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Why urban geochemistry
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Urban areas comprise only 2% of the Earth’s surface
but are responsible for:

-80% of the world’s gross domestic products

- 70% of the global energy consumption
- 80% of CO, emissions

Urbom sIums in Kenya (A) cmd India (B):
Lyons and Harmon, 2012



Development of urban geochemistry

Professor lain Thornton was the first who used the term urban geochemistry

Urban environmental geochemistry can be defined as the field of
scientific study that uses the chemistry of solid earth, its aqueous and
gaseous components, to examine the physical, chemical and biological
conditions of an urbanized environment (Siegel, 2002)

* Anthropogenic Pb contamination of the urban environments and associated health
implications were denoted in the 1970s
* Some early studies assessed Pb contamination in soil, dust and atmospheric particulates
* Technological advances in analytical equipment had as a result the inclusion of other
metals, typical tracers of anthropogenic contamination (Zn, Cu, Hg, Sb)
* Towards the end of 1980s, developing regions experienced rapid urbanization and
industrialization

:>Today, urban geochemical studies have developed into a global phenomenon
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The major compartments of an urban environment
(Wong et al., 2006)



Characteristics of urban soll

Water movement on a natural landscape

Water movement on a disturbed urban

(Scheyer and Hipple, 2005) landscape with limited vegetation

—)

More water moves into the soil on natural landscapes than on
disturbed landscapes, such as those in urban areas

Limited ability of the urban terrestrial environment to immobilize metal pollutants




Characteristics of urban soll
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properties and features



Sources of trace elements Iin urban soll
I

Heavy metals and metalloids associated with urban — industrial sources
(Albanese and Breward, 2011)
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General urban activity

Mining (coal) + + +

Smelting ( nonferrous) + + + + + + + + +

Iron-and-steel work + + + |+ |+ + Ca, P05

Heavy engineering, toolmaking + + + + + Mn, Mo, W
Metal plating and fining + + + + + +

Electronics + + + + + + | REEs, rarer elements
Ceramics, glass + + + | Mn, Co, U, REEs
Incinerators + +

Domestic coal-burning and coal-fired

power stations (ashes) i = * = +

Vehicles, transport + + + + + + | Ba, Mn
Crematoria +

Emissions from traffic are caused by tire wear off, brake pads, wear of
individual vehicular components such as the car body, clutch of motor parts
and exhaust, oil leaking from engine and fuel additives




Significance of geology
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Urban soil geochemistry in Athens, Greece: The importance of
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Elevated levels of potentially toxic metals
can also be of natural (geogenic) origin
due to variations in the bedrock geology:
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HIGHLIGHTS

« A systematic geochemical survey of Athens soil is presented for the first time.
« Sources and spatial distribution of chemical elements in soil were examined.
« Geology defined the spatial signature of major elements, and Ni, Cr, Co, As.

- Urbanization controlled the geochemical pattern of Pb, Zn, Cu, Cd, Sb, and Sn.
« Urban topsoil exhibited significant loadings of geogenic PHESs.

* sedimentary ironstones containing
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Understanding urban soil geachemistry is a challenging task because of the complicated layering of the
urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements.
A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil
samples (0-10 cm) were collected from 238 sampling sites on a regular 1 = 1 km grid and were digested by a
HNO;-HCI-HCIO,-HF mixture. A combination of multivariate statistics and Geographical Information System
approaches was applied for discri natural from ¢ sources using 4 major elements, 9 trace
metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by
the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major
Natural contamination sources elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24 mg kg~ ' respectively).
Anthropogenic contamination sources The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians
cis of 45,39, 98,36, 1.7 and 0.3 mg kg~ ' respectively) was also observed; significant correlations were identified
between concentrations and urbanization indicators, including vehicular traffic, urban land use, population
density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in
the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on
natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other
cities around the world, and further investigation should characterize and evaluate their geochemical reactivity.

© 2014 Elsevier B.V. All rights reserved.
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Topsoil contamination
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*mafic — ultramafic rocks exhibiting
elevated levels of Ni and Cr

1. Introduction and C, and may not even reflect the mineralogical and chemical compo-

sition of the parent material (Wong et al., 2006); however, several

‘The rapid urbanization and industrial growth that has occurred in
many places around the world during the last decades has resulted in
modification of the urban chemical environment (cf. Johnson and
Demetriades, 2011). Urban soil constitutes an integral part of the city
landscape, presenting unique characteristics that differentiate it from
naturally developed soil. For instance, urban soil, frequently, does not
present the classical vertical stratification, classified as horizons A, B

* Corresponding author. Tel: +30 210 7274 314.
E-mail address: argyraki@geoluoa.gr (A. Argyra

hitp://dx.doiorg/10.1016/jscitotenv.2014.02.133
0048-9697/ 2014 Elsevier B.V. All rights reserved.

studies highlighted the influence of natural geochemical factors on the
soil chemistry even in strongly urbanized areas (e.g. Manta et al., 2002;
Rodrigues et al., 2009).

Most published urban soil investigations involve the characteriza-
tion of potentially harmful elements (PHEs), e.g. heavy metals and
metalloids, because of their non-biodegradable nature and their
tendency to accumulate in the human body (Ajmone-Marsan and
Biasioli, 2010). The sources of PHEs in the urban environment can be
either natural, i.e. inherited materials from the underlying parent
materials (e.g., rocks, alluvium, etc.), or anthropogenic (Wong et al.,

* black shale lithologies often contain high
concentrations of Cu, Cd and Mo



Dispersion of trace metals

Metals deposited in adhesive surfaces

(i.e., soil in greenbelt and urban parks)
1

Metals deposited on non-adhesive surfaces
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Transport and deposition of metals in urban settings (Wong et al., 2006)



The roadside environment

airborne (0 - >50 m)

splash water (0 - 10 m)

. -

asphalte or ?‘0‘5*"-"1»?

subsoil

parent material

road edge | constructed soil | disturbed soil undisturbed soil
0-5m 5-10m >10 m

Pathways of metal transport in a roadside environment (Werkenthin et al., 201 4)

Emissions are influenced by road design, volume of traffic,

intersections and driving speed




Influence of distance
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Concentrations of metals in European roadside topsoils as a function of
distance to the road edge (Werkenthin et al., 201 4)



Influence of soll depth
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Urban Geochemical Mapping

Definition

Geochemical mapping is a technique developed in the 1950s to give information
on the spatial distribution of chemical elements at the Earth’s surface. It was
initially applied for the purposes of mineral exploration

Aims

* establishing a baseline for the urban environment

* identify contaminated areas

* assessing the contribution of parent materials and anthropogenic activities to the
geochemical baseline and identifying the sources of elements

* assessing risk to other compartment of the urban environment (e.g. groundwaters,
plants, human population)



Classification

Classification of urban geochemical mapping studies (Johnson and Ander, 2008)

Systematic survey Targeted survey

Entire urban area Targeted land use/area

Interpreted in the context of regional  Interpreted in the context of guideline

baseline values
Ubiquitous sample medium Variety of sample media
100s-1000s samples 1s-10s samples
Full range of elements Selected elements
1-4 samples per km?2 4-50 samples per km?

Done by research
Done by national/public organisations organisations/universities



Definitions of geochemical baseline and

background
_

Definition of geochemical baseline
The concentration at a specific point in time of a chemical parameter in a sample of
geological material. It is a fluctuating surface rather than a given value

Baseline X = f { A, B, C, D}
A = a defined media type, B = a documented sampling method, C = a documented
sample preparation, D = a documented analytical method

Definition of geochemical background
A relative measure to distinguish between natural element concentrations and

anthropogenically-influenced concentrations

Baseline = Background + contribution

Background, unlike a baseline, is determined by interpreting and statistically
treating the geochemical data




1)

2)

Planning urban geochemical mapping

Sampling grid: The urban area has to be defined by a sampling grid (square or triangular
cells) — - sampling cells with larger dimensions for areas with low anthropic pressure
Sampling protocol according to international scientific community guidance. Important
considerations:

a) depth

b) collection of sample from near to the centre of each sampling cell

c) composite sample based on 3 to 5 subsamples with a minimum distance of between any
two subsamples of not < 5 m

Field composite soil sample collected at an urban site



Sample analysis — Extraction techniques

Digestion of the soil samples is a necessity for most instrumental method of analysis

Total digestion

Pseudototal digestion

Single extraction

Sequential extraction

0%  20% 40% 60% 80%  100%
Approaches for the determination of heavy metals in soils (Davidson, 2013).

Increasing proportion of total mineral + metal content dissolved

Resistate
Silicates minerals

Crystalline

Mn oxides Fe oxides

Carbonates and

Adsorbed am. Fe ox.
+

Soluble
phases exchange
species
»

__ Distilledwater ___»
MMI >

The relationship between various chemical
extractions and the extent of mineral
components attacked (Cohen et al., 2010).




Geochemical forms of trace elements

9

Coprecipitatedwith clay-
minerals, Fe, Mn and Al
oxides, calcite

_._$§?- Incorporated in lattice

e
* S
‘e

.

-

Adsorbed on

> . .
organo-mineral colloids

structures of
primary minerals

{ 2;125}

-

Biomass
and vegetable
residues

Free and complexed ions
in soil solution

-«

N

Oxides, hydroxides, [
carbonates, phosphates, ® *

“i . ».“
n:';-df‘:‘,“ Lp o
Ferptr el Complexed

¥ 'Y?' > ‘.". |

oo @ §Te. by humified
Ples’ t A »

wiEndT ST organic matter

sulfides

(Adamo and Zampella, 2008)

Controlling factors for the

of the soil solution, the solid components and their relative affinity for an element.

alteration of metal forms are pH, redox potential, ionic strength




Characterization of trace metals in urban soill
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Implications for risk assessment and human and ecological health risks of urban soils
(Luo et al., 2012)



Geochemical data presentation
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Interpolated geochemical map of
Pb in soils of eastern and central
England (Flight and Scheib, 2011)

Dot distribution map of Pb (n=276)
in surface soils of Derby, UK
(Flight and Scheib, 2011)



Multivariate analysis

Aims

to identify correlations between groups of elements (lithological characteristics, enrichment

phenomena, anthropogenic pollution) and reduce a multidimensional data set to a few
basic components.

Cluster
analysis

Factor analysis

The geochemist has to interpret correctly the correlations and relate each elemental association to
specific phenomena (e.g. contamination sources, geology, geochemical processes)



Multivariate analysis

Pb-Sb-Ag-Au- _ T Ga-La-Al-Ti-
Cd-Cr-Zn-P- & . TI-Th-U-Sc
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Distribution map of factor scores for soils of Naples area (Cicchella et al.,2008)



Source identification of Pb based on Pb isotopes
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History of Pb usage in paints and gasoline in the US
during most of the 20" century (Mielke, 1999)



Source identification of Pb based on Pb isotopes

Radioactive isotopes are characterized by atoms of unstable nuclei that undergo
radioactive decay to daughter isotopes, which, because they from by radioactive decay,
are termed radiogenic. These daughter products may also be radioactive, or they may be
stable. Radioactive decay produces a change in both Z (number of protons) and N
(number of neutrons) from parent to daughter isotope.

v'Lead has 4 naturally stable isotopes, three of which are produced by decay of U or Th:
232Th - 208pb, 235U9 207pb’ 238U -> 206pb

v’ Relative abundance of Pb isotopes are ~52% for 2°8Pb, ~ 24% for 2°°Pb and 23% for 2%7Pb
v Many different types of Pb ore deposits and anthropogenic sources of Pb have distinct isotope signature

v'The Pb isotopic composition of an ore body or anthropogenic source does not change during transition to
a secondary weathering environment unless there is mixing with secondary Pb sources



ZOBPb/ZOGPb

Source identification of Pb based on Pb isotopes

2.14

212

2.10

2.08

2.06

2.04

2.02
1

Radiogenic Pb isotopes (particularly the ratio 2°°Pb /297Pb) have been used to determine
the source of atmospheric Pb contamination. It is possible to identify the source of Pb by
comparing the Pb isotopic composition found at a site with those of potential sources

_ European gasoline

(Monna et al., 1995; Hansmann and Koppel, 2000; Ettler et al., 2004)

* Both China and Europe used alkyllead

[] Py :‘l;;ﬂgzlt::d Carignan, 2001; .
= it additives manufactured from the Pb source ore
|
. from Broken Hill, Australia (2°°Pb /297Pb = 1.04)
|
U.S. gasoline
SRS * The primary source for Pb additives in the U.S
(before 1980s) was from Missouri and Mississippi
?Nooztll.a,f:tn;r;lz%%r;;pe Valley deposi’rs (206Pb/207pb =1 3] -1 35)
A2 1.14 1.16 1.18 1.20

ZOGPb/207Pb

Russian Pb ores (Mukai et al., 2001)

APC residues from Pb metallurgy,
Czech Rep. (Ettler et al., 2004)

Czech galena (Ettler et al., 2004)

Fly ashes from municipal waste
combustors, France, Switzerland
(Hansmann and Koppel, 2000;
Carignan et al., 2005)

Isotope plot showing the isotopic
compositions of different Pb
sources (Komdarek et al., 2008)
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o Processed samples cover area = 240 km?
o Sampling grid 1 km x 1km
o 238 soil samples

1 4- acid attack to determine total elemental
content

o Measurements by ICP-MS
o Duplicate analysis and 2 NIST CRMs



Multivariate grouping of elements
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Concentration by land use

Pb Cu Ni
Public square/
P|ayground/ -l—n; % * PS/P/S —.—- - = PS/P/S —.— * mE o=
School
Park &WOOdland —.— - * RP/W .— RP/W —.— * % *
Road verge -.— ¥ ¥ ¥ * * RV _-'— *owox RV l—.— » *
Unbuild space | -« * s - = * i Jl— - - =
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 0 100 200 300 400 500 600 700  B80O
Zn As Cr
Public square/
Playground/ o, - psprsi  —J— . psiprs|  xff %
School
Park &WOOdIand —-— - RP/W —-— * . - RP/W —.— * == -
Road verge i i —J—==+ rp =l - *
Unbuild space { —}— - * vs;, —Jl—-- - * s: l— - .
0 100 200 300 400 500 600 700 800 0 50 100 150 200 0 200 400 600 800 1000 1200 1400 1600

(mg/kg) (mg/kg) (mg/kg)



Spatial pattern of geogenic PHE elements
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Spatial pattern of anthropogenic PHE elements

Population density by municipalities
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Other possible controlling factors

History of city expansion Traffic
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Soil geochemistry in Athens
Part b: Geochemical reactivity of trace elements
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Chemical extractions
S

Pseudototal content Reactive fraction Available

(aqua regia) (0.43 M HNO,) fraction

Avallability of PHEs was assessed by:
d 0.05 M EDTA (pH=7) — Potential phytoavailability

4 0.43 M CH;COOH - Mobilizable fraction

0 0.4 M glycine (SBET) — Oral bioaccessibility



SEM-EDS results
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Single extraction results

Anthropogenic trace elements
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Single extraction results

Geogenic trace elements
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Influence of pseudototal content
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Regression analysis

1
Based on pseudototal content Based on reactive content

R2adi R2adi

EDQTA EDTA
Q’% o 0 Aqua regia is a better é:) o
éD 90 predictor for Pb and Cu = 65.1
Cd 84.1 availability Cd 74.2
Ni 31.2 (Ni ) 45
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© 755 Mn availability (@ 89.1
Mn 19.3 Cu 71
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81.2 the explained variance SBET
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Mn 59.7




Concentrations of trace elements in different soil particle size
fractions in Athens soil (Kelepertzis et al., 2016)
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Pb concentrations and Pb isotopic ratios
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Source identification of Pb in Athens

®  Athens soil (n=40)
2.187 e galena Lavrion
! 18 local schist
1 . ¢ local limestone
2.16 @ recycled battery sludge
= % tunnel ceiling dust
- . ¢ European leaded gasoline
2.14 - electronics Iaboratgga.mple s Athens hoiiss diist (n= 10)
& 2.12
g x 8
3 l“
n 210-
2 . L")
2.08-
2.06- B%
2'0A I : 1 |

108 110 142 114 116 118  1.20
206Pb/207pb



Relative contribution (%)

Xsample - [(206Pb/ 207P b)sample

- (206Pb/ 207Pb)background / (206Pb/ 2071)b)anthropogenic Pb

- (206Pb/ 207pb)background] x 100
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vehicular derived Pb
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