical stable equilibrium point

1.6 First Order Linear Differential Equations

Examples:
2x" + 9tx = 8t°

SOLUTION

a0y () + b()y(x) = y(x) |

5y + 6y = 8x?

2xy'(x) + 6x%y(x) = 8lnx
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e We solve the “homogeneous” equation: a(x)y’(x) + b(x)y(x) = 0.
We name the solution y,(x)

e We find a particular solution y,(x) of the equation: a(x)y’'(x) +
b(x)y(x) = y(x)

e The general solution is: ’ y(x) = yp(x) + yp(x)‘

1.5 Exercise: Solve the ODE: y'(x) + by(x) = 6

Solution: First, we solve the homogeneous equation.

Y () + By(x) = 0@—:— f—:—5fdx

= Iny| = —5x + C= yp(x) = ce™

We find now a particular solution. To achieve that we consider, for the time being,

that c is a function of x. Substituting ce > into the original equation we
get:

(ce™™) +5ce™® =6= e + c(-5e ) +5ce > =6

6
¢ =6e¥=c= f6e5" = geS"

. .. 6 _ 6
So, the particular solution is: y,(x) = 565"6 5x — =
Finally, the general solution is:

6
—5x
] + —_
y(x) = ce

1.6 Exercise: Solve the ODE: xy (x) + 4y(x) = x°
Solution: First, we solve the homogeneous equation:

dy
xy +4y = O=>x—:—4y=>

dx 4fdx
—4y X X

C
= Inlyl = —4In|x| + K= In(x)™* +InC= In|y| = In =
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C
= | Yn(x) = &

For the particular solution we have:

X(E)'+£.4:x5:>x.M+4.£:xa
x* x* x8 x*
x9
=C=x=C= xsdng
P x* 9

5
X

So, the general solution is: | y(x) = — + —
X 9

1.7 Exercise: We consider that the capital flow, K(t), follows the next
equation:
dK(t)
dt

where I(t) is the investment flow and O < a < 1 a use coefficient. If
I(t) = Iy, find K(t) and K(co).

= I(t) - aK(t)

Solution:

dK —
i +aK(t) —IO

dK
Homogeneous part: rr + aK(t) =0

dK _
éf?:—afdtéKh(t):Ce at

Particular Solution: We treat C as a function: C = C(t)

I
(Ce™ ™y +aCe™™ =1, = C' =Ipe" = C= f Le“dt= —e®
a

I
and thus y, = —e*e ™ =
a

.. _ I
=2 The general solution is | K(t) = ce™™ + 2
a a

I
By using the initial condition K(0) = K, we get: K, = K(0) = ce® + 2
a

I
c:KO—ZO
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I I
And hence the final solution is: | K(t) = (KO - —0) e 2
a a

Limit Behavior

K= (Ko 2)om s B g B
a a a a
1.8 Exercise: The price of a good depends from the time, p(t). The
demand function is D(t) = a + bp(t),b < 0. The supply function is
S(t) = y + 6p(t), 6 > 0. Considering that the rate of change of the price
is proportional of the current available quantity of the good, find p(t) and

p(c0).

dp(t
Solution: The rate of change of the price is pt) = A(D-S), A > 0.
o . . .| dp(t) 3
By substituting we get the differential equation: ar Ab = 6)p(t) = Ala—vy)
dp(t
Homogeneous part: % —A(b—-6)p(t) =0

:>dp_(t):,'1(b_5)dt:>fdp_(t):ﬂ(b_é)fdt:>
p p
= Inp(t) = A(b — 6)t + K = py(t) = C- e 70Dt

Particular Solution: We consider, for the time being, that C is a func-
tion of t.

(C- e‘ﬁ(‘s_b)t)/ - A(b - 6)C- e o-bit — Ala-1vy)

=>C=Aa-y) e P'=cC= S Y g-ns-b

6—b
a-y
= t)= ——
pre(t) 5—b
—A6— a-vy
— p(f)= C.e oDt L ATV
p(t) 5-b
Initial condition: p(0) = po
a-—vy a-vy
—C+ = C=py— —
Po 5—b Po 5§—b

a—-y Cars_ -
0 = [ S| n, 82
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_a7y
p(e) = ~—

1.7 Bernoulli’s Differential Equation

a0y (x) + b()y(x) = y(x)y*(x)]

Solution:

z(x) = y' (%)

1.9 Exercise: Solve the equation: y'(x) + y(x) = y*(x)

1
Solution: We set z(x) = y' 2(x) = z(x) = y '(x) = — = |y(x) = ﬁ :

y(x)
1Yy 1 1 1'-z—2-1 1 1
+ = = +-===>|-2Z+z=1
(z(x)) z(x)  Z%(x) z2 z z2
which is a solvable linear differential equation of first order
’z(x): 1+C~ex‘:>y(x): ;
1+C-e*

1.10 The Solow Model We consider the production function Q = K*LP,
dK . dL .

a + b = 1 and the rates of change: rri K = sQ, i L = AL,

1 > s, A > 0. Study the time evolution of the quantity k = K/L.

Solution: First we form a differential equation.

o (K) _ KL-KL sQL-KAL sK°L'"°L-KAL sK®L'™°L

L L2 L2 L2 L
L2

K K -
=S -AT = fe + flkc = sk

This is a Bernoulli’s equation. We set and we get ’ z+(1-a)jdz=s(1-a) ‘

The final solution is:




Chapter 2

Linear Differential Equations of
Higher Order with Constant
Coeflicients

2.1 General

Ay (X) + an 1y V(0 + -+ Y () + doy(0) = g(x)

Example: 5y”” + 6y — 7y’ — 8y +9y =5x>+6

Solution

Y(x) = yn(x) + yp(x)

2.2 The Homogeneous Solution

We form the characteristic algebraic equation:

a M+ e AV A +ag=0

and we solve it.

Case I: If the roots are different real numbers, r;, s, ..., ry, then:
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Yn(x) = cie™* + e + -+ + cpe™™

Case II: If the roots are equal real numbers, r; = r, = --- = r, = r, then:

X) = c €™ + coxe™ + cgx?e™ + - + e xV le™
Yn 1 2 3 n

Case III: If two roots are complex numbers, r; = a + bi,r, = a — bi,
then:

Yn(x) = - -+ + €™(c; sin(bx) + ¢, cos(bx)) + - - -

Case IV: If we have many roots of different kinds then yy(x) consists from
different sums of the the above type.

Examples

roots: 1,2,-3,-4,-7, 2

Yn(x) = c1€° + ™ + cze™ + cue Vax

X 4 cseT™ + e

roots: 1,1,1,1,1

Yn(x) = c1€° + coxe® + csxPe” + cuxe” + csxte”

roots: 2,3,4,4,6+21,6-21

Yn(x) = c1e® + e + cze™ + cuxe®™ + e®(cs sin(2x) + ¢ cos(2x))

2.1 Exercise: The risk, accordingly to Arrow-Pratt is given by the rela-
tion r(x) = —u"(x)/u'(x), where u(x) a utility function. Find u(x) which
gives r(x) = 1.

Solution:
u 144 ’ 144 ’
-——=1l1=>u"=-u=>u"+u =0

The characteristic equation is: A%+ A = O withroots A = Oand A = —1.

So, the solution is:

u(x) =ce®™ +ce™ =c; + e
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2.3 The Particular Solution

There are two methods

e The Lagrange’s method

e The method of the undetermined coefficients

THE METHOD OF THE UNDETERMINED COEFFICIENTS

We follow the next table:

’ g(x) H Particular solution ‘
An n-degree
polynomial p,,(x) AX  + A XV -+ Alx+ Ay
e™pn(x) eX(ApX" + Ap X+ + Alx + Ap)
e pn(x) sin(bx) e™(ApX" + - - - + Ap) sin(bx)+
or e“p(x)cos(bx) || +e*(B,x" + - - + By) cos(bx)

2.2 Exercise: Solve the ODE: y""(x) = 5x.

Solution: The homogeneous solution

MA=0=>74=0,0,0,0=

= yp(x) = 1€ + coxe®™ + c5x?e™ + cyx’e®™ =

= yn(x) = ¢ + cox + c3x? + e x®

The particular solution

We set y,(x) = Ax + B

= (Ax + B)”” = bx = 0 = 5x a contradiction

We set yp(x) = Ax*> + Bx+ C

= (Ax? + Bx + C)"” = 5x = 0 = 5x a contradiction

19
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Finally, we set y,(x) = Ax® + Bx* + Cx®* + Dx* + E
= (AX®+Bx*+ -y =bx = 120Ax+ B=5x = A=1/24, B=0
Up(X) = 5;x° + 0x* + Cx® + Dx* + E and finally:

1
Y(x) = €1 + Cox + 3% + cux® + ﬂx‘r’

2.3 Exercise: Solve the ODE: y"’(x) + 9y(x) = sin 7x.

Solution: The homogeneous solution

A+9=0=210, =37, =-3i =

= yn(x) = e®*(c; sin 3x + ¢, cos 3x)

= yYn(x) = ¢; sin 3x + ¢, cos 3x

The particular solution

We set y,(x) = Ap sin 7x + By cos 7x
= y;)(x) =Ay-7-cos7x—By-7-8in7x
= y;’(x) =—Ap-49-sin7x — By - 49 -cos 7x

By substitution we get:

—49A, sin 7x — 49B, cos 7x + 9A, sin 7x + 9B, cos 7x = sin 7x

—49A, + 94, =1 }:) Ay = -5

1 .
—49B, + 9B, = 0 By =0 } = yp(x) = ~720 S0 7x

and finally:

) 1 .
yY(x) = ¢ sin 3x + ¢, cos 3x — 10 sin 7x




Chapter 3

Calculus of Variations

3.1 The Euler Equation
max or minV[y®)] = [’ Flt.y(0).y'(t)]dt
when yO)=A , yM=2
A, T, Z € R given

Theorem. (The First Order Conditions) The stationary “points”, y*(t)
satisfy the Euler equation:

OF d (oF)\ _
gy dt\oy)

Theorem. (The Second Order Conditions) If the matrix:

( Fy’y’ Fy’y )
For Py )y

is positive semidefinite then y*(t) is a local minimum. If it is negative
semidefinite then y*(t) is a local maximum.

3.1 Exercise: Solve the problem:

2
min f [12ty(t) + (Y (t)*]dt
0

when y(0) = 0 and y(2) = 8.
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Solution: First Order Conditions.
We set F(t,y,y) = 12ty + (y)>.
The Euler equation is:

oF d ( oF

oy dt\oy

- [J@=

Solution of the ODE.

d
): 012t - Et(zy’) =0>12t-2y" =0=>

The homogeneous part, y’' =0=>A>=0=>4, =74, =0
=  yp(t) = ;€% + cpte’ = c; + et
The particular solution, y,(t) = At> = A=1= y,(t) = 3

Sy =a+at+t’, y0)=0,y?2)=8=|y ) =t

Second Order Conditions.

(Fy,y, Fy,y) _(2 o)

Fur  Fo Jyooypp 1O O RS
the eigenvalues of this matrix are 2 and O and thus the matrix is positive

semidefinite. Hence, the final solution is

y'(t) =t
y(t) V(y(t))
4t 160
gant 246.63
t 134.4
\/\/2060.8t +0.04-0.2 +o0
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3.2 Exercise: Solve the problem:
min or max f (3x' — tx'?)dt
1

when x(1) = 0 and x(e) = 1.

Solution: First Order Conditions.
We set F(t, x, x') = 3x’ — tx'2.
The Euler equation is:

oF _d (o 0= d(3 2tx') = 0 = 3 — 2txX’

—_ = B — — = —_ = C

ox dt\ox’ dt 0
Solution of the ODE.

/

Seperable variables, ~ x’ = < and integrating we get:
=5 x()=cInt+c

The constants of integration satisfy the pair of equations:

O=clnl+¢c , l=clne+c

= Clzl ,C2:O

Second Order Conditions.
( Fx’x' Fx’x ) _ ( —2t O )
F,. Fy (D= (0) O O

The eigenvalues of this matrix are —2t and O and since 1 < t < e the
matrix is negative semidefinite. Hence, we have maximum.

3.3 Exercise: A firm has received an order for B units of product to be
delivered by time T.

o The production rate is equal to the rate of change of inventory.

o The unit production cost is proportional to the production rate.
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o The unit cost of holding inventory is constant.

We are seeking a production schedule for filling this order at minimum
cost.

Solution: By x(t) we denote the inventory.
Total Cost=Production Cost + Holding Cost
Production rate=x'(t)

Unit production cost=c; x’(t),

Unit holding cost=c,x(t)

ci,c >0

The total cost at any moment t=c,[x'(t)]? + cx(t)

T
Total Cost :f [e1[X (D)) + cox(t)]dt
0

Furthermore, x(0) = 0 and x(T) = B.

So, we have the problem:

T
min f [e1[X (D)) + cox(t)]dt
0

s.t. x(0)=0 , x(T)=B

First Order Conditions.
We set F(t, x, X') = ¢;(xX')? + cox.
The Euler equation is:

oF d (oF 3
ox dt\ox'|

d
=c——2cxX)=0=
2 dt( 1X")

= 2c,x" = ¢y
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Co

2+ It + k
e, 1 2

= x(t) =

Using the initial conditions: x(0) = 0, x(T) = B, we get:

B
x*(t) = 4C—2t(t—T)+¥t, 0<t<T
(&]

Second Order Conditions.

( Fx/xr Fx’x ) _ ( 2C1 0 )
Foo Fao [ ipero 0 0

The eigenvalues of this matrix are 2¢; and O and since ¢; > O the matrix is
positive semidefinite.

Hence, we have minimum.

3.2 The Multidimensional Case

X(t) a vector of n state variables

The Euler Equation:

d
VF - —VzF =0
dt

3.4 Exercise: Find the stationary point for:
%
f [()* + (y')* + 2xyldt
(0]

x(0)=0, x(m/2)=1
y(0) =0, y(m/2)=-1
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Solution: Successively we have

VF = (2y.2x), ViF = (2x,2y) =

d
= —V:F=2x",2¢y") =
pTAL: ( y’)

d
VF-—ViF=0&2y-2x" =0, 2x-2y"=0

1717

>x"-x=0=s*-1=0=>s=1,-1,i,—i

x(t) = cie' + cpe t + c3cost+ ¢y sint

y(t) = x"(t) = c;e' + cpe ' —czcost —cysint

The boundary conditions will give: ¢; =c; =c3=0,¢, =1, =

x*(t) =sint , y'(t)=—sint

3.5 Exercise: (Ramsey, F.P., 1928. A mathematical theory of saving, Eco-
nomic Journal, pp 543-549. (A simplified version)

Consider an one-sector economy in which a single homogeneous good is
produced by two factors of production, labor and capital.

L(t) and K(t) be the states of labor and capital over time.
The next relations hold:
e Consumption, C(t) = Q(L(t), K(t)) — S(t) = Q(L,K) — S
dK
Savings, S(t) = —
e Savings, S(t) I
e Utility function, U = U(C(t))

e Disutility of work, V = V(L(t))

Study the problem.



Dyn Maths 27

Total Utility: t
J = f [U(C(t) — V(L(t))]dt =

lo

t

= f 1[U(Q(L,K)—K)—V(L)]dt: f I(L, K, K)dt
to

to

Euler’s equations:

w-iv;[:o:( aI/aL) d(al/aL):(o)

dt OI/OK |  dt\ oI/oK 0
ol ol d (ol
=>|—=0land| — = — | —
oL oK dt\oK
Calculations:

oI _dUAC 9V _JUIQ oV

oL  O0COL oL OCOoL oL

ol U AC _ dU 4Q
0K OdCOK oC oK

ol dUIC 8U( 1
0K dCoK dC
UoQ oV UdQ d (dU
_— = _— = — — —1
Zaca oL M Goak dt(aC( ))
Solving, we get:
oV da(du
0 _ % o9 _ _ (5
oL ~— dU ’ oK au
aC C

Rate of wages= ( marginal disutility of labor)/(marginal utility of con-
sumption)

Rate of interest= (-the rate of change of the marginal utility of consump-
tion)/(marginal utility of consumption)
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Chapter 4

Systems of Linear Differential
Equations

4.1 The Description

X1 (t) = anx (t) + ajexa(t) + -+ - + appXxa(t)

Jo(t) = ag1x1(t) + agexa(t) + -+ - + agpXn(t)

X3(t) = ag1x(t) + azexa(t) + -+ - + agpxp(t)

Xn(t) = anlxl(t) + an2x2(t) i annxn(t)
or shortly

X' (t) = AX(t)

A the coeflicients matrix.

X(t) = (x1(b), x2(0), . . ., x,(t))T the state vector.

Examples:

X' (t) = 5x(t) — Ty(t) r( x(t) ) :A( x(t) ) A :( 5 -7
Y (1) = 3x() + 2y(1) y(®) y@® 3 2
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4.2 The Solution Method

We find the eigenvalues of A: ry, 1o, ..., r, and the corresponding eigen-
vectors: Dy, Dy, . . ., Wy.

We have the next cases:

Casel: Ifry £, #--- #1,, € R, then:

’)?(t) = c,e"'iD; + ety + - - + ce™tiD,

Case II: If for some eigenvalues -1 =, =--- =1, =r---, then:

X(t) =+ + cre™iD; + cote™ iy + -+ cut" e, + - -

Case III: Assume that A has a pair of complex eigenvalues a + ib and
corresponding eigenvalues i + it0. These eigenvalues correspond to the
part of the solution....

’)?(t) = ...+ e%cos(bt)(c,1i + c3iD) — e“sin(bt)(cyii + ¢, D) + - - - ‘

Conclusions

e We have closed forms of solutions. (Complete Theory)
e Negative real parts of the eigenvalues imply absolute stability.

e The above theory does not work in practise.

4.1 Exercise: Solve the system of ODE: x'(t) = —y(t), y'(t) = x(¢).
Solution: The matrix expression of the system is:

XY (0 -1 X

y) {1 0o )\y
We have to find the eigenvalues and the eigenvectors of the matrix.

Eigenvalues. |[A - Al =0 =
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(2 2)(2

‘—ﬁ -1

=0=

L A =02 +1=0=2>0, =i Ay=-i

Eigenvectors , =1

am()-(e)= (3 S5 )-(8)-
T memw=()-(V)l

i). .
( 1 ) is the so-called basic eigenvector. Furthermore,

i\_(0O +i ) _ + i
1151 | o |=0+io
So, Finally:

) el
—e%tsin(1 - t) (cz( (1) )+ cl( (1) ))

x(t) = k; sint + Iy cost

or

y(t) = kjsint + I, cost

4.2 Exercise: Solve, as a system, the ODE:

ay”(x) + by (x) + cy(x) = 0

Solution: We transform the ODE to a system of differential equations.

We define and we have:
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Figure 4.1: An orbit

Figure 4.2: A trajectory of the phase space
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We construct the system:
2 b, c b c
—— — — __Z_ p—
( / ): ay ay = a ay =
y Y z
, b c

=) e )

v 1 0 y

To solve the system we have to find the eigenvalues of A.

The eigenvalues are the roots of the equation:

b
:O:>—ﬁ+ﬁ2+£:0:>
a a

a

_s_ﬂ _c
1 -

|A—ﬂI|=O:/‘

SaP+bA+c=0

This is the characteristic equation, appeared in the solution of the linear
differential equations.

4.3 Exercise: Solve, the system:
3x"(t) = 2y'(t) — y(t)

Y1) = 2x'(t) + x(t)

Solution: This is not in the typical form.
To bring it in a typical form we use the relations |{w = x’ |,|s = Y’ |.

The original system becomes: v =3%573Y

4

sS=2w+x

By introducing the new state vectot (w, s, x, y)* we get:

LR e §
o = N O
— O Owlv
o O~ O
« X »n E

c =®
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The eigenvalues of this matrix are:

V3 V3
- 1 9 1 9 - b -
3 3
The corresponding eigenvectors are:
2+v3 2-v3
1 1/3 3 3
-1 1 _3 RE
3 3
-1 1/3 _3+23 _3-2v3
3 3
1 1 1 1
Thus, the final solution is:
2+v3 2-v3
w 1 1/3 == 3
s -1 1 _3 N3
» ; B 3 _\5 3
= Ce +cye +cze 3 +cge 3
x -1 1/3 _3+2V3 _3-23
3 3
y 1 1 1 1




Chapter 5

General Theory of Differential

Equations

Any differential equation can be written as:

F:U— R" UCRXR" open

X, (t)

Xp(t)

e xX(t) = is the state vector.

X (1)
e R is called the time-space.

e R" is called the phase-space.

e For n = 1 we have a single or an ordinary differential equation.

e For n # 1 we have a system of differential equations.

o If X’ = F(x) then we have an autonomous differential equation.

e Solution of a differential equation is a function ® : R — R", ®(t) =(¢(t)

such that @' (t) = F(t, ®(t))

e A point (ty, Xo) is called an initial condition for the solution @ if ®(t,) =

Xo.
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1)When do we have a solution?
QUESTIONS | 2)How many solutions do we have?
3)How do we find the solutions?

EXISTENCE THEOREM

PEANO’S THEOREM. Let X’ = F(t,x) be a differential
equation and (o, Xp) an initial condition. If F : U — R" is
continuous, then there is AT LEAST ONE solution ®(t) such
that ®(ty) = Xo.

UNIQUENESS THEOREM

Let x” = F(t, x) be a differential equation and (ty, Xo) an initial
oF
condition. If Ha—H < L < 1, then there is ONE AND ONLY
X
ONE solution ®(t), such that ®(t,) = x,.

5.1 Exercise: Solve, the equation: x'(t) = Vx(t) at (0, 0).

Solution: Successively we have:
dx

X (1) = x(t) = x'(1) = x'3(t) = — = X3 =

=dt with x#0

5 &

zfd—f‘:fdt:x(t):%\/gi/(uc)z
X3 3V3

To calculate ¢ we must use the initial condition (0, 0). But x # 0, so, this
condition cannot be used and ¢ cannot be determined.

Hence, we have an infinite number of solutions passing through the point
(0,0). ITIS A POINT WITHOUT UNIQUENESS.



Chapter 6

One Dimension Phase Portraits

Example: Let us have the equation: y/(t) = y(t) — 2 = y(t) = ce' + 2
But, y(0) = yo, and thus

() = (Yo — 2)e’ + 2]

We are endowed with two kinds of information: QUANTITATIVE and
QUALITATIVE

QUANTITATIVE INFORMATION

I can calculate y(t) at any time instant for any initial condition yj.

y(5) = (Yo — 2)e® + 2

QUALITATIVE INFORMATION

I can calculate either constant solutions, or where the solution is increasing
or decreasing.

CONSTANT SOLUTIONS

yt)=k=(yo—2)e'+2=k=>y,—-2=0

Y =2>yt) =2
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Figure 6.1: Trajectories

INCREASING OR DECREASING SOLUTIONS
Let t; > to. Ify0—2 >0 Yo > 2 then:

(Yo — 2)e" +2 > (Yo — 2)e” +2 = y(ty) > y(tz)

INCREASING

Ifyo—2 <0 & yo < 2 then:
(Yo —2)e" +2 < (yo — 2)e” + 2 = y(ty) < y(tz)

DECREASING

Uo = 2 | CONSTANT SOLUTION, y(t) = 2
Yo > 2 INCREASING SOLUTION
Uo<2| DECREASING SOLUTION

CLAIM: I can get the qualitative information WITHOUT SOLVING
THE EQUATION

CONSTANT SOLUTION: y/(£) =0 = y() -2 =0 = yo = 2
INCREASING SOLUTION: y/(1) > 0 = y(t) =2 > 0 = yo > 2
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Figure 6.2: Phase Space

Figure 6.3: Classical Phase Space

DECREASING SOLUTION: y/(t) < 0= y(t) —2 < 0= yop < 2
6.1 One Dimension Phase Portrait Terminology

X)) =f(t,x(t) , f:IXODCRXR-—->R

’ ® The Phase Space ‘

Phase Space = The projection of the trajectories onto the y-axis
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BASIC DEFINITIONS

The projections of the trajectories are called orbits. We denote them by ¢(t). ‘

Let us have the differential equation x” = f(x). A point of the phase space, xo € ©
is called equilibrium point if and only if f(xg) = O

An equilibrium point xq is called stable, if for each neighbourhood U of x,
we can find a neighbourhood V' C U, such that any orbit starting into V remains into U.

’ An equilibrium point x, is called unstable if it is not stable.

’ An equilibrium point x; is called asymptotical stable if it is stable and lim;_, ., x(t) = xp. ‘

We call basin of attraction or region of attraction of an asymptotical
stable equilibrium point xp, all the points which are attracted by xo.

An unstable equilibrium point X, is called unstable repeller if it is asymptotical stable
for the equation x' = —f(x).

An unstable equilibrium point X, is called shunt if any orbit at his lefts, approahes it
and any orbit, at his rights, goes away from it and vice versa.

An orbit ¢(t) is called periodic if we can find a time instant T such that: a(t + T) = ¢(t). ‘

6.2 Theorems
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Theorem 6.1 The Sign Criterion. Let xo be an equilibrium point of X' =
Sf(x). Let (a, xo) and (xy, b) a "left” and a "right” interval. The next table
is valid:

The sign of f | The sign of f
at (a, xp) at (xp, b) RESULT
+ - Xp Is as. stable
- + Xo is repeller
- - Xo Is shunt
+ + Xo Is shunt

Theorem 6.2 The Derivative Criterion. Let xy be an equilibrium point

of X' = f(x).
o If f'(xo) < O then xy is asymptotical stable.

o If f'(xo) > O then xy is unstable.

How do we draw an one dimensional Phase Portrait?

We have the differential equation y’ = f(y)
1. We find the equilibrium points, by solving the equation f(y) = O.
2. If we have an analytic expression for f, we determine the sign of f.

3. If we have a “theoretical” expression for f we use the “First Deriva-
tive Criterion”

4. We draw the phase portrait.

6.1 Exercise: Draw the phase portrait of the equation: Yy = y(2 — y).

Solution: Equilibrium Points: y(2 - y) = 0 = y = 0, y = 2. For their
stability analysis see the figure below.
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: e—
Ans Lol le as. Stoble

Basin of Attraction: (0, +00)

6.2 Exercise: Draw the phase portrait of the equation: y = e¥(y — y°).

(This ODE is unsolvable)

Solution: Equilibrium Points:

dy-y)=0=>y-y’=0=>yy-Hy+1)=0

Table of signs, as in the figure below.
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g 0 1

ST ]

L
L’VAQ e T e
“—*i&\ - Al S S
™y a2y

ok O i

b8 takle unstable  as stable

Basins of Attraction: (—o0, 0) to —1 and (0, +c0) to 1.

y -1
y?+1

6.3 Exercise: Find the equilibrium points of the equation y =

and characterize them.

Solution: Equilibrium Points:

y2_1—0:> P-1=0=>y =1 =-1
y2+1_ y - yl_ ’ y2_
P =221 - M L =15 0 ) = —1 <0
y - y2+1 _(y2+1)2 yl - ’ y2 -

=, y; = 1, unstable, y, = —1, asymptotical stable.

6.4 Exercise: Find the equilibrium points of the equation ay + by = c
and characterize them.

Solution: The equation is written: y' = —(b/a)y+c/a. Equilibrium point:

b c . C
——y+—=0=>y = —
a a b
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REMARK The particular solutionis y, = A= a(A) + bA=c =y, =
¢/b = y* (equal to the eq. point)

Stability

( b c)’ b :>{ b/a> 0 as. stability

"2V %) T7a T | b/a<0 instability

6.5 Exercise: The price of a good depends from the time, p(t). The
demand function is D(t) = a + bp(t),b < 0. The supply function is
S(t) = y+ 6p(t), 6 > 0. Considering that the rate of change of the
price is proportional of the current available quantity of the good, find
the equilibrium point and study its stability.

p(t)

Solution: The rate of change of the price is =AD-S), A>0.

dp(t
By substituting we get the differential equation: % —A(b = 6)p(t) = Ala —vy)

=4

p = Ab-6)p+Aa-y)
Equilibrium point: A(b - 6)p+ Ala—-vy) =0=

Stability of the equilibrium point
Ab-86p+Ala-y) =Ab-6)<0 =

= p"* asymptotical stable

Remark: By solving the equation we get the information of how much
exactly the price is, at any time instant. By using phase space analysis we
do not know the value of the price but its limit behaviour. This is achieved
WITHOUT solving the equation.

6.6 Exercise: Find the equilibrium points of the equation y + Ay = sy®
and characterize them.

Solution: We rewrite the equation as follows: y’ = sy® — Ay.

Equilibrium Points.

sy*—Ay=0=
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y*:O’y: -

Stability We shall use the Derivative Criterion f” = say®! — /

O A >0 as. stability
SOy === { A< 0 instability

We work now with the other equilibrium point:

a—1
S ) = Sa[ a{/g) -A=al-A=>

A<0,a< 1 instability
=41 A>0,a< 1 as. stability
A>0,a>1 Iinstability

6.7 The Solow Model We consider the production function @ = K°LP,
dK : dL ,

a + b = 1 and the rates of change: rr = K = sQ, Fr =L = JL,

1 > s, 71> 0. Characterize the equilibrium point.

Solution: We form, as in previous exercise, the equation: k + Ak = sk.

Equilibrium Point: sk® — Ak = 0 = k* = a_{/ﬁ
s

Stability: Since 7 > 0 and O < a < 1, we have asymptotic stability (last
exercise).



Chapter 7

Two Dimensions Phase Spaces

7.1 Definitions

—

Definition. Let us have the differential equation: X' = F(t,X) with F :
Ix® c RxR? — R2. The set @ is called the Phase Space.

Equivalently, We have the system of ODE:
X' () = f(x(b), y(1)
Y () = g(x(®), y(t))

Phase Space= THE PROJECTION of the trajectories (solutions) x(t), y(t)
to the plane xy. & We eliminate the t-parameter, the time. The projections
are called ORBITS.
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EXAMPLE: We have the system: x’ = 0.02x — y, Y’ = 4x — 0.03y. The
trajectories-solutions space is:

Figure 7.1: The Trajectories

The Phase space (the projection of the trajectories) is:

6

Figure 7.2: The Phase Space

Both of them together:
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Figure 7.3: Trajectories-Orbits

Remarks:

I.
2.

7.2

Trajectories of different kind may correspond to the same orbit.

We can draw adequate phase spaces only for two dimensions.

. Phase Spaces can be drawn WITHOUT SOLVING THE EQUA-

TION

. The phase space provides only qualitative properties, NEVER quan-

titative.

Phase Space Entities

. The Orbits
. The Circles or Closed Orbits

The Invariant Sets

. The Equilibrium Points
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The Orbits

Definition 7.1 Orbits are the projections of the trajectories onto the xy-
plane.

We denote them by C : x = x(t), y = y(t) or @(t) = (x(t), y(t))

To indicate that an orbit passes through the point (xp, yo) at the time instant
tp, We write:

C: xo = x(t), Yo = Y(to) or e(ty) = (X0, Yo)

Theorem 7.1 There is only ONE orbit passing from a given point.

Theorem 7.2 Two orbits cannot be intersected.
A Circle or a Closed Orbit

Definition 7.2 A circle is an orbit which meets itself. Or in other words,
e(t + T) = ¢(t), for some T

Invariant Set

Definition 7.3 A subset M of the phase space, is called invariant if every
orbit which starts inside M remains into M.

Equilibrium Points

Definition 7.4 A point (xy, yo) is called equilibrium point if and only if
the set {(xy, Yo)} is invariant.

MAIN THEOREM

Theorem 7.3 Let us have the system:
xX'=fey . Y =gxy
A point (xo, Yo) is equilibrium point if and only if
J(%o.Y0) =0 . g(x0.yo) =0

Definition 7.5 An equilibrium point is called isolated if we can find a
neighbourhood of it which contains no other equilibrium points.
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7.3 Different Kinds of Equilibrium Points

A Node. The orbits go “inside” the eq. point

i

A Saddle. The orbits “approach” the eq. point.




52 S. Kotsios - Dynamical Mathematics

7.4 Stability

An equilibrium point (xp, yo) is called stable, if for each neighborhood U of (xo, yo),
we can find a neighborhood V C U, such that any orbit starting into V remains into U.

An equilibrium point (xp, Yyo) is called unstable if it is not stable.

An equilibrium point is called locally asymptotical stable if it is stable
and there is a neighborhood of it V, with the property: “any orbit starting into V,
approaches the eq.point.”

We call basin of attraction or region of attraction of an asymptotical stable equilibrium
point, the set of all the points which are attracted by it.

An equilibrium point is called globally asymptotical stable if it is asymptotical stable and
the region of attraction is the whole phase space.




Chapter 8

Basic tools for Studying a Phase
Space

8.1 Summary

[

The Tangent Element - Vector Fields

The Isoclines and the Sign (The most popular)
The ”x and y” Differential Equations

The First Integrals

The Polar Coordinates

The Nabla Technique for Inavariant Sets
Poincare-Bendixson Theorem

Linear Systems (Complete Results)

A S T L

Linearization of Nonlinear Systems

—
=)

. Lyapunov Functions (Advance)

8.2 The Tangent Element - The Vector Fields

Basic Remark: We have the system:

x' = f(x,y)
Yy =9gxy)
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then

dy dy dt gt dy 9g(x,y)
___.__a)?:}__
dx dt dx dx  f(x.y)

At any point (xp, Yyo) we can calculate the slope of the tangent of the orbit,
WITHOUT SOLVING THE SYSTEM.

TANGENT ELEMENT - TANGENT VECTOR

At any point we draw either a VECTOR or a line segment, with slope equal
to g(xo, Yo)/f(x0, Yyo) and length arbitrary small. These vectors will give
us a FIRST IMPRESSION of the phase portrait.

It is an elementary, initial method relied on graphs.

EXAMPLE: X' =y, y = —x

EXAMPLE: X’ = 2x, y = -2y
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EXAMPLE: X' =x(4 -x-y), Yy =yl6 -y - 3x)

EXAMPLE: x’' = ysinx, y’
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8.3 Isoclines

Definition 8.1 A j-isocline is a line of the phase space, at each point of
which, the passing orbit has slope equal to .

gxy) _
Sxy)

A-isocline ©

Definition 8.2 A vertical isocline is an isocline with slope equal to +oo.
The orbits cross it vertically.

Definition 8.3 A horizontal isocline is an isocline with slope equal to O.
The orbits cross it horizontally.

Vertical isocline & f(x, y) = 0.
Horizontal isocline & g(x, y) = O.

ATTENTION: The isoclines are NOT orbits. THEY DO NOT BELONG
TO THE PHASE SPACE. They help us to draw the phase space.



Dyn Maths 57

X =x+y-1

EXAMPLE: ~_ _©" 0,

The equilibrium point is (g g) Horizontal isocline: 5x + 4y — 20 = 0.
Vertical isocline: x +y—1=0

They separate the phase portrait in four regions.

8.4 The Sign

At each region we calculate the sign of the functions f(x, y), g(x, y). This
is achieved by substituting arbitrary points. The sign of the above functions
determine the sign of the derivatives x’, y’ and thus the monotony of the
solutions x(t), y(t).

We have the next cases:

o If, somewhere, f > 0 = x’ > 0 = x(t) increasing.
We denote it by —.

o If, somewhere, f < 0 = x’ < 0 = x(t) decreasing.
We denote it by «—.

o If, somewhere, g > 0 = y’ > 0 = y(t) increasing.
We denote it by T.

o If, somewhere, g < 0 = y’ < 0 = y(t) decreasing.
We denote it by |.
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. X =-x+ty+l
EXAMPLE: Y = 5x + 4y — 20
Here, f(x,y) = —x+y+ 1, g(x, y) = 5x + 4y — 20

Region I: Let us take the point (3, 4). We see, f(3,4) =2 > 0 = — and
g3,4)=11>0=1.

Region II: Let us take the point (6, 2). We see, f(6,2) = -3 < 0 = «—
and g(6,2) =18 > 0= 1.

Region III: Let us take the point (3, —4). We see, f(3,-4) = -6 < 0=
«—and g(3,-4)=-21<0=|.

Region I'V: Let us take the point (-2, 2). We see, f(-2,2) =5> 0= —
and g(-2,2)=-22 < 0= |.

The equil. point is unstable

ATTENTION: The green lines ARE NOT THE ORBITS. They are just an
indication of how the real orbits will behave.

Here we have the REAL phase space, designed by a proper software
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8.1 Exercise: Draw the phase portrait of the system:

X' =-2x-y+9
y=x-y+3

Solution:

59

Step 0: We find the eq.point. —2x —-y+9 = 0,x-y+3 = 0=

Xo=2,Yo=5|

Step 1: The vertical isocline: —2x — y + 9 = 0. The horizontal isocline

x—-y+3=0.
Step 2: We sketch the isoclines:
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Step 3: We examine the sign at the several regions:

Region | Point | 2x-y+9 | x-y+3 | X |y | x |y
I (2,8) -3 -3 - =]«

II (5,4) -5 4 -+ |« |7
1II (0,0) +9 +3 + |+ =7
v (0,5) +4 -2 + | =-1->11

Step 4: We put all the above information onto the phase portrait.

The eq. point is asymptotical stable (exponentially).

HKH\"‘\.L\.‘\ Y . P : -—
""-__HHH“::—_:“ \: H:SHHH‘“&
E"‘*ﬁh‘:{ﬁ::—“‘ o “_\\ %‘H‘H‘m““‘“—u
— e - \\ T R e
B N
==/
T TS gt
== A I LY
= Z éf‘;f,rf B\

8.2 Exercise: Draw the phase portrait of the system:
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x' =5x—-2y
y=x+y

Solution:

Step 0: We find the eq.point. 5x -2y =0, x+y=0=[x =0,y =0 |

Step 1: The vertical isocline: 5x —2y = 0. The horizontal isocline x+y =
0.

Step 2: We sketch the isoclines:

Step 3: We examine the sign at the several regions:

Region | Point | 5x-2y | x+y | x |y | x |y
A (1,0) 5 1 + |+ =7
B 0,1) -2 1 -+ |« |7
r (-1,0) -5 -1 | = | =]« ]!
A |@©-1)] +2 -1 |+ | -|>11

Step 4: We put all the above information onto the phase portrait.
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8.5 The ”’x-y” Differential Equation Method

d X,

If we are able to solve the differential equation: 9o 9(x y) we get a
dx  f(xy)

relation | ®(x, y) = O |between x and y which permits us to draw the phase

space.

8.3 Exercise: Draw the phase portrait of the system:
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Solution:

Step 0: We find the eq.point. 2x =0, y=0=|x =0,yo = 0|

Step 1: The vertical isocline: 2x = 0. The horizontal isocline y = O.

Step 2: We sketch the isoclines:

Remark: This is a special case, where the orbits cannot cross the isoclines.

Step 3: We examine the sign at the several regions:

/

Region | Point |2x | y (X' |y | x |y

I (1,1 2 1 |+ |+
I (-1,1) | -2 | 1 | - |+
III (-1,-1) | -2|-1]| - | -
v (1,-1) [+2 | -1| + | —

LTI

Step 5: To find the ’shape” of the orbits we solve the dif. eq. :

d d dx 1
Y_ Y Y hy==-Inx+C
dx 2x y x 2
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" =5

8.6 The First Integral Technique

We seek for a relation between x and y: ®(x, y) = 0.

Successively we have:

d oPdx 00d
dx,y)=0= —DP(x,y) =0= —— ovdy_
dt ox dt  Jdy dt
oD ,+8(D , aq>f+aq) o
—X —_— = - A=
ax oy o oy

® is called FIRST INTEGRAL. To find ® usually we take:

9D E

w9 @—f

8.4 Exercise: Draw the phase portrait of the system:

X' =y
Y =-—x

Solution:

Step 0: We find the eq.point. 2x =0,y=0=|x =0,yo = 0|
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Step 1: The vertical isocline: y = 0. The horizontal isocline —x = O.

Step 2: We sketch the isoclines:

Step 3: We examine the sign at the several regions:

Region | Point y | x| xX|y| x|y
I (L) |1 [=-1l+]=-1>11
II (-1,1) | 1 1 [+ |+ =17
I -1,-1) | -1 | 1 | = |+ |«< [T
v (1,-1) [-1|-1|—-| =]« |l

Step 4: We put all the above information onto the phase portrait.

Il o |

Step 5: To find the ’shape” of the orbits we use the girst integral technique:

ob :ad) =X fdx X2+F():>
_— = = —_— =X = X = —

ox g ox 2 Y

oo oD 2

S of=s S =ys0+F =y FYy=2+C
oy oy 2
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The orbits are CIRCLES




Chapter 9

Linear Systems

9.1 The General Super Theorem

Theorem 9.1 Let us have the Linear system X' = AX, where Aisannxn
matrix, then:

1. The only equilibrium point is the 0.

2. If all the eigenvalues of A have negative real part, then 0O is globally
asymptotical stable.

3. If there is at least one eigenvalue of A with positive real part, then O
is unstable.

4. If there are some eigenvalues of A with zero real parts and linear
independent basic eigenvectors and the rest eigenvalues have negative real

part, then 0 is stable.

9.2 2 x 2 Linear Systems

Theorem 9.2 Let us have the Linear system X' = AX, where Ais a2 X 2
matrix, then the origin is global asymptotical stable if and only if det(A) >
0 and tr(A) < O.

Remark: By using the above theorem we can check the stability of a 2x 2
linear system, without computing the eigenvalues.

Theorem 9.3 Let us have the Linear system X' = AX, where Ais a 2 X 2
matrix. Let Ay, Ay be the eigenvalues of A (which are considered to be real
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numbers) and (ay, by), (ag, by) the corresponding eigenvectors, then the
orbits of the phase space are ”given” by the next relation:

M M )

7
X dy
Yy by

a Xp
by Yo

a, X
b, y

Xo QG

-1 o —7
1) Yo b

where, (X0, Yo) is the initial point.

Theorem 9.4 Let us have the Linear system X' = AX, where Ais a 2 X 2
matrix. Let Ay, iy be the eigenvalues of A (which are considered to be real
numbers) and ti;, =(ay, by), Tl = (ag, by) the corresponding eigenvectors.
Then, the straight lines OM = rii;, ON = sii;, 1, s € R, are invariant sets.
Furthermore, depending from the sign of 7, their orbits approach or go
away from the origin.

Definition 9.1 If the orbits of some of the said straight lines approach the
origin, it is called the stable line, otherwise the unstable one.

Sketch of the proof: We suppose that (xp, yo) € OM. This means that
Xo = ra; and yo = rb; for some r € R.

Using the relation of the theorem we get:

)

a, X
by y

ra, Qs

0= rb; b,

Which gives: ‘ Zl Z ‘ = 0. This is achieved by setting x = wa;, y =
1

wb,, for some w € R.

The latter implies that (x, y) € OM and thus OM is invariant. We also know
that x(t) = re™'a; and x(t) = re"'b,. Hence if A, < 0, x(t), y(t) — O,
otherwise the orbits go away.

9.3 The Phase Space of the 2x2 Linear Systems

CASE 1. A, < A5, < 0 = GLOBAL ASYMPTOTICAL STABILITY OF
THE ORIGIN, A NODE. The line u; is called the fast one. The line us
is called slow.
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-8/7 -3/7
-2/7 -13/7

u; = (1,2), Uy = (1,—1/3)

Example: A = ( ) A =-2,4p =-1,

CASE 2. A, > A5, > 0 = INSTABILITY, A NODE. The line u,
is called the fast one. The line uy is called slow.

8/7 3/7
2/7 13/7

w = (1,2), Uy = (1,—1/3)

Example: A = ( ) M =2,,=1,

CASE 3. A, < 0 < ; = INSTABILITY, A SADDLE. The line u,
is called the unstable one. The line u, is called stable.
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16/7 -15/7
-10/7 -9/7

u = (1,2), Uy = (1,—1/3)

Example: A = ( ), A =-2, 1 =3,

RN T~ — I ~T%
NN ——=——
\?\ i e ——

CASE4. A, = a+ bi, A, = a— bi,a< 0= GLOBAL ASYMPTOTICAL
STABLE, A SINK.

4 -7
14 -10

w=01+1i2),u =(1-12).
// ///7///// N
WS
/ 1 ///// ff“\\ \
17~ )r
) /
/

o
//
[/ ////////; / /m
wl
7
-2

7
i
iy
—40 \\\\__\_-;/// /
e
N= //47//////
-60 -40 -20 0 20 40 60

Example: A = ( ), M =-3+7i, 7, =-3-7i,

6

(=}

4

S

2

(=}

i

(=}

=)
—
—=
S S
e
P
(=
N
N \"\
\\\\V\
\\~\
=
N
S~

CASE S. A, = a+ bi, A, = a— bi,a> 0 = INSTABILITY, A SOURCE.

7

Example:A:( 14 —a ),ﬂ1:3+7l,ﬁ2=3—7l,
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w=010+1i2),u =(1-1i2).

6

(=}

4

(=}

2

S

(=}

-2

(=}

-4

(=}

—-60

7
7/
T
i

i

/

(\\==2

L=\
3
-

&~ //
"

N\~ "/

7
/

-60 -40 -20 0

20 40 60

CASE 6. A, = bi, A, = —bi, = STABILITY, A CENTER.

Example: A = (

14

7 =7

-7 )’ ﬂl = +7i’ ﬂZ = _7’:’

w=01+i2),u =(1-1i2).

60

40

20

0

-20

-4

(=}

—-60

7

/
/

/)
/ 7
////

/

//\ k(

!

7
(€

g/ /// /; a

/@///////2@/
7

(f @%/ .
S0

/
////}//;/
i
7
/%/ /
///

\
I/
/ //é /

/1

-60 -40 -20 0

20 40 60

CASE 7. A, = A, = A# 0 € R, = GLOBAL ASYMPTOTIC STABILITY
IF A < 0, INSTABILITY IF A > 0.

Example: A = (

-1
0]

2

-1 )’ ﬁl = _1’ ﬂ2 =-1.




S. Kotsios - Dynamical Mathematics

72

i n

7\

[/ //
i
/ 1111/
\ \\\&\\“\\
171/
\S\ //

/ \ 17/
/\\\\\ 7
7.11\.\\

N

N

—_

0,7y # 0 € R, = GLOBAL ASYMPTOTIC STABILITY

CASE 8. 7,

TO THE LINE i, IF A, < O, INSTABILITY IF A, > O.

-6/17 15/17 _ _
18/17 -45/17 ) M= 0.7 = =3,

|

Example: A

(-1,3).

u = (5’ 2)’ 25
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CASE 8. A, =0, 1, = 0, = PARALLEL SYSTEM.

0 0

Example: A = ( 40

)9ﬂ1 :O9ﬂ2:O,

u; = (0, 1), Uy = (0, ].)

73
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Chapter 10

Nonlinear Systems

10.1 The Main Theorem

Theorem 10.1 Let us have the Nonlinear system X' = F(X), where F is a
function F : R" — R™ Let Xy be an equilibrium point, J(Xo) the Jacobian,
evaluated at this equilibrium point and A; its eigenvalues. Then:

1. If all the eigenvalues of the Jacobian have negative real part, then
X, is locally asymptotical stable.

2. If there is at least one eigenvalue of the Jacobian with positive real
part, then X, is locally unstable.

3. If there are some eigenvalues with zero real parts and linear in-
dependent basic eigenvectors and the rest eigenvalues have negative real
parts, then X, is locally stable.

10.2 The Phase Space of a 2 X 2 Nonlinear Sys-
tem

Theorem 10.2 Let us have the 2 X 2 Nonlinear system X' = F(X), where
F is a function F : R> — R?. and X, be an equilibrium point. Around
of this equilibrium point (locally), the phase space is the same with the
phase space of the linear system X' =J(Xo)X, where J(Xo) is the Jacobian,
evaluated at this equilibrium point.
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10.3 The Methodology

1. We find the equilibrium points.
Using the theorem we characterize them.

We find the isoclines and the SIGN at the different regions.

el

We use the differential equation or the first integral method, if possi-
ble.

5. We draw the phase space

10.1 Exercise: Draw the phase portrait of the system:

x =-y+yx

’

Yy =-x

Solution:

Step 0: We find the eq.point. —-y+ yx =0,-x =0 = ’xo =0,Yyo=0 ‘
Step 1. The Jacobian:

woo(£ 2], (4 57), (5 7)
9x Yy )0 -1 0 ©0.0) -1 O
The eigenvalues are 1, —1 so, we have instability and a saddle.

Step 2. Horizontal Isoclines: —x = 0 = x = 0.

Vertical Isoclines, —-y+ yx =0=>y =0, x = 1.
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Step 3. The sign,

Region | The Point | —-y+yx | —x | X' |y | x |y
A (2,2) 2 20+ =-1->1]1
B (2,-2) -2 2 ==«
C (1/2,1) -1/2 A2 - -« | ]
D (1/2,-1) 1/2 A2+ - =]
E (-1,-1) 2 1 + |+ |—>|7
F (-1,1) -2 I |- |+ |« |7

Step 4. We solve the differential equation:

d —
Yo X L P=ox+y?-2x+2In(0-1) - 2In(x - 1)
dx yx-y

where Xy, Yo the initial conditions.

So, finally, the phase portrait is:
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10.2 Exercise: Draw the phase portrait of the system:
x =x(4-x-yYy)
Y =y6-y-3x
Solution:

Step 0: We find the equilibrium points:

x4-x-y =0

y(6—y—3x):0}:>(0’6)’ (1,3), (4,0), ,(0,0)

Step 1. We characterize them. To do so we calculate the Jacobian:

(S Sy ) _[4-2x-y —X
J(x,y)—(gx gy | -3y 6—-3x—-2y =
J(0,6) = ( —_128 —06 )with eigenvalues —2, —6 = local asymptotical sta-
ble.

-1 -1 . .
_9 -3 ) with eigenvalues -2 — V10, -2 + V10 = unstable

-4 -4 . . .
J(4,0) = ( 0 -6 ) with eigenvalues —4, —6 = local asymptotical sta-
ble.

4 0 . .
J(0,0) = 0 6 ) with eigenvalues 4, 6 = unstable
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Step 2. Horizontal Isoclines: y(6 — y — 3x) = 0 = either y = O or
6-y—-3x=0.

Vertical Isoclines, x(4 —x —y) =0 =eitherx =0or4 —x—-y=0.

Step 3. The sign,

~

R P xd-x-y) |y6-y-3x) | X |y | x |y
1 (5,5) -30 -70 - =]«
2 [ (-1/4.8) 15/16 -10 + -] =11
3 (-1,6) 1 18 + |+ | =17
4 (-5,1) -40 20 -+ | < |7
5| (-5,-1) —50 —22 —=T<T1
6 (1,-5) 8 -40 + |- |-
7 (4,-1) 4 5 + |+ |—=>7
8 | (6,-1/2) -9 23/4 -+ |« |7
9 | (1/2,1) 5/4 7/2 + |+ =7
10| (3,1/2) 3/2 —-7/4 PR R N
1] (1/2,4) ~-1/4 2 T+ T<]7
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Chapter 11

Invariant Sets

11.1 The Basic Theorems

Theorem 11.1 Let us have the system: x' = f(x,y), Yy = g(x, y) and
M = {(x, y) : D(x,y) < c} a set. This set is invariant for the system if and

only if

on the boundary ®(x, y) = c.

Theorem 11.2 Let us have the system: x' = f(x,y), y = g(x, y) and the
region M = {(x,y) : W(x,y) = c1, D(x, y) < co}. This set is invariant for
the system if and only if

on the boundaries ®(x, y) = c; and W(x, y) = ¢,

EXAMPLE: We have the system x' = y,y = —x. Show that the set
M={(xy): a<x®>+y* < b}, b>a> 0isinvariant.

Proof: We calculate the quantity:

A +y?) a0 +y)
+9

J ox oy

=2xy—2xy=0

So, by the previous theorem the set is invariant.
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11.2 Poincare-Bendixson Theorem

Theorem 11.3 Let us have the system: x' = f(x, y), y = g(x, y)and let M
be a closed subset of the plane such that:

e M contains no equilibrium points or it contains ONE equilibrium
point which is unstable focus or unstable node.

e M is invariant.

Then, M contains a periodic orbit.

Theorem 11.4 (Bendixson Criterion.) If, on a simply connected region

D of the plane, the expression % + g—Z is not identically zero and does not

change sign, then the system has no periodic orbits lying entirely in D.
EXAMPLE: We have the system x’ = y,y’ = —x. Show that it has an
infinite number of periodic orbits.

Proof: We consider the set M = {(x,y) : a < x> +y*> < b}, b > a > 0.
This set is invariant (previous example).

The set M is closed, bounded and free of equilibrium points, since the only
equilibrium point (0, 0) does not belong to M.

Hence, by the Poincare-Bendixson Theorem we conclude that there is a
periodic orbit in M

Since we can take any a, b > O to define M , we have an infinite number
of closed orbits.

11.1 Exercise: Draw the phase portrait of the system:
X =x+y-x®-xy?
Yy =-2x+y-yx*-y°

Solution:

Step 0: We find the equilibrium points: (O, O)

Step 1. The Jacobian is:

1-3x%-y? 1-2xy 1 1
J(x’y)‘( a—oxy 1-x62-32 |7 IOO={ o
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The eigenvalues are 1 + iv2, 1 — iV2. It is unstable.

Isoclines-Sign-Phase Portrait

6

Periodic Orbits



86 S. Kotsios - Dynamical Mathematics

We consider the set M = {x®>+y?® < c}. Itis closed and bounded. It contains
the only equilibrium point (O, O) which is an unstable focus. Successively
we have:

o(x? + yz)f . o(x? + yz)g

=207 +y*) - 20 + )’ - 2xy =
ox oy

<20 +P) -2 + P + (P +y*) = 3c—2¢2

By choosing ¢ = 3/2 the above expression becomes negative and thus M
is invariant. Hence, by the Poincare-Bendixson theorem, we conclude that
there is a periodic orbit in M.




Chapter 12
IS-LLM Models

12.1 A Simple Model

12.1 Exercise: We consider the next economic quantities:

e(t), real expediture | c, marginal rate of consuming
Y(t), real income t,, marginal tax rate
r(t), interest rate h, marginal rate of investment
m4(t), money demand | My, nominal Money supply
A, B, k, u, constants P, constant price level

and the next relations:

e(t)y=a+c(l-t)Y(t)-hr(t) , Y(t)=Ale() - Y(t)]

M,

() = Bm* (1) = mol . m(t) = kY () — ur(t), mo =
witha>0,0<c<1,0<t;<1,h>0ku>0 AB8>0.
Examine the stability of the model.
Solution: Step 0: After a simple substitution we get the system:

Y'(t) = Alc(1 — ;) — 1]Y(t) — Ahr(t) + aA
r'(t) = BkY(t) — Bur(t) — Bmg
We consider that the phase-spaceis Y —r.
Step 1: Equilibrium Point:
y au + hmy . ak—mg+cmg — cmoty

= s r =
hic + u— cu + cut; hic + u— cu + cut;
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Step 2: The Jacobian is:

JYL ) = ( Alc(1-t)—-1] -Ah )

Bk —-Bu
tr(J) = Alc(1 —t;)— 1]+ (—=Bu), det(J) = —BuA[c(1 —-t;)— 1]+ AhBk

Successively now, we have:

O<t <1 - 0>-t >-1 - 1>1-t>0 -
O<cx1 O<cx1l 1>c>0

=>cl-t)<1l=

c(l-t,)-1<0 - Alc(l1-t)-1]<0
A>0 Bu>0

= tr(J) < 0.

Similarly, we get det(J) > 0 = (Y™, r*) local asymptotical stable

Step 3: Vertical Isocline (IS).

Ale(1-t)-1]Y —Ahr+aA =0

d 1—-c(1-t
The slope is Sl _me =) <0
dy h
. ) a -a
Intersection Points: (O, —), — 0|.
h/) \[c(1 —t;) - 1]

[e(1—t)—1]
Horizontal Isocline (LM). BkY — Bur — Bmy = 0

with % > 0 and 0

dr Ik
Slope: — = — > 0.
ope dy u>

Intersection Points: (O, —@) with _o < 0O and (% 0) with % >0
u u
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Step 4. The Sign. We consider a point in region I, with coordinates (Y, 7).
Drawing vertical lines from this point, they met the vertical isocline (IS) at
the point (Y, 7) and the horizontal isocline (LM) at the point (Y, 7).

Obviously, 7 > r = —Ahi < —Ahr =
Alc(1 —t)) = 11Y — Ahi + aA < A[c(1 — t;) — 1]Y — AhT + aA
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Since, (Y, 7) belongs to the vertical isocline we conclude that A[c(1 —t;) —
11Y — Ah¥ + aA = 0 and finally,

Y(Y,#) <0

Obviously, ¥ > ¥ = kY > kY =
BkY — Bui — Bmy > BkY — Buf — Bmg

Since, (Y, ) belongs to the horizontal isocline we conclude that SkY —
Bui — fmy = 0 and finally,

r'(Y.#) >0

Working, similarly we get the next phase portrait, which implies asymp-
totic stability of the eq. point.

12.2 A General IS-LM model

12.2 Exercise: By c(y) we denote the consumption. It depends only from
y. By i(r, y) we denote the investments, depending from the income y and
the rate r. By g we denote the goverment expenditure. m< is the money
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demand function and mqy the supply of real money balance. We suppose
that the next relations hold:

e=cy+iry+g mi=1Uy.r)
y =Ale—-y) r’ = B(m? - m°)

withO < ¢, < 1,4 <0, iy >0, 1, >0, . <O, A, 8> 0. Prove that:
if the slope of the IS curve is negative and less steep than LM, then the
equilibrium point (y*, r*) is locally asymtpotical stable.

Solution:

Step 0: The equilibrium point is (y*, r*) which is undetermined.
Step 1: The Jacobian is:

J:(A(Cy+iy— 1) Ai

Bl Bl

tr(A) = A(cy + iy — 1) + Bl |, | det(A) = —AB[L.(1 — ¢y, — i) + i.1y]

(y*.r)

Step 2: The vertical isocline (IS).

Jyn=0=e=y=>cy+iyr+g-y=0

The slope is:
dr Fy 1-c¢y;—1

dy F, i,
The horizontal isocline (LM).
gyrnN=0=>1l=my=1-my=0

The slope is:
da Gy
dy G L
Step 3: (The Proof.)

l-c,— 1y

i
cy+tiy—-1<0=tr(J)<0|

IS less steep than LM =

slope of IS < 0 = <Obutiy, <0=1-¢ -1 > 0=

l-cy,—1y

o [det > 0]

The above two relations imply the local asymptotical stability of the eq.point.

L
<—l—y:>l,(1—cy—iy)+lyir<0

ir T
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Chapter 13

Optimal Control

13.1 Basic Notions

e Optimal Control treats with the problem of maximizing or minimiz-
ing integrals under the presence of constraints.

e There two ways of approaching: The Maximum Principle analysis
and The Dynamic Programming analysis.

¢ Differential equations are used to continuous-time analysis, difference
equations are used to discrete-time analysis.

Example
5
maxf (y+5y% + ¢y — 3ud)dt
v Jo
s.t. Yy =5y+6u-1

y(0)=3, y(B) free

13.2 Syllabus

1. Basic Terminology

2. One State - One Control-Maximum Principle
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3. Explanation

4. Fixed End Points - Transversality conditions

5. Many States - Many Controls-Maximum Principle
6. Infinite Horizon- Phase Space Analysis

7. Dynamic Programming

8. Differential Games

13.3 The Simple Optimal Control Problem

Find a function u(t) such that

T
max V:f F(t, x(t), u(t))dt
“ to

subject to  x'(t) = f(t, x(t), u(t))
x(ty) =xo , x(T) free
u(t)ye U, forall te|ty,T]

x(t), the state function, x(t) : [ty, T] = R
u(t), the control function, u(t) : [ty, T] —» R
U, the control set, (compact and convex ), usually U = [0, 1]

x(T) free, Terminal State Conditions.

13.4 The Alternative Expression

Find a function u(t) such that

max V:f F(t, x(t), u(t))dt + ¢(x(T), T)
v to

subject to  x/(t) = f(t, x(t), u(t))
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x(th) =x0 , WYx(T), T)=0 free
u(t)ye U, forall te|ty,T]

@(x(T), T) is a penalty function representing the cost associated with the
value of the state variables at the terminal time T.

@ is a scalar function, W(x(T), T) is a p-dimensional vector of functions
describing the terminal conditions.

13.5 Calculus of Variation is transformed to Op-
timal Control

f maxflf(t,x(t), u(t))dt
maxf St x(t), X (t))dt fo
to

= st X(t)=u(t)

s.t. x(t)) = xp
x(to) = Xo
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Chapter 14

The Maximum Principle

We define the Hamiltonian:
H(t, x, u, A) = F(t, x, u) + A(t)f(t, x, w)

A(t) a function,

1st order conditions:

max, H(t,x, u,A) , te€ /[t T]

A = A . AT)=0

X(t)zﬁ , ox

2nd order conditions: F(t, x, u) to be concave

14.1 Exercise: Solve the problem:

1
max f (x + wdt
(0]

st. X =1-u?

x(0)=1

Solution:
H = (x+u)+ At)(1 - u?)

Maximization of H
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oH _ —
E—l—Zﬁu—O

= |u(t) =

L
At)

Calculation of A(t)

oH
At = = > At =-1= At)=-t+c

A =02 e =1=[A0=1-1]=u®= 37—

Calculation of x*(t)

2
/ _ 4,2 / — _
X=1-u"=x'(t)=1 (2(1_0) =

W= | |1- ! 2dt—t— ! C
x()_f 2(1 —1t) B 4(1_t)+

x(0)=1=>C=5/4=|x"(t)=t-

5
+_
4

4(1-1)

14.2 Exercise: Find the curve with the shortest distance from a given
point (0, A) to a given vertical straight line.

Solution: Let y(t) be an arbitrary curve such that y(0) = A and y(7T) free.
The distance is given by the quantity:

IR
a= [ i (@ a
o dt

so our problem becomes:

min [} y/1+ (y)dt

st. y(0)=A4, y(Tfree

By setting y’ = u, the problem is transformed to the next optimal control
problem:
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maxu—fOT V1 + u?dt

s.t. yx)=u
y0)y=A, y(T) free

The Hamiltonian is: H = — V1 + u? + A(t)u We have to maximize H:

oH 1

S = 0= 50+ u)22u+A=0
8221 2\-3/2
- —-(1+u”)

= u'(t) = A1 - P)1/2
Buti=——=0=2>A=0=A(t)=C
ay

But A(T) = 0 = At) = 0:>
=Sy (=0 y(t) =K

Since y(0) = A =

So, the requested curve is the perpendicular straight line from the point to
the line.

14.3 Exercise: Solve the problem:

max fs(ux —u? - xA)dt
v Jo
st. X =x+u
x(1)=2, x(5)=0
Solution: The Hamiltonian is:
H = (ux — u? — x%) + Alx + w)
To maximize H we have successively:

IH _ _
x—x—2u+ﬁ—0

N u*(t) — X(t);ﬂ(t)

PH _ _
vl 2<0
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Calculation of A(t)

A(t) = —% >At)=-u"+2x-A= ’2ﬁ/(t) =x-2

But, x'(t) = x+ u'= x + ";—ﬂ =>’2x’(t) :3x+ﬂ‘

By solving this system we get:

() = ei(l_@)(zcl(e@*):zg vEs-5)e T+ s

e G S )

By using the initial conditions x(1) = 2, x(5) = O we calculate the con-
stants. Finally:

u* (t) — X*(t);ﬁ*(t)

14.4 Exercise: Solve the problem:

2
maxf 2y - 3uwdt
u 0

st. yYy=y+u
y0) =4, y@2) free
and u(t) € U =1[0,2]
Solution: The Hamiltonian is:
H = (2y(t) — 3u(®) + AD(Y(t) + u(t)
Step 1: Calculation of u*

OH {>o A>3 so HT

o0 7737V <0 A<3 so H|

. 2, A>3
- ”(t):{o <3
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Step 2: Calculation of A

ﬁ’:_%i{=>ﬂ’=—ﬁ—2=>ﬂ’+ﬁ=—2=>ﬂ(t)=ke_t_z
y

Using the condition A(2) = 0 we get: | A*(t) = 2€* ¢ — 2

Step 3: Further Calculation of u*

A*(t) is a decreasing function = A*(2) < A(t) < A(0) & 0 < At) <
12.778 there is anumber 7: A4°(1) =3 = 1~ 1.084 =

‘() = 2, 0<t<zt
YW=V 0, 1<t<2

Step 4: Calculation of y(t)

y=y+2, y0)=4, 0<t<t

y:y+u:>{ y=uy, y0)=4,, 1<t<2

5.324e', 1<t<2

S0 :{ 2Be'~1), 0<t<t
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Chapter 15

Maximum Principle Explanation

We know that x = f(x, u, t) = x—f(x,u, t) =0 = AW[Xx—f(x,u,t)] =0

For the objective function we have:

T T
f I(x, u, t)dt = f {I(x, w, t) + A[f(x, u, t) — x]}dt =
0 0

T T T
= f I(x, u, t)dt + f A f(x, u, t)dt — f A(t)xdt
0 0 0

Using integration by parts we get:

f Alt)xdt = A)x(t)]g — f At)xdt =
0 0

= AT)x(T) — A(0)x(0) — f ' At)xdt
So, the objective function becomes: ’
fo T[I(x, w t) + Af(x. w. t) + Ax]dt — AT)x(T) + A(0)x(0)
Pertubations
Let u(t) = u*(t) + eh(t), where u*(t) is the requested optimal control, h(t)

any function and € a small number.

Let x(t, €) denote the state variable, generated by the state equation with
control: u(t) = u*(t) + eh(t), 0 < t < T. Hence,

x(t,0) = x*(t), x(T.e) = x(T), x(0,¢)=xo
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Thus

T
J(e) = f [I(x(t, €), u* + eh, t) + Af ((x(t, €), U + eh, t) + Ax(t, €)] dt—
0
Q

—A(T)x(T, €) + A(0)x(0, €) =

T
= J(e) = f Qdt — A(T)x(T, €) + A(0)x(0, €)
0

Since u* is a maximizing control, the function J(¢) assumes its maximum
dJ

ate:O=>(—)(O):O
de

dJ T[oQ ot 0Q ox 0Q du
- = _— — e — 4+ — . — | dt—
de o |0t de Jdx Jde Ju OJe
ox(T, ox(0,
oe oe
JBut o5 (0 3
o _o , OO _ 9% _,
Je oe Jde
Hence,
dJ(0) T . [ox
= L+ AS + A+ Al — | +
de 0 def
u 0x(T, 0)
+[y + Auf + Afy + 0] . dt — A(T) =0
€ e=0
u
But, A, =0, A, = 0, — = h and so:
oe
T
. T,
f (I + Afx + Al (a—x) + [I, + ﬂfu]h] dt — ﬂ(T)ax( ) =0
0 86 e=0 ae

The latter becomes equal to zero iff

L+Af,+A=0 . oH
A=—-—
ox
I, +Af, =0
= OoH _ ,
AT) = 0 E—O & H  maximum
H =1+ Af AT) =0
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Interpretation of A(t)

Let x*, u* be the state and the control functions providing the maximum
and let A*(t) be the corresponding multiplier.

We define: V(xp, ty) = ftOT F(t, x*, u*)dt, then:

oV
e (%0, to)

(to) =
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Chapter 16

Transversality Conditions

Boundary Condition Transversality Condition
x(T) free AT) =0
x(T) =k A(T) = b, b to be determined
x(T) > k AT)[k —x(T)] =0, AT) >0
x(T) < k AT)[k—x(T)] =0, AT) <0

16.1 Exercise: Solve the problem:

2
max f (=x)dt
u 0

s.t. xX'=u

x(0)=1, x(2)=>0
and u(t)e U =1[-1,1]

Solution: The Hamiltonian is: H = —x + Au

Step 1: Calculation of u*
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Step 2: Calculation of A
ﬁ —_as ﬁ =1 ﬂ(t) =t+c
= =>A=1= =t+q

[ -1, o<t
Tl 1, tt<t<?2

hence,

t* to be determined. Obviously:

AtY=0=20=t"+¢,>¢ =-t'=>

-
Step 3: Calculation of x(t)

IfOo <t < tthenu(t) = -1 and x'(t) = -1 = x(t) = -t + c;. But
x(0) =1 = ¢ = 1 and finally:

x()=1-t, forO<t<t'

Iftr <t<2thenu(t) =1and x'(t) = 1 = x(t) = t + c3. But x(t*) = x*
= c3 = x* — t" and finally:

x()=t-t"+x, fort'<t<2]

Butx(t)=1-t=2x"=x(t"h=1-t"=

x()=t-t+x =t+1-2, fort' <t<2

Step 4:Transversality Condition

A2)[0 - x*(2)] = 0. But A(2) = 2 — t* # 0 which means .

x(2)=0=>0=3-2t'=t" =3/2

-1, 0<t<3/2
:"”(t)‘{ 1, 8/2<t<2



Chapter 17

The General Optimal Control
Problem

17.1 The Description

max V:f F(t, x(t), (1), .. ., x,(t), uy (1), ..., u,(t))dt
m fo

u,ug,...,4

subject to
x (0 = filt. x(D..... X (D), wi (0, ..., U (1))

x(t) = fo(t. xa (D), . .., X (D). wi(t), . ... U (1))

x,() = fa(t. xa (D), . . .., X (1), wy (1), . .., Um(1))

x1(to) = Xo1, X2(to) = Xog, - - - » Xn(to) = Xon

x1(T), x(T), ..., x,(T) free
u (1), uy(t), ..., u,(t) e U, forall teltyT]

Or, using vectors notation
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Find the vector function i(t) such that
T
max V= f F(t, X(t), t(t))dt
“ to

subject to

X (t) = f(t, X(t), U(t))

X(0) = xp, X(T) free

t(t)e U cR™, forall tel(ty,T]. (compactand convex)

17.2 The General Maximum Principle

We define the Hamiltonian:
H(t, %, 1, A) = F(t, %, @) + At) - f(t, X, &)
A(t) a vector function, and - the inner-product.

1st order conditions:
maxg H(t, X, 0, 7) , te([ty,T]

dx; oH dj; oH -
= s = — , T) =0, i=1,...,
a - on ar - ox M ' n

2nd order conditions: F(t, X, ii) to be concave

ATTENTION

Remark: The above maximization is a multivariable one

17.1 Exercise: Solve the problem:

t
min f dt
vJo

st x| =X

/

X =u
x(to) = Xo,  x(ty) free
and u(t)e U =[-1,1]
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Solution: First, we change the objective function:

5]
maxf (-1)dt
voJi

7—{ =-1 +ﬁ1(t)X2 +ﬂ2(t)u

The Hamiltonian is:

Step 1: Calculation of u*

o _
W—ﬁzzu*:{ 1, ﬁ2<0

E

Step 2: Calculation of A’s

dh__H_5 S A=
dr ox; B o

diy oH

_ = —_— = - = = - t

@ E M oy =c— ¢

thus
Ut = -1, ﬁ2<0 N ut = -1, t> C2/C1
B 1 A,>0 B

Step 3: Calculation of x’s

Letu*=1,=

Letu*=-1,=

t2
X =x = X :—5—k2t+k1
Step 4: The Phase Space
The u = lorbits:%f:i: x,=3x5+C

The u=—lorbits = 2 = -1 = |x =33 + C

X2

111
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17.2 Exercise: We have the production function @ = AK'"*R% 0 < a <
1, A a constant.

K(t) : is the capital function.

R(t) : an extractive resource.

The product may be consumed or invested.

C(t) : the consumption function.

X(t) : the remaining stock of the extractive resource.

U(C) = In C the utility function.

Initial conditions: K(0) = Ky, K(T) = 0, X(0) = X,, X(T) = 0.

We wish to find a policy which maximizes the total utility over a period

[0, T]

Solution: We have the problem:

maxlenC dt
C.R 0
st. X'=-R
K = AK'"*R% - C
X(0)=X,, X(T)=0, KO =K, K(T)=0
C>0, R(t=>0

state variables: K, X, control variables: C, R

Transformation of the Problem. It is convenient to define: y(t) = R/K ,
the ratio of resource to capital. The problem becomes:

max fT InC dt
cy Jo
s.t. X' =-Ky
K = AKy*-C
X(0)=X,, X(T)=0, K@O)=Ky,, K(T)=0
C>0, yit)=0

state variables: K, X, control variables: C, y
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Step 1: The Hamiltonian

H =1InC—- A, Ky + A,(AKy* — C)

Step 2: Maximization of the Hamiltonian

oH oH
— =0, —=0 ==
oC oy
! As =0 (17.1)
C 2 — .
—MK + A AKay®! =0 (17.2)
Step 4: The A-equations
oH
= —— "' =0 17.
i X = | (17.3)
oH
ﬂ/z = _a_K = ﬂé = ﬂly —ﬂsza (174)

Step 5: The Manipulations
From (17.3) we have:

A=0=>Ab=c = (17.5)

A (T)=0
From (17.2) and (17.5) we have:

ﬂzya71 — O = [ﬂzyafl]/ — O =

’ ’
Ay

Ay + Aa- Dy 2y =0= |2 =(1-a)> (17.6)
N> y

From (17.2) we have: A, = AyAay®'. Substituting into (17.4) we get:

ﬂl
Ay = pAay® 'y — HAY" = 172 = —(1 - @)Ay* (17.7)
2
[D] From (17.6) and (17.7) we have:
1
y/ — _Aya+l = ya - - (178)

"~ A(e + at)
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From (17.7) and (17.8) we have:
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Ay(t) =

(¢ + at)af1

Co

Finally, from (17.1) and (17.9) we get:

C(t) = cy(c; + at)‘e

With further calculations we can find X(t) and K(t).

(17.9)

(17.10)



Chapter 18

Current Value Hamiltonian

The Problem:

max, fOT e(x, t, we™Pdt
s.t. X' = g(t,x, 1), x(0)=x

© > 0 be a constant continuous discount rate.

We define the Hamiltonian: H = ¢(x, t, w) + A(t)g(t, x, w), A(t) a function,

1st order conditions:

max, H(t,x,u,7) , te][0,T]
;o OH o oH B
xX'(t) = Er IR At =pA EE AT)=0

Explanation: H® = ¢(x, t, w)e™" + A°g(t, x, w),
maximize HS°, As = —0H®/dx, A5(T) = 0
Let A = e”'A° = A5 = e A
H® = e (e(x, t, u) + Ag(x, u, t)) = e ”H = max H®> < max H
A= = = pe”f® + i = pe' * + & (—e-f’t‘zij) =pA- iij
A(T)=0=> AT)=0
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18.1 Exercise: Solve the following consumption problem:

T
max f e ' In C(t)dt
0

C(t)
s.t. W(t) = pW(t) — C(t)

wWO) =Wy >0 , W(T)=0
Solution: The current-value Hamiltonean is:

H =1InC(t) + A(t)(oW(t) — C(1))
The adjoint equation is:

ﬂ:pﬂ—a—H =pA—pA=0
oW
Transversality condition: A(T) = S, B to be determined.
A=0= A(t) = constant = At) =B, te[0,T]
Maximization of H:
oH 1 1 1

E_Oﬁa_ﬂ:O:}C:ﬁ:E

. 1 1
W:pW—E:W(t):Woept—ﬁ—p(e‘”—l)

1—-e*T W,
W(T)=0= f= —< o |c )= L0
pWO 1

— e—pT

18.2 Exercise: Solve the following consumption problem:

C(t)

T
max f e %% n C(t)dt
0

s.t. §(t) = q(t) — C(t)
s(0)=s,0>0 , s(T)=sy

where, c(t) the consumption, s(t) the stock of capital and q(t) = 2s'/2, the
output.
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Solution: The current-value Hamiltonian is:
H =In C(t) + A(t)(2s'/? — C(t))

The adjoint equations are:

. oH
A=0054-——, §=2s2-Ct), AT)=0
S
Step 1 H:>—aH ! A=0=|C !
¢ max =——-J= = —
P Wl T c A

. oH
Step 2: A= 0.057— =" 0.054-A-2-1-s1/2=7(0.05-s7'/?)
S

Ao 1 L C R
- C o2
c 1 ~1/2 ’ -1/2
- = 5(0'05 —-sY) = ¢ =c(s'? - 0.05)

Step 3: The system:
s =2s"2-¢C

C' = C(s™/? - 0.05)
We use phase-space analysis
Step 4: The equilibrium point: (s, ¢) = (400, 40)
Step S: The stability of the eq. point.

s1/2 -1
J(s.©) :( C(-1/2)s7%2 s71/2-0.05 ):

J(400, 40) :( _Zj% _01 ):> eigen = %(1 + \/E),4—10(1 - V5)
so, we have instability.

Step 6: Isoclines

Horizontal: C(s™'/?2 - 0.05) = 0 = C = 0,s = 400

Vertical : 2s'2 - C=0= C = 2s'/2
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100 200 300 A0 500

Figure 18.1:

Step 7: We examine the sign at the several regions:

Region | Point [2s'2-C|C(s2-0.05)|s |[C | s |C
I | (300,60) | —25,... 0.46 “ T+ <7

I | (450,80) | —37.5.. ~0.2287 - <4
Il | (450,20) | 22.. ~0.06 I R R
IV | (300,10) | +24.641 0.077 T+ =17

Step 8: We sketch the phase portrait.....

Step 9 Conclusion: Everything depends from the initial condition s, if,
for instance s, > 400 and C < 40 , then we must decrease C to have an
optimum path, as s increases.



Chapter 19

The Infinite Horizon Case

Since the time is infinite we can discover steady (or equilibrium) states.

Each problem must be faced independently.
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Chapter 20

Dynamic Programming

20.1 The Problem

max,, fOTf(t, x, w)dt

s.t. X' =gt xu), x0)=a

20.2 The Solution

We define:

T

J(ty, xp) = maxf Sf(t, x, u)dt

to
s.it. X' =gt.xu), x(t)=x
Let At > 0O very small, then:

to+At T

Sf(t, x, wydt + f

J(to, Xo0) = maX(
u to+At

to

f(t, x, u)dt)

Due to the principle of optimality, the above integrals are maximized over

the same u(t):

to+At T

J(ty, Xp) = max[ Sf(t, x, wydt + maxu(

to

Sf(t, x, u)dt)]

to+At

s.t. X' =g(t,xu), x(to+At)=x+ Ax
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to+At

J(ty, Xo) = max, [f Sf(t, x, wdt + J(tg + At, x5 + Ax)
to

(20.1)

Since At is very small, u can be considered as constant for the interval

[t, to + At], so:
to+At
f Sf(t, x, wydt = f(ty, xo, WAL
to

Using Taylor’s theorem we get:

aJ(tO’XO)AH 8J(to,xo)Ax

J At, Ax) = J(ty,
(to + At, xo + Ax) = J(th, Xo) + e X

From (20.1),(20.2),(20.3) we get:

oJ(to, aJ(to,
0 = max, [f(ty, xo, 1) + Mm + MAX
ot ox
Dividing through by At and letting At — 0, we get:
0 = max,[f(t, x, u) + Ji(t, x) + J(t, x)x'] =

Hamilton Jacobi Bellman (HJB) equation:

—a—J(t, X) = max, [f(t, X, u) + a;](t, x) - g(t, x, u)]
ot ox

20.1 Exercise: By using the HIB equation, solve the problem:
T
minf e "(ax? + bu?)dt
v Jo
s.it. X)) =u) , x(0)=x >0
Solution: We form the HJB - equation:
oJ oJ
—— =min|e "(ax® + bu®) + —u
ot u ox

To find the minimum value we have:
o)

oJ oJ
—le™(a®+bu*)+ —u|=0=2e""bu+ — =0
ou ox ox

(20.2)

(20.3)

(20.4)
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Je
2b

3k

= u'=

By substituting the latter into (20.4) we get:

2 ,2rt 2 ,rt
—J, —e_“(ax2+Jxer)—Jxe
=

4b 2b

=

aJ\* et oJ
2—( ) ¢ n* _ o (20.5)

— | —+e"— =
ox| 4b ot
This is a partial differential equation. Let us try J(t, x) = e "Ax?, where
A is a constant to be determined,

aJ —rt aJ —rt 2
— =2e"Ax , — =-re "Ax
ox ot

By substituting into (20.5), we get:
2rt

e
ax? — 46_2”A2x24—b +e'(-re"Ax*) =0

2 4a| b
:>?+rA—a:0 = A=|-rz r2+—~§

. Jee 2¢e " Axe™ Ax
so,|=>  u=- =- =
2b 2b b

This is a solution in feedback form. Furthermore:

Ax _Ax
X=u = xX=-— = x(t)=xe >

20.2 Exercise: (The “cake-eating” problem) By using the HJB equation,
solve the problem:

T
max f e P 1n Cdt
¢ Jo
st W) =-Clt) ., WO) =W, >0 W(T) =0

Solution: We form the HJB - equation:

oJ oJ
X -pt _ o
m mgx [e InC Ca ] (20.6)
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Using derivatives we see that the maximum is achieved at C*(t) = e /Jy,
therefore (20.6) becomes:

et
—J;, =e*'In (J—) —e
w

We set: J(t, W) = e (A + Bln W) and HIB becomes:

—pt —pt e
—pe " (A+ BlInW) = e |In -1({=
e—PtE
W

= —p(A+BInW)=InW-InB-1=B=1/p,A=—-(1-1np)/p

1+lnp+InW
S Jtw) = —PTRZ ert 5[C (1) = pW(D)]
0




Chapter 21
HJB and Infinite Horizon

21.1 Exercise: Solve the problem :

Solution: Since the time is infinite, the quantity J does not depend from t
and thus, J; = 0. The HJB equation becomes:

(1, 1,
O:mln(—x +—-u +un)
2 2

u

8(....)_ 3 .
=u+d,=0=>u =-J,

au

I, 15 2 _ 2 _ 4

5)( +§JX—JX—O=>JX—X
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Chapter 22

HJB, Present Value and Infinite
Horizonn

We have the autonomous problem:
max f e " f(x, u)dt
v Jo

s.t.  X'(t) = g(x(t), u(t))

The value function V(x) associated to the optimal path verifies the equa-
tion:

’ rV(x) = max,[f(x, u) + V'(x)g(x, u)] ‘

THIS IS AN ODE

Proof: (OPTIONAL)

(o) (o]

e " f(x, udt = e ™ max f e ") F(x, u)dt
RV

J(ty, xp) = maxf

to

The value of the integral on the right depends on the initial state, but is
independent of the initial time. We let:

(v}

V(xo) = max f e " f(x, u)dt = J(t, x) = e " V(x)
voJi

= J=-re"Vx) , J.=e"V'(x)
HJB = —(-re"V(x)) = max[e " f(x, u) + e "V'(x)g(x, u)]

= rV(x) = max[f(x, u) + V'(x)g(x, u)]
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22.1 Exercise: Solve the following problem (Ramsey):

max f ) e P'u(C)dt
c® Jo
st. K=f(K)-C
Cl—a
u(C) = 1o J(K) = AK*

Solution: Applying the latter equation, we get:

1-o0

+ Vi (AK" — C)]
— 0

V=
0 mgxll
But, C* = (V)~!/? and thus:
o
pV =V} [—(V,g)‘l/“ + AK“]
l-o0
Fora=oand V = By + B;K'™° we get:

p(Bo + BiK' ™) = (Bi(1 - 0)K°) [1%‘0(31(1 —0)K o) Vo4 AK"]

_A(1-0)

1 o\’
B me ()2
P 1-0/\p

o\? (A 1 -
v ()
a o l-o0

= B,

= c =Pk
o

22.2 Exercise: Solve the following consumption problem:

max f e P In C(t)dt
0

()
s.t. W(t) = pW(t) — C(t)
Solution: Applying the latter equation, we get:
oV(W) = mgx[ln C+ V' (W)(pW - O)]
But, C* = 1/V’ and thus:
oV==InV' +VpW -1

which can be solved numerically.





