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ASSTRACT: Field studies of solute fate and transport in streams and rivers often involve an experimental
release of solutes at an upstream boundary for a finite period of time. A review of several standard references
on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection
dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical
solution that considers a continuous load of finite duration is compared to an approximate analytical solution
presented elsewhere. Results indicate that the exact analytical solution should be used for verification of nu
merical solutions and other solute-transport problems wherein a high level of accuracy is required.

ANALYTICAL SOLUTIONS

Continuous Source of Infinite Duration

Two analytical solutions may be found in the literature for
the case of a continuous source of infinite duration. Initial and
boundary conditions for this case are given by:

where C = concentration [ML- 3
]; t = time [T]; U = flow ve

locity [LT- 1
]; x =distance [L]; D =dispersion coefficient [L2

T- 1
]; and A =first-order rate coefficient [T-'].

(1)

(2a)

(2b)

(2c)

C(x, 0) = 0 for x :2: 0

C(O, t) = Co for t :2: 0

C(oo, t) =0 for t :2: 0

Rutherford 1994) or presented in an abbreviated and approx
imate form (Thomann and Mueller 1987).

In this paper, an exact analytical solution to the constant
parameter advection-dispersion equation for a continuous
source of finite duration is presented. The exact analytical so
lution is then compared with an approximate analytical solu
tion that has been published elsewhere (O'Loughlin and Bow
mer 1975; Rose 1977; Thomann and Mueller 1987).

We consider a system in which physical transport is pri
marily one dimensional; Le., solute concentrations are hori
zontally and vertically well mixed such that concentrations
vary only in the longitudinal or downstream direction. In ad
dition, a steady, uniform flow field is imposed and the effects
of dispersion are spatially constant. Finally, any biogeochem
ical processes may be described in terms of first-order reac
tions wherein the transformation rate is proportional to the
solute concentration. Given these assumptions, conservation of
mass yields the constant-parameter advection-dispersion equa
tion with first-order decay (e.g., Runkel and Bencala 1995):

ac ac a2c- =-u - + D - - 'hCat ax ax2

where Co = concentration at the upstream boundary [ML-3].
For the case of conservative solutes (A = 0), the analytical
solution is given by (Ogata and Banks 1961)

INTRODUCTION

Many contemporary water-quality problems involve appli
cation of the advection-dispersion equation. Given specific
initial and boundary conditions, the advection-dispersion equa
tion describes spatial and temporal variations in solute con
centration. A simple form of the governing equation known as
the constant-parameter advection-dispersion equation may be
derived for the case of steady, uniform flow and spatially con
stant model parameters. Analytical solutions for this simplified
form are widely available (Ogata and Banks 1961; Ogata
1964; Thomann and Mueller 1987). The utility of these ana
lytical solutions is twofold: (1) they provide an exact solution
when the problem at hand is aptly described by the constant
parameter advection-dispersion equation; and (2) they provide
a means to check the accuracy of numerical solutions that are
developed for more complex cases.

Published analytical solutions for the constant-parameter ad
vection-dispersion equation generally consider two input-load
ing scenarios. Under the first scenario, a finite amount of mass
is instantaneously released at the upstream boundary of the
modeled system. This type of input function is applicable
when the solutes of interest are introduced into the system over
a short period of time (e.g., a slug injection of dye). In the
second input scenario, solutes are continuously released into
the system at the upstream boundary.

A special case of this latter scenario is that in which the
continuous source is of finite duration. This case is of great
importance as it corresponds to many surface-water applica
tions in which solutes are released at a constant, continuous
rate for a finite period of time. Examples of these applications
include determination of stream hydraulic properties using
tracers (Broshears et al. 1993), determination of reaeration co
efficients (Rathbun 1979), analysis of combined sewer over
flows (Walton and Webb 1994), and assessment of decay
mechanisms for aquatic herbicides (O'Loughlin and Bowmer
1975). Unfortunately, most published solutions for the contin
uous release scenario correspond to the case in which the re
lease continues indefinitely; Le., there is a continuous source
of infinite duration. A review of several standard references
for surface-water-quality modeling indicates that the solution
for a source of finite duration is either not presented (Fischer
et al. 1979; McCutcheon 1989; James 1993; Maidment 1993;
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Co [ (x - Ut) (ux) (x + Ut)]
C(x, t) ="2 erfc 2VDt + exp D erfc 2VDt

(3)

The analytical solution for nonconservative solutes (A :¢;. 0) is
presented by Bear (1972, p. 630) and developed using Laplace
transforms by O'Loughlin and Bowmer (1975)
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Continuous Source of Duration T

Although these solutions are of interest, a far more useful
problem is that in which a continuous source is present for a
finite period of time. Letting T represent the duration of the
continuous source [T], initial and boundary conditions are
given by

An analytical solution for the conditions given in (9) was
developed by Rose (1977) in a commentary on the work of
O'Loughlin and Bowmer (1975). Rose correctly applied the
principle of superposition to (8), yielding an approximate an
alytical solution. For t :5 T, the solution is given by (8). For
t > T, the solution is

C(x, t) = ~o exp (-~x) {erfc [x - ~~+ H)]

_ erfc [x - U(t - T)(1 + H)]}
2VD(t - or) (10)

Recall that the primary purpose of the work presented by
O'Loughlin and Bowmer (1975) and Rose (1977) was to es
timate A. from field data. As such, application of superposition
using the simplified equation was justified, given the stated
assumption that terms involving x + Ut are small and the

Simplified forms of (3) and (4) are often presented in the
literature. Ogata and Banks (1961) state that omission of the
second term in (3) results in a maximum error of 3% for values
of D/Ux < 0.002. Similarly, it can be shown using L'Hospital's
theorem that the terms in (4) involving x + Ut are small rel
ative to the other terms (O'Loughlin and Bowmer 1975). Fol
lowing these ideas, (4) simplifies to

C(x, t) = ~o {exp [: (1 - f)] erfc (x2-:);)} (7)

Because the error introduced by dropping the x + Ut terms
is usually less than that associated with experimental data, the
simplification yielding (7) is frequently employed. Eq. (7) may
be further simplified by noting that for small H (on the order
of 0.(025), r can be approximated by the first two terms in a
binomial expansion [f ... 1 + H, O'Loughlin and Bowmer
(1975)]

C(x, t) =~o {exp (-~x) erfc (x - ~~+ Hl)} (8)

This second simplification is far less typical than the first,
and was introduced by O'Loughlin and Bowmer (1975) in
order to derive an expression for the estimation of A. from field
data.

Co { [ux ] (x - Utf)C(x, t) ="2 exp 2D (1 - f) erfc 2Viii

[
ux ] (x + Utf)}+ exp 2D (1 + f) erfc 2Viii

where

f =VI + 2H

H= 2ADIU2

C(x, 0) =0 for x ~ 0

C(O, t) =Co for T ~ t ~ 0

C(O, t) =0 for t > T

C(oo, t) =0 for t ~ 0

(4)

(5)

(6)

(9a)

(9b)

(9c)

(9d)

assumption of small H. This original work has been cited and
reproduced in a popular and widely read textbook (Thomann
and Mueller 1987). Due to the simplifying assumptions, (10)
is only an approximate analytical solution for the problem at
hand. An exact analytical solution may be obtained by apply
ing the principle of superposition to the original analytical so
lution for a continuous source of infinite duration (4). The
solution for t :5 T is given by (4). For t > T, superposition
yields

C(x, t) =~o {exp [~~ (1 - f)] [erfc (x2~f)

- erfc (x2V~~=~f)] + exp [~~ (l + 0]
. [erfc (\+JT) - erfc (x2V~~t =~)f) ]} (11)

A similar solution that considers the additional processes of
retardation and zero-order production for subsurface applica
tions is given by van Genuchten and Alves (1982).

RESULTS AND CONCLUSIONS

An exact analytical solution to the advection-dispersion
equation subject to a continuous load of finite duration is given
by (11). Development of the approximate analytical solution
given as (10) relies on two assumptions regarding the param
eter groups D/Ux and H. The errors associated with the use of
the approximate solution are therefore problem specific. Here
we examine these errors through a hypothetical example. In
the example, a continuous source with a 2-hr duration (T = 2
he) is imposed such that the concentration at the upstream
boundary is 100 concentration units (Co = 100). The flow ve
locity and dispersion coefficient are fixed (at 0.1 mis and 5.0
m2/s, respectively) and the parameter groups D/Ux and H are
allowed to vary as a function of distance (x) and decay rate
(A.).

Results for the hypothetical example are shown graphically
in Fig. 1. Figs. l(a) and l(b) show the results for a conser
vative solute (A. = 0) at 100 and 2,000 m, respectively. Errors
(the discrepancy between the exact and approximate analytical
solution) in this case are due entirely to the initial assumption
that the term involving x + Ut is small relative to the other
term in (3). As suggested by Ogata and Banks (1961), the error
should decrease as D/Ux becomes small. This is verified by
comparing errors at the first location [Fig. 1(a), x = 100m]
with those at the second location [Fig. l(b), x = 2,000 m], and
noting that the errors decrease as D/Ux decreases from 0.5 to
0.025. Figs. I(c) and led) show the results for a nonconser
vative solute (A. = I X 10-4

) at 100 and 2,000 m. For a non
conservative solute, errors are due to both the initial assump
tion that the x + Vt terms are small and the additional
assumption that H is small. Comparison of Figs. I(a) and I(c)
indicates that the error introduced by the additional assumption
is negligible for short distances (small values of x). In contrast,
the assumption of small H introduces considerable error at
longer distances, as suggested by a comparison of Figs. I (b)
and I(d).

The errors depicted in Fig. I are quantified in Table I where
the maximum error is given as a percentage of the peak con
centration. In general, the errors associated with the use of the
approximate analytical solution decrease with increasing dis
tance for a conservative solute (D/Vx decreases with x) and
increase with increasing A. for a nonconservative solute. An
exception to this trend is noted at x = 100 m, where the percent
error is relatively insensitive to the specified value of A. This
exception is due to the short transport time that limits the
effect of decay.
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x = 100 meters x=2000meters

100

),-0.0
80

Max EIror. 16.8%

60

40
-Exact (Eqn 11)

20
- Approx. (Eqn 10)

·1 0

J100

80 ), = Ixlo-'

Max EIror = 16.3%

60

40

20

00 2 4

TIlDe [hours)

FIG. 1. Exact and Approximate Analytical Solutions: (a) Con
servative Transport (~ = 0) at 100 mj (b) Conservative Trans
port (~ = 0) at 2,000 mj (c) Nonconservatlve Transport (~ = 1 x
10-·) at 100 mj (d) Nonconservatlve Transport (~ = 1 x 10-·) at
2,000m

TABLE 1. Maximum Error as Percentage of Peak Concentra
tion

Distance from Source

Decay rate x= 100 m x= 1,000 m x= 2,000 m
(Is) (DIUx= 0.5) (DIUx =0.05) (DIUx =0.025)
(1 ) (2) (3) (4)

l\ =0.0 (H =0.00) 16.8 7.8 6.7
l\ =5 x 10-' (H =0.05) 16.5 7.9 7.7
l\ = I x 10-4 (H =0.10) 16.3 9.3 11.9
l\ =2 x 10-4 (H =0.20) 16.0 17.1 28.9

Given the power and availability of today's computing re
sources, there is little need for approximate analytical solutions
such as that given by (10). Indeed the use of (10) when testing
a numerical model may lead to incorrect conclusions regarding
the accuracy of the numerical methods under examination. The
exact analytical solution (11) is therefore a more appropriate
tool for model verification. In addition, the results presented
herein indicate that substantial errors may arise through the
use of (10). Therefore, the exact analytical solution given as
(11) should be used for solute-transport problems that require
a high level of accuracy.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

C = solute concentration [ML- 3
);

Co = concentration upstream boundary [ML -3];
D dispersion coefficient [L2 T- 1

);

U = flow velocity [Lr- 1
);

t = time [T);
x = distance [L);
>.. = first-order rate coefficient [T- 1

); and
T = duration of continuous source [T).
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