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Abstract

The analysis of capture zones of pumping wells is useful for designing pumping systems and wellhead protection
programs. Using discharge potentials, equations are derived that can be applied to confined, unconfined, or combined
confined and unconfined aquifers. The transient equations are transcendental and cannot be solved explicitly. However,
infinite-time (steady-state) equations are presented which can be solved. They define an area in which, theoretically, all the
water in the aquifer will eventually reach the pumping well, although the equations do not consider the effects of
hydrodynamic dispersion. Equations for calculating the stagnation point, upgradient divide, and dividing streamline within

the aquifer and an example problem are presented.

1. Introduction

A capture zone is defined as the area of an aquifer in
which all the water will be removed by a pumping well or
wells within a certain time period. Capture zone analysis has
been recognized as an important consideration in the design
of ground-water remediation systems and wellhead protec-
tion programs (Javandel and Tsang, 1986; Lee and Wilson,
1988). Bear and Jacobs (1965) investigated the movement of
water particles injected into aquifers, and their analytical
model is often used for determining capture zones as well.
Several standard ground-water texts have simple equations
for determining the infinite-time (steady-state) capture zone
of a single well in a confined aquifer with uniform regional
flow (for example, Bear, 1979; Todd, 1980). Equations can
be superimposed to calculate the capture zone of multiple
well systems (Javandel and Tsang, 1986), and computer
models have been developed for analyzing multiple wells
and heterogeneous aquifers (for example, McElwee, 1991).
These models include the EPA’s wellhead protection area
(WHPA) package (EPA, 1990).

This paper presents a model for determining capture
zones which is applicable not only to confined aquifers, but
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to unconfined and combined confined and unconfined aqui-
fers as well, Portions of the model development were pre-
sented in Javandel and others (1985) and Bear and Jacobs
(1965). These authors used the potential (K¢) and the spe-
cific discharge to develop the equations. The primary differ-
ence in the model presented here is that the equations are
generalized in terms of discharge potential so they can be
used for confined aquifers, unconfined aquifers, and com-
bined confined and unconfined aquifers by simply using the
appropriate definition of one parameter, the discharge
potential. The discharge potential concept was developed
over 20 years ago and is fully documented in Strack (1989)
and discussed by Marsily (1986), but it is not widely used.

2. Analytical Model

The assumptions for this model are as follows:

® The aquifer is homogeneous, isotropic, and infinite
in horizontal extent.

® Uniform flow (steady-state) conditions prevail.

® A confined aquifer has a uniform transmissivity and
no leakage through the upper or lower confining layers. An
unconfined aquifer has a horizontal lower confining layer
with no leakage, rainfall infiltration, or other vertical
recharge. The effect of these assumptions is discussed later.

® Because the equations assume steady-state condi-
tions, the storativity of a confined aquifer and the specific
yield of an unconfined aquifer have been neglected. Hydro-
dynamic dispersion is also neglected.

® Dupuit assumption, i.e. vertical gradients are
negligible.
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® The well is fully penetrating, is open over the thick-
ness of the confined or unconfined aquifer at the well, and
pumps at a constant rate.

Complex potentials are used to describe the distribu-
tion of discharge potentials throughout the aquifer, For
background on the mathematics of complex potentials,
Strack (1989, p. 269) gives a good, concise overview of the
theory of complex functions. The complex potential for
uniform regional flow in the (x, y) plane is

0 =—-Qoze'*+ C (D
and the complex potential for a well is (Strack, 1989, p. 279)
Q:&ln(z—zw)-%-C (2)
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where Qo = discharge vector of uniform flow; z = complex
potential = x + 1y; zw = complex potential at the well;
a = angle between the x axis and uniform flow;
Qw = discharge from the well; and C = constant which
corresponds to the elevation of the bottom of the aquifer.
Assume that C = 0. Note that

e’ = cosa — isina (3)
and
do do
Q=Qu+Qov=—+— 4
dx dy

where Qo = x component of uniform flow; Q,0 =y compo-
nent of uniform flow; and & = discharge potential.

The discharge potential is defined differently for con-
fined, unconfined, and combined confined and unconfined
aquifers as follows (Strack, 1989, p. 49):

$ = Kbo
® = K’

Confined aquifer:
Unconfined aquifer:

Combined confined and
unconfined aquifer: & = Kb¢ — 4Kb?

for confined part

d = K¢’
for unconfined part

where K = hydraulic conductivity; b = confined aquifer
thickness; and ¢ = hydraulic head (or phreatic head) above
the bottom of the aquifer. Writing equations in terms of
discharge potentials is useful because the same equations
may be used for all three types of aquifers by simply using
the appropriate definition for &.

Because the complex potentials and the boundary con-
ditions considered are linear and homogeneous, any linear
combination of complex potentials can also be solved
according to the principle of superposition. Superimposing
(adding) the complex potentials for uniform flow and for
flow to the pumping well gives

Q=&+ ¥, =—Qpze i+ 5221 In(z — zw) (%)
T

where ¥ = stream function.
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The real and imaginary parts of (5) are
® = —Qo ([x — xw]cosa + [y — yw] sina)
Q

+ 1—‘” In([x = xw]’ + [y — ywI’) (6)
ki
¥ = Qo ([x — Xw] sina + [y — yw] cosa)
Qw (Y~ V¥w
+ 2" tan X_XW) %)

where Xw, yw = X and y coordinates of the well,
The velocity components vx and vy in the x and y
directions, respectively, along a particular streamline are

dx I do —Qocosw
YT —d;- B Bn &‘ N Bn
Qw[x — xv]
2eBn(x -l Iy wl)
dy I d®  —Qosina
WS T Be dy T Ba
Qwly — ywl )

2mBn([x — xw]* + [y — ywl’)

where n = porosity; t = time since pumping began; and
B = aquifer thickness defined for different aquifers as
follows

Confined aquifer: B=b

Unconfined aquifer: B=2¢

Combined confined and

unconfined aquifer: B=Db for confined part
B=¢ for unconfined part

For this problem assume that the uniform flow is in the
direction of the x axis so that « = 0. Equation (7) can then be
written

2
X — Xw = [y — yw] cotan 6‘ (¥ — Qoly — yw]) (10)

Substituting (10) into (9) yields
27Bn
dt =
Qw

5 2
[y — yw]esc o (¥ — Qo[y — ywl) dy

co (1D
After integrating,

. = Boly = yw]
Qo

BnQw
27TQ02
where f (W) is a constant dependent on the particular stream-
line considered. Equation (12) describes the time when water
particles starting at a specific (X, y) coordinate along the

streamline will reach the pumping well. When pumping first
begins, the particles closest to the well will be captured

2
t— (¥ — Qo — Yw
co Qw( Qoly ~ yw])

2T
+ In sin 6— (T — Qoly —yw]) +f(¥) (12)



immediately. In other words, X = xw,y =yw,t=0willbe a
solution to the equation. Therefore

—Bn 2T

———Q—z“i Insin — ¥ (13)
27rQo Qw

Substituting (13) into (12) yields

() =

t= B_n[_ylw] cot é—ﬂ- (\P—QO[Y—YW])

Qo
.27
sin — (¥ — Qo[y — yw])
Bn Qw
+ > In (14)
27TQO . 2
sin — ¥
w

Substituting (7) into (14) yields
(= Bn[x — xv] _ BnQu

Qo 2Q0°
2
sin(Q—7r— Qoly ~ ywl + 0)
In hl - (15)
sin 6

where 6 = tan™ ([y — yw]/[X — xw])-
Three dimensionless parameters may be introduced:

_ 27Qo _ 27Qe _ 27Qb
X = [x—xu; y= [y —yuls t= t
Qw Qw Ban
... (16)
Substituting (16) into (15) yields
- sinf
t=x+In ——— (17)
sin(y + 6)
or
- - X _
e* ~ ' =siny — + cosy (18)
y

Bear and Jacobs (1965) provide additional analysis of
equation (18) and its implications for ground-water trans-
port in confined aquifers. Unfortunately, equation (18) is
transcendental and cannot be solved explicitly for either x
or y. Iterative solutions have been developed for solving
special cases of the equation (for example, McElwee, 1991).
These solutions are valid for unconfined aquifers as well if
the dimensionless parameters introduced in equation (16)
are used in equation (18).

3. Single Well in Uniform Flow at Infinite Time
(Steady State)

A quick and simple analysis which is useful for many
hydrogeologic projects is determining the capture zone of a
single well in uniform flow at infinite time, or steady state.
This will define an area in which all the water in the aquifer
will reach the well if the well pumps for a sufficiently long
time. At infinite time equation (18) can be simplified con-
siderably and solved for x. The equations below give three

critical parameters, the stagnation point, the upgradient
divide, and the equation for the dividing streamline.

For simplicity, consider xy =0, yw =0, and a = 0 as
shown in Figure 1. The stagnation point is where vx = vy =
0. From equation (9) it is clear that vy =0 when y =y =0.
Substituting into equation (8) and solving for x yields

Qw
27 Qo

where Xsrag is the distance from the well to the downgra-
dient stagnation point. Ast — o, the equation for a stream-
line [equation (18)] becomes

(19)

XSTAG —

X= —> (20)

As x — o then tan y — 0, and y — N7 where N = integer.
Therefore, by equation (16), as x — %

y - oo
2Qo

Substituting equation (21) into equation (7) with x — ¢
yields

@n

_ NQw
v=— (22)

The dividing streamline will approach the stagnation
point. Substituting equation (22) and the coordinates of the
stagnation point into equation (7) yields N = 1. Therefore,
as x — oo, the dividing streamline will approach the line

yoiv = £ —— (23)

which represents half the width of the capture zone far
upgradient of the well. Considering that N = 1, substituting
equation (16) into equation (20) yields the equation for the
dividing streamline

=7 (24)
27 Qo
tan(——— y
Qw
{ly
Xsta0 = —2—“_6—0 N xe— Y
20, .2
3 Yor " 20,
(¥ =0)

|

\

-
‘} Direction of Q,

|

Fig. 1. Stagnation point, upgradient divide, and dividing stream-
line at infinite time (steady state).
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The stagnation point, upgradient divide, and dividing
streamline are shown on Figure 1. Because the direction of
uniform flow for this problem is aligned with the x axis,
d®/dy =0 and

_de B — P

Q= dx L @)

where ¢; and ¢, = downgradient and upgradient discharge
potentials, respectively, along a streamline before pumping
begins; and L = distance between the locations where ®;
and $, were measured. The equations for the stagnation
point, upgradient divide, and dividing streamline can be
simplified into more common terms by substituting the
above definition for Qo and the appropriate definitions for
®. For a confined aquifer

Qw
27 Ti

where i = natural hydraulic gradient = d¢/dx and
T = aquifer transmissivity = Kb,

(26)

XSTAG =

yowv = * 2Q,I‘j/1 27
and the dividing streamline is
X = ————y—— (28)
tan ( 27 Ti y)
a
Qw
For an unconfined aquifer
QwL
X = — 29
STAG 77-K(¢)f — d)%) ( )
QwL
Yoiv = X (30)
K(1 — ¢3)
and the dividing streamline is
y
X = 3n
7K (¢! — ¢3) y]
QwL.

Equations (19), (23), and (24) can also be applied to
combined confined and unconfined aquifers. To calculate
Qo for this scenario, substitute the appropriate definition for
& into equation (25) based on whether ¢ was measured in
the confined or unconfined part of the aquifer. For example,
if @, is measured in the unconfined portion of the aquifer
and @, is measured in the confined portion of the aquifer,
then ®, = % K1 and &, = Kbeh, — 14K b’. Substituting into
equation (25) yields

K (¢! — 2bey + b?)
= 32
Qo oL (32)
Note also that equation (6) may be used to obtain
values of & throughout the aquifer by substituting the
appropriate x and y coordinates. The effect of several pump-
ing (or injection) wells on the value of ® at any point in the
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aquifer may also be determined by using equation (6) and
the principle of superposition. A separate equation for ® is
written for each well being considered based on its Xw, yw,
and Qw. The separate equations are then added to yield one
equation for @ for any point in the aquifer.

4. Example Problem

The data for this example problem were adapted from
a site in Wisconsin which formerly had a leaking under-
ground storage tank. The leak had been detected shortly
after it occurred, and a pumping well was to be installed to
contain the spread of petroleum hydrocarbon contamina-
tion in the aquifer. The project hydrogeologist needed to
determine the capture zone of the well as part of the pump-
ing system design and evaluation.

In this example, the problem will be solved assuming
the aquifer is confined [using equations (26)-(28)] and
unconfined [using equations (29)-(31)], and the results will
be compared. A site map is shown on Figure 2. Note that the
x-axis has been aligned with the ground-water flow
direction.

The aquifer and well characteristics are: Hydraulic
conductivity (K) (determined from aquifer tests): 72 ft/day;
Elevation of the lower confining layer: 1618.00 ft; Elevation
of the upper confining layer (confined aquifer only): 1629.00
ft; Measured ground-water elevations in piezometers:
P-1=1630.50 ft and P-2 = 1629.50 ft; Distance between
P-1 and P-2 (L): 235 ft; Pumping rate (Qw): 963 ft’/day
(5 gpm); ¢1 = 1630.50 ft — 1618.00 ft = 12.50 ft; and
¢2=1629.50 ft — 1618.00 ft = 11.50 ft. A cross section of the
aquifer is shown on Figure 3.

For the confined aquifer:

= 1629.00 ft — 1618.00 ft = 11.00 ft
T = Kb = 790 ft*/day
& —

= ——— =0.00425
L
Qw
X = =46 ft
STAG ﬂ'Tl
ypiv = = EQT_“; = &£ 140 ft
and the dividing streamline is
_ y _ Y
27Ti tan 0.022
tan( - y) Y
Qw
For the unconfined aquifer:
QwL
X = =42 ft
STAG X (dﬁ — d’%)
QwL
=+ ————— = + 130 ft
T K@ - e

and the dividing streamline is
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Fig. 2. Site map for the example problem showing the calculated
capture zones.
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Fig. 3. Cross section of the aquifer along the x-axis.

_ y _ y
7K (¢1 — ¢3) tan 0.024y
tan| ———— y]
QwL

The results of the analyses are shown on Figure 2.

5. Limitations of the Model

The steady-state equations presented in Section 1
neglect the influence of storativity and specific yield. The
significance of this assumption decreases as pumping con-
tinues, and by definition storativity and specific yield = 0 at
infinite time (steady state). Bear and Jacobs (1965) present a
discussion of the effect of neglecting storativity for a con-
fined aquifer with an injection well. They state that the
actual front of the water injected from the well will lag

behind the calculated front due to the storativity of the well
and the aquifer. Similarly, in a pumping situation the actual
capture zone will be somewhat smaller than the calculated
capture zone due to the water being removed from storage.

The influence of water naturally added to or subtracted
from the aquifer system other than regional uniform flow
(leakage and infiltration) is not included in the equations.
For unconfined aquifers, this may be a good assumption in
urban areas or other areas where drainage systems prevent
rainfall infiltration. If the addition of water to the aquifer
through leakage and infiltration were considered in the
equations, the result would be a smaller calculated capture
zone.

The model is based on the Dupuit assumption, i.e.,
vertical gradients are negligible. For this reason, the model
may not be accurate in areas of aquifer recharge or dis-
charge, including the area near a well.

Hydrodynamic dispersion is commonly neglected from
capture zone analyses. If dispersion were included in the
analysis, there would not be a sharp capture zone boundary
but rather a wide boundary with width proportional to the
dispersion coefficient. Within the boundary only some frac-
tion of the water particles would be captured by the well
after a given time.

While the capture zone equations are clearly useful for
solving problems related to contaminant transport or well-
head protection, it should be noted that the equations con-
sider only advective flow. The solution to a contaminant
transport problem must also incorporate the effects of dis-
persion, diffusion, sorption, degradation, and retardation.

6. Conclusions

Despite the assumptions and simplifications necessary
to derive these equations, the equations can provide useful
information for designing pumping systems or wellhead
protection programs. Although they do not consider
hydrodynamic dispersion, equations (26) through (31) are
particularly useful for a quick analysis of critical properties
of an aquifer and pumping system. While the many assump-
tions greatly restrict its applicability, users of the model
should find many hydrogeologic problems of limited scope
which could benefit from this analysis. The model presented
in Section 2 is developed in terms of discharge potentials,
which makes the equations applicable to confined, uncon-
fined, and combined confined and unconfined aquifers.
Previously derived capture zone equations (and computer
programs) could also be modified and written in terms of
discharge potentials to make them applicable to both con-
fined and unconfined aquifers.

Computer Programs

A computer program is available which will solve and
graph the capture zone equations in this paper. Included on
the same computer diskette are spreadsheets for Lotus 1-2-3
and Quattro Pro which solve and graph these equations and
other equations commonly used for well design and ground-
water modeling. To order these programs, send a check or
money order for $20 to Grubb Environmental Services,
2233 15th Avenue, North St. Paul, MN 55109. Please indi-
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cate whether you prefer 5.25-inch or 3.5-inch IBM format-
ted diskettes.
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Nomenclature
B aquifer thickness [L];

b confined aquifer thickness [L];

C constant which corresponds to the elevation of the
bottom of the aquifer;

i natural ground-water gradient [L/L];

K hydraulic conductivity [L/ T];

L distance between locations where ¢, and &, were
measured [L];

n porosity;

N integer constant;

Qo discharge vector of uniform flow (L% T];

Q.  discharge from the well [L’/ T];

Q.  x component of uniform flow [L*/ T];

Qe y component of uniform flow [L* T);

t time since pumping began [T];

T aquifer transmissivity [L*/ T7;

Vx velocity component in the x direction [L/T];
Vy velocity component in the y direction [L/T];

xstac distance from the well to the downgradient stagna-
tion point [L];

Xw x coordinate of the well [L];

yoiv y coordinate of the dividing streamline far upgra-
dient of the well [L];
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Yw y coordinate of the well [L];

z complex potential x + iy;

Zw complex potential at the well;

angle between the x axis and uniform flow;
tan” ([y — yw)/[x — xu]);

discharge potential [’/ T};

P, downgradient discharge potential [L’/ T];

D

b, upgradient discharge potential [L’/ T];

¢ hydraulic head (or phreatic head) above the bottom
of the aquifer [L]; and

v stream function [L*/ T].
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