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Chapter 1

Introduction to MATLAB

Exercises
1.1. Which familiar rectangle is closest to a golden rectangle.

w = [5 11 14 12 16 1024];
h = [3 8.5 8.5 9 9 768];
w./h
abs(w./h-phi)
1.6667 1.2941 1.6471 1.3333 1.7778 1.3333
0.0486 0.3239 0.0290 0.2847 0.1597 0.2847

8.5-by-14 inch US legal paper is closest.

1.2. ISO standard A4 paper.
297/210 = 1.4143 ≈ sqrt(2).
Folding A4 paper in half preserves its aspect ratio.
(A4 is A3 folded in half, A5 is A4 folded in half.)
See a4paper.m.

1.3. How many terms in the continued fraction?

goldfract(22)
err = 5.4457e-010.

for n = 37:39
goldfract(n)

end
err = [-eps, eps, 0]

1.4. Use backslash to compute coefficients.
Numerically:

1
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phi = (1 + sqrt(5))/2;
A = [ 1 1; phi 1-phi]
b = [ 1; 1]
c = A\b
= [0.7236; 0.2764]

Symbolically:

syms phi
A = [ 1 1; phi 1-phi]
b = [ 1; 1]
c = A\b
= 1/(2*phi-1)*[phi; 1-phi]

1.5. Slope of the line.
log(fn) ≈ log(φ) · n, so the slope is approximately log(φ)

1.6. Let Tn = execution time of fibnum(n). Tn satisfies Tn ≈ Tn−1 + Tn−2.
Measure Tn for, say, n = 20 and n = 21. Then use this recursion to compute
Tn for n = 50.

tic, fibnum(20), T(20) = toc;
tic, fibnum(21), T(21) = toc;
for n = 22:50

T(n) = T(n-1)+T(n-2);
end
T(50)
T(50)/60/60/24

On my machine, I get T(50) = 7.9083e+5 seconds = 9.1532 days.

1.7. Largest floating point Fibonacci number.
fn ≈ cφn, c = .7236

n = (log(1/eps)-log(c))/log(phi)
= 75.5741

f76 ≈ 1/eps. Actually, f77 is also computed exactly.

n = (log(realmax)-log(c))/log(phi)
= 1475.7

f1475 does not overflow, but f1476 does.

1.8. Repeat X = A*X.

An =
(

fn fn−1

fn−1 fn−2

)

A1475 does not overflow, but A1476 does.

1.9. See fernpink.m. Lines changed from fern.m:
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set(gcf,’color’,’black’,’menubar’,’none’, ...
’numbertitle’,’off’,’name’,’Fractal Fern’)

pink = [3/4 1/2 1/2];
stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...

’background’,’black’,’foreground’,pink);

1.10. Resizing the fern window causes all memory of the points to be lost. finitefern.m
saves the points in a Matlab array instead of in the graphics hardware. This
allows Matlab to plot the points again for printing or refreshing the screen.

1.11. See fernflip.m. Lines changed from fern.m:

h = plot(x(2),x(1),’.’);
axis([0 10 -3 3])
set(h,’xdata’,x(2),’ydata’,x(1));
text(-1.5,-0.5,s,’fontweight’,’bold’);

1.12. The length of the base stem of the fern is A4(2,2)*max(x(2)), or roughly
.16*10 = 1.6. Successively shorter copies of this stem appear up the spine
of the fern.

1.13. The coordinates of the lower end of the fern’s stem are (0,0).

1.14. The coordinates of the upper tip end of the fern can be found by iterating
the statement x = A1*x + b1 a few hundred times, or, preferably, by solving
the equation for the fixed point,

x = A1x + b1

(I −A1)x = b1

I = eye(2,2);
x = (I - A1)\b1

Either approach gives

x =
(

2.6566
9.9585

)
.

1.15. Fern trajectories.
See ferntrajs.m.
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1.16. Make your own fern.png.

1.17. Sierpinski’s triangle.
See sierpinski.m and finitesierpinski.m.

1.18. greetings(phi) needs phi to be irrational. Of course, there are no irrational
floating point numbers, but greetings(phi) works best if phi is not the ratio
of two small integers. phi = (1+sqrt(2))/5 is interesting.

1.19. 4-by-4 magic square is singular.

A = magic(4)
null(A)
null(A,’r’)
null(sym(A))
rref(A)

These four statements are four different ways to discover that the 4-by-4
magic square is singular and that the linear combination of its columns

A(:,1) + 3*A(:,2) - 3*A(:,3) - A(:,4)

is the zero vector.
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1.20. Permuting the rows and columns of a magic square preserves the row sums,
the column sums, and the matrix rank, but not the diagonal sums. (Sym-
metric permutations, A = A(p,p), also preserves the diagonal sums.)

1.21. On old teletypes, ASCII character 7 rang a bell. On modern computer ter-
minals, disp(char(7)) in Matlab usually produces a dull thud, but the
sound can be changed with the operating system.

1.22. The output produced by display(char([169 174])) depends upon the font
being used in the command window. With most fonts, the command displays
the copyright symbol, c©, and the registered symbol, r©.

1.23. Fundamental physical law.

crypto(s)
= A rolling stone gathers Momentum

(Another question: why did I choose to capitalize the M?)

1.24. Run crypto on the Gettysburg address.

encrypt gettysburg.txt tempfile.txt
type tempfile.txt
encrypt tempfile.txt
delete tempfile.txt
encrypt encrypt.m

1.25. Analyze the text of the Gettysburg address.
See gettysburg.m.

nchar = 1463
uniq = ,-.BFGINTWabcdefghiklmnopqrstuvwy
nuniq = 35
nblank = 255
nperiod = 10
ncomma = 19
ndash = 7
most = E
missing = JXZ

A B C D E F G H I K L M N O P Q R S T U V W Y
0

20

40

60

80

100

120

140

160

180
Gettysburg Address
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1.26. Two-character strings that crypto does not change. The experiment

for i = 0:94
x = char(32+i);
for j = 0:94

y = char(32+j);
if isequal(crypto([x y]),[x y])

disp([x y])
end

end
end

shows that each character x has a conspiring character y so that crypto([x y])
is equal to [x y]. It turns out that [1; 62] is a mod 97 eigenvector of A.
Consequently, the list of invariant pairs is generated by

x = char(32:126)’;
y = char(mod(62*(double(x)-32),97)+32);
[x y]

Some of the character pairs are: ’1t’, ’CD’, ’SZ’, ’Uu’, ’Vr’.

1.27. It’s easy to find other matrices with mod(A*A,97) == I. Here’s a brute force
approach

A = [];
while ~isequal(mod(A*A,97),eye(2,2))

A = ceil(100*rand(2,2));
end
A

One such matrix is A = [95 96; 100 99].

1.28. crypto works with the characters char((0:96)+32). This would include
char(127) and char(128). The first of these is nonprinting and the second
is often nonprinting. So, two other characters from the extended ASCII char-
acter set are chosen to replace these two. The remaing extended characters
are mapped into characters below ASCII 127.

1.29. crypto with just 29 characters.
See crypto29.m

1.30. 3n + 1 sequence for n = 5, 10, 20, 40, . . .
The sequence generated by n = 2p · 5 is

n, n/2, n/4, · · · , 10, 5, 16, 8, 4, 2, 1

The plot is always decreasing, except for the one jump from 5 to 16.

1.31. 3n + 1 sequence for n = 108, 109, and 110.
The first nine steps are
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108 109 110
54 328 55
27 164 166
82 82 83
41 41 250

124 124 125
62 62 376
31 31 188
94 94 94

After that, the sequences are the same. All three sequences have length 114.

1.32. L(n) = length of 3n + 1 sequence.
See length3np1.m

L = zeros(1,1000);
for n = 1:1000, L(n) = l3np1(n); end
plot(L)
n = find(L==max(L))
l3np1(n)
threenplus1(n)

The longest sequence has n = 871, L(n) = 179.

1.33. How many floatgui numbers?

text(.9*xmax,2,num2str((emax-emin+1)*2^t))

1.34. Explain output from

t = 0.1; n = 1:10; e = n/10 - n*t

There is one roundoff error when evaluating n/10 and two when evaluating
n*(1/10). It turns out that

4*e/eps = [0 0 -1 0 0 -2 -2 0 0 0]

This shows that the computed value of n/10 is one bit less than n*(1/10)
for n = 3, 6, and 7. In these cases, the exact value n/10 falls between the
two floating point values.

1.35. What does each of these programs do?

x = 1; while 1+x > 1, x = x/2, pause(.02), end

Exhibits roundoff. The program produces 53 lines of output. The last two
values of x are eps and eps/2.

x = 1; while x+x > x, x = 2*x, pause(.02), end

Exhibits overflow. The program produces 1024 lines of output. The last two
values of x are 2^1023 ≈ realmax/2 and Inf.
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x = 1; while x+x > x, x = x/2, pause(.02), end

Exhibits underflow. The program produces 1075 lines of output. The last
two values of x are eps*realmin and 0. (On computers without subnormal
floating point numbers, this program would produce 1023 lines of output.
The last two values would be realmin and 0).

1.36. format hex

4059000000000000 = 100
3f847ae147ae147b = 1/100
3fe921fb54442d18 = pi/4

1.37. F is the set of all finite, normalized IEEE numbers.

(a) How many elements are there in F?
For each value of sign s and exponent e there are 252 possible fractions. There
are two possible values of s and, excluding the denorms and the NaN/Infs,
211 − 2 possible values of e. So the cardinality of F is
2 · (211 − 2) · 252 = 18428729675200069632.

(b) What fraction are 1 ≤ x < 2?
(c) What fraction are 1/64 ≤ x < 1/32?
Same fraction between any two consecutive powers of two, namely
1/(2 · (211 − 2)) = 1/4092.

(d) What fraction satisfy x*(1/x) == 1?

k = 0;
for n = 1:2^20

x = rand;
if x*(1/x) == 1

k = k+1;
end

end
k/2^20

Between 0.846 and 0.847.

1.38. Quadratic formula.
With b = −108, you get few if any accurate digits out of −b−√b2 − 4 unless
you compute the intermediate results to very high precision. In Matlab
there is no trouble with

x1 = (10^8 + sqrt(10^6-4))/2 = 1.0000e+008

But

x2 = (10^8 - sqrt(10^16-4))/2 = 7.4506e-009

when it should be 1.0000e-008. Clearly
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x2 = 1/x1

works well in this situation. Alternatively,

roots([1 -10^8 1])

gives two good roots, 1.0000e+008 and 1.0000e-008.

1.39. Power series for computing sin x.
The loop test in powersin terminates when s+t == t, that is when t is so
small compared to s that the computed value of s+t is equal to s.
Change the first line of powersin.m to

function [s,tmax,cnt] = powersin(x)

Insert these lines before the start of the while loop.

tmax = abs(t);
cnt = 0;

Insert these lines in the loop.

tmax = max(tmax,abs(t));
cnt = cnt+1;

Here is a table of x, sin(x)-powersin(x), tmax, and cnt.

pi/2 11*pi/2 21*pi/2 31*pi/2
2.2204e-016 -2.1287e-010 -1.3324e-004 -5.8210e+003
1.5708e+000 3.0665e+006 1.4673e+013 7.9890e+019

11 37 60 79

We see that when the largest term is about 10p, the computed value looses
about p digits. The power series is OK for x less than π/2. But as x increases,
the power series requires more work and yields less accuracy.

1.40. Steganography. See steganall.m. There are 16 images hidden in the default
cdata for the Matlab image function.

1.41. (a)

function S = spiral(n)
S = [];
for m = 1:n

S = rot90(S,2);
S(m,m) = 0;
p = m^2-m+1;
v = (m-1:-1:0);
S(:,m) = p-v’;
S(m,:) = p+v;

end
if mod(n,2)==1

S = rot90(S,2);
end
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(b) Half of the diagonals of spiral(n) contain even numbers.
(c) S = spiral(2*n)

j = 1:n-2, S(n+1,1:n-2) is divisible by n-j
j = n+2:2*n, S(n-1,n+2:end) is divisible by j-n

(d) For n = 17 and n = 41, primespiral(n,n) has n-1 primes on the main
diagonal.
(e) primespiral(n,6) has 9 primes on an anti-diagonal.

1.42. See trinumspiral.m

1.43. Length of roman numerals. Eg. 88 = ’LXXXVIII’, so f(88) = 8.

1.44. (a) On which day of the week were you born?

birthday = datenum([year,month,day])
datestr(birthday,8)

(b) Which week day is the most likely for your birthday?

cnt = zeros(1,7);
for y = 2000:2399

w = weekday(datenum([y,month,day]));
cnt(w) = cnt(w)+1;

end
cnt
bar(cnt)
set(gca,’xticklabel’,{’Su’,’M’,’Tu’,’W’,’Th’,’F’,’Sa’})

(c) What is the probability of Friday the 13th.

cnt = 0;
for y = 1:400

for m = 1:12
d = datenum([y,m,13]);
if weekday(d) == 6

cnt = cnt+1;
end

end
end

cnt = 688
cnt/4800 = 43/300 = .143333

1.45. Biorhythms.
See biorhythm.m and biorhythmzero.m.
The biorhythm period is
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lcm(lcm(23,28),33) = 21252
The first time all of your cycles return to zero simultaneously is halfway
through this period, that is 10626 days or 29 years, one month and three
days after birth. Here is the biorhythm in November, 2003, for someone born
in October, 1974.

10/23 10/30 11/06 11/13 11/20 11/27 12/04 12/11 12/18
−100

−50

0

50

100

11/20/03

birthday: 10/17/74

Physical
Emotional
Intellectual
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Chapter 2

Linear Equations

Exercises
2.1. Buying fruit.

A = [3 12 1; 12 0 2; 0 2 3]
b = [2.36; 5.26; 2.77]
format bank
x = A\b

x =
0.29
0.05
0.89

2.2. Reduced row echelon form of the magic square of order six.

rref(magic(6))

1 0 0 0 0 -2
0 1 0 0 0 -2
0 0 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 2
0 0 0 0 0 0

13
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2.3. See mytruss.m.

x = [-28.2843, 20.0000, 10.0000, -30.0000, 14.1421, 20.0000,
0, -30.0000, 7.0711, 25.0000, 20.0000, -35.3553, 25.0000]

−28.3 10 14.1 0 7.07 20 −35.4

20 20 25 25

−30 −30

10 15 20

2.4. A small network of resistors. See circuit.m

2.5. (a) Which are positive definite?

M = magic(n) no
H = hilb(n) yes
P = pascal(n) yes
I = eye(n,n) yes
R = randn(n,n) no
R = randn(n,n); A = R’ * R yes
R = randn(n,n); A = R’ + R no

Matrices generated by

R = randn(n,n); A = R’ + R + n*eye(n,n);

may or may not be positive definite, depending upon the specific random
matrix generated.
(b) See mychol.m.

2.6. A badly conditioned matrix that does not produce small pivots in Gaussian
elimination.

A = eye(n,n) - triu(ones(n,n),1)

Let X = A−1.
sum(abs(A)) is 1:n, so ‖A‖1 = n.
sum(abs(X)) is 2.^(0:n-1), so ‖X‖1 = 2n−1.
κ1(A) = ‖A‖1‖X‖1 = n2n−1.
For n = 48, n2n−1 > 1/eps.
Near null vector: z = X(:,n), norm(z,1) == 2^(n-1), norm(A*z,1) == 1
In Gaussian elimination with partial pivoting, all pivots = 1.
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A pivot strategy that will produce smaller pivots than partial pivoting: At
the k-th stage, choose A(k,k+1). That’s just to the right of the highlighted
pivot. Produces U(n,n) = 1/2^(n-2).

2.7. Determinant. See lutxsig.m and mydet.m.

function [L,U,p,sig] = lutxsig(A)
....
p = (1:n)’;
sig = 1;
for k = 1:n-1

....
% Swap pivot row

if (m ~= k)
sig = -sig;
....

end
....
end

function d = mydet(A)
[L,U,p,sig] = lutxsig(A);
d = sig*prod(diag(U))

2.8. Explicit for loops. See lutxloops.m.
On a 1.4 GHz Pentium M laptop running MATLAB 6.5, each of the following
reports an elapsed time of about 5 seconds.

n = 1920, A = randn(n,n); tic, lu(A); toc

feature accel on, feature jit on
n = 528, A = randn(n,n); tic, lutx(A); toc
n = 525, A = randn(n,n); tic, lutxloops(A); toc

feature accel off, feature jit off
n = 528, A = randn(n,n); tic, lutx(A); toc
n = 130, A = randn(n,n); tic, lutxloops(A); toc

2.9. Singular system.

A = [1 2 3; 4 5 6; 7 8 9]; b = [1; 3; 5];

(a) p = [1/3; 1/3; 0] is a particular solution.
z = null(A,’r’) = [1; -2; 1] is a null vector.
For a free parameter t, x = p + t*z is the general solution.
(b) Elimination with exact arithmetic would produce U3,3 = 0 and c3 = 0, so
back substitution would start with x3 = 0/0. This arbitary value corresponds
to the free parameter t.
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(c) x = bslashtx(A,b) = [13/3; -23/3; 4]
dbstop in bslashtx/backsubs shows back substitution begins with
x(3) = y(3)/U(3,3) = (2/eps)/(eps/2) = 4
This is a good solution because the residual, r = b - A*x, is small. This is
a bad solution because bslashtx does not give any warning that the solution
is not unique, and that the error, e = x - inv(A)*b, is not even defined.
(d) x = A\b = [17/6; -14/3; 5/2]
The builtin backslash operator does the arithmetic in a different order, using
a column-oriented algorithm where bslashtx uses a row oriented algorithm.
The function bslashtx2 from the next exercise uses the same algorithm as
the builtin backslash. The back substitution starts with
x(3) = x(3)/U(3,3) = (5/4*eps)/(eps/2) = 5/2
The different values of x(3) obtained by the different algorithms correspond
to different values of the free parameter t in the theoretical general solution.

2.10. See bslashtx2.m. The forward and backsubs subfunctions in bslashtx
use inner product, row-oriented algorithms to solve triangular systems. In
bslash2tx replaced by the following column-oriented subfunctions.

function x = forward(L,x)
[n,n] = size(L);
for k = 1:n

x(k) = x(k)/L(k,k);
i = k+1:n;
x(i) = x(i) - L(i,k)*x(k);

end

function x = backsubs(U,x)
[n,n] = size(U);
for k = n:-1:1

x(k) = x(k)/U(k,k);
i = 1:k-1;
x(i) = x(i) - U(i,k)*x(k);

end

2.11. See myinv.m

2.12. See lutx2.m

function [L,U,p] = lutx2(A)
%LUTX2 Triangular factorization, textbook version.
% With three output arguments, [L,U,p] = LUTX2(A) produces
% a unit lower triangular matrix L, an upper triangular
% matrix U, and a permutation vector p, so that L*U = A(p,:)
%
% With two output arguments, [L,U] = LUTX2(A) produces a
% "psychologically lower triangular matrix" L (i.e. a product
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% of lower triangular and permutation matrices), and an
% upper triangular U so that L*U = A.
%
% With one output argument, LUTX2(A) returns a single matrix
% containing L-I+U. The pivot information is lost.

The code for lutx2.m is the same as lutx.m, except the final section,

% Separate result
if nargout == 3

L = tril(A,-1) + eye(n,n);
elseif nargout == 2

L(p,:) = tril(A,-1) + eye(n,n);
else

L = A;
end
U = triu(A);

2.13. (a,b) lugui(magic(8)) is interesting because the rank of the matrix is three.
There are only three independent rows. After three elimination steps in exact
arithmetic, the remaining matrix should be all zero.
(c) Using lugui, pick A(8,5) = 4 and then A(4,4) = -8 as the first two
pivots. Because the pivots are powers of two, there is no roundoff error. The
elements of the remaining matrix are zero and 130 exactly. Any of the 130’s
can be picked as the third pivot.

2.14. See lupiv.m.

2.15. (a) See golubcond.m.
condest(golub(n)) appears to grow exponentially, like 64n.
(b) With diagonal pivoting, the pivots are all equal to one. There is no
indication of the bad conditioning.
(c) det(G) = det(L)*det(U) = 1

2.16. Pascal matrices.
(a)

P = pascal(n);
for j = 1:n

for k = 1:n
P(k,j) = nchoosek(k+j-2,max(j,k)-1);

end
end

(b)

R = chol(P);
for j = 1:n
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for k = 1:j
R(k,j) = P(k,j-k+1);

end
end

(c) κ(Pn) ≈ cρn, where c = 0.0181, ρ = 14.65.
(d) det(P) == det(R’)*det(R) = 1*1 = 1.
(e) Q = P; Q(n,n) = Q(n,n) - 1;

R = chol(Q) is equal to chol(P) except R(n,n) = 0
(f) det(Q) = det(R’)*det(R) = 0.

2.17. Here are the scores obtained in “Pivot Pickin’ Golf” by the automatic pivot
strategies.

diagonal partial complete
magic Inf 3284.00 459759.75
testmats Inf 9228.50 2195.00
rand #1 Inf 31.00 38.00
rand #2 Inf 37.00 28.50
rand #3 83.00 43.00 43.00

Here is a winning strategy for the testmats course:

1. pick subdiagonals
2. partial pivoting
3. partial pivoting
4. diagonal pivoting
5. pick 1024, then diagonal pivoting
6. diagonal pivoting
7. diagonal pivoting
8. complete pivoting
9. diagonal pivoting

2.18. See myrandncond.m. condest(randn(n,n)) grows like n^(3/2).

2.19. Tridiagonal system.

n = 100;
e = ones(n,1);
b = (1:n)’;

A = 2*diag(e) - diag(e(1:n-1),-1) - diag(e(1:n-1),1);
xa = bslashtx(A,b);

A = spdiags([-e 2*e -e],[-1 0 1],n,n);
xb = A\b;

xc = tridisolve(-e,2*e,-e,b);
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condest(A)
ans =

5.1000e+003

2.20. This problem is open ended. Do something like

[U,G] = surfer(’http://my.favorite.url’,n)
spy(G)
pagerank(U,G)

and then comment on the results.

2.21. If U is a cell array of URL’s and k is a single integer,
U{k} is a string, the k-th URL.
U(k) is a 1-by-1 cell array whose only element is U{k}.
G(k,:) is nonzero for outgoing nodes.
G(:,k) is nonzero for incoming nodes.
U(G(k,:)) is a list of the URLs for outgoing nodes.
U(G(:,k)) is a list of the URLs for incoming nodes.

2.22. Cliques in the harvard500 Web connectivity matrix.
U(168:180): Harvard Divinity School
U(229:248): Radcliffe Institute
U(261:281): Dana-Farber Cancer Institute
U(315:335): “Go Crimson”, Harvard’s athletic program

2.23. (a) For p >= 8, nnz(G^p) = 167985.
(b) nnz(G^8)/prod(size(G)) = 0.6719.
(c) for p = 1:9, subplot(3,3,p), spy(G^p), end
(d) The “Go Crimson” athletic program, nodes 46 and 315:335, has no links
to the other pages in the data set.

2.24. Duplicate hashfuns.

function h = hashfun(url)
% Almost unique numeric hash code for pages already visited.
h = length(url) + 1024*sum(url);

Main program. A link starts with ’="http:’ and ends with the next double
quote.

page = urlread(’http://www.mathworks.com’);
for f = findstr(’="http:’,page);

e = min(findstr(’"’,page(f+2:end)));
t = deblank(page(f+2:f+e));
t(t<’ ’) = ’!’; % Nonprintable characters
if t(end) == ’/’, t(end) = []; end
disp(t)
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disp(hashfun(t))
end

The output includes

http://www.mathworks.fr
2311191

http://www.mathworks.es
2311191

Since char(’f’)+char(’r’) == char(’e’)+char(’s’) and otherwise the
two urls are the same, they have the same hash function value.

2.25. Disconnected miniweb.

G =
0 0 0 1 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

pagerank1(G,.85) =
0.1981
0.1092
0.1556
0.2037
0.1667
0.1667

What happens to page rank as p → 1? Two possible answers here. The
intuitive answer is that the graph has two disconnected subgraphs and con-
sequently the Markov stationary probabilities are not unique. The direct
solution algorithm used in pagerank certainly breaks down if p = 1. How-
ever, a second answer is that pageranksym, a symbolic version of pagerank1,
produces

p = sym(’p’);
pagerank1(G,p) =

[ 1/3*(p^3+3*p^2+2*p+2)/(p^3+4*p^2+4*p+4)]
[ 1/3*(p^2+p+2)/(p^3+4*p^2+4*p+4)]
[ 1/6*(p^3+3*p^2+4*p+4)/(p^3+4*p^2+4*p+4)]
[ 1/6*(p^3+5*p^2+6*p+4)/(p^3+4*p^2+4*p+4)]
[ 1/6]
[ 1/6]

and
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limit(ans,p,1) =
[ 8/39]
[ 4/39]
[ 6/39]
[ 8/39]
[ 1/6]
[ 1/6]

These values are 2/3 times the limiting values for the 4-by-4 subgraph and
1/3 times the values for the 2-by-2 subgraph.

2.26. Alternative page rank algorithms. See pagerank1.m for direct solution of
the sparse equations, pagerank2.m for inverse iteration, and pagerank3.m
for the power method.

2.27. Implement the power method page rank algorithm in some other language.
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Chapter 3

Interpolation

Exercises
3.1. Reproduce figure with four interpolants. See interps.m.
3.2. Tom and Ben. See twins.m.

3.3. (a) See deceptive.m and figure 3.1.
(b) Values at -0.3. The values from piecelin and pchip follow the overall
trend of the data.

plin = 0.4300
poly = -0.9990
spl = -0.1957
pch = 0.4322

(c)

V = vander(x);
c = V\y
c = round(c)
p = poly2sym(c’)

p =
16*x^5-20*x^3+5*x

The data comes from the Chebyshev polynomial T5(x). In an sense, the value
from polyinterp is the “correct” result.

3.4. Make a plot of your hand. See myhand.dat and handinterp.m.

3.5. Use polar coordinates. See handinterp.m and figure 3.2. As a function of
θ, the distance from the base of the palm to the tips of the fingers varies

23
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Figure 3.1. Deceptive data for interpolation
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Figure 3.2. Hand with polar coordinates.

rapidly. When sampled at only a few points, pchip does pretty well with
this function, but spline has a terrible time.

3.6. (a) vandal(n) generates a symbolic Vandermonde matrix and then uses
Gaussian elimination to compute its determinant.
(b) If V = vander(x),

det(V ) =
∏

i<j

(xi − xj)

This shows that the matrix vander(x) is nonsingular if and only if the ele-
ments of x are distinct.

3.7. Here are two proofs that the interpolating polynomial is unique.
(1) From the previous exercise, if the abscissae are distinct, then the Vander-
monde matrix is nonsingular and hence the coefficients of the interpolating
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polynomial are unique.
(2) If P (x) and Q(x) are both interpolating polynomials, then P (x)−Q(x) is a
polynomial of degree less than n that vanishes at n points. Hence P (x)−Q(x)
must be identically zero.

3.8. For T5(x), see cheby5.m.

3.9. See myrungeinterp.m and follow the bouncing asterisk. Experimentally, it
looks like Pn(x) → F (x) for for x <

√
2/2. Changing to interpolation at the

zeros of the Chebyshev polynomial Tn(x) gives convergence over the entire
interval −1 ≤ x ≤ 1.

3.10. To do piecewise quadratic interpolation, you need three conditions to deter-
mine one piece. There are two interpolation conditions, but it is not clear
what the third condition should be.

3.11. See myspline.m and mypchip.m.
Change the first line of both splinetx and pchiptx.

function [v,p] = pchiptx(x,y,u)
Add this line to the help entries.

% [v,p] = pchip(x,y,u) also returns p(k) = P’(u(k)).
Add this line to the main functions.

p = d(k) + s.*(2*c(k) + 3*s.*b(k));

3.12. See myspline.m and mypchip.m.

3.13. See perspline.m and perpchip.m.

3.14. See splinecond.m. In splinetx, change

d = tridisolve(a,b,c,r);#

to

T = diag(a,-1) + diag(b,0) + diag(c,1);
condest(T)
d = r;
d(:) = T\r(:);

Put three data points close together.

x = [1 2 2.999 3 3.001 4 5]
y = [16 18 20.99 21 21.01 15 12];

The estimated condtion is 6.9947e+003.

3.15. See mypchipavg.m.

3.16. (a) interpgui(1-x.^2). For a second degree polynomial, spline and polyinterp
produce the same curve.
(b) interpgui(1-x.^4) None of the plots overlap, although polyinterp and
spline are within 10−3, so they look like they overlap.
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3.17. interpgui(4). The spline through four points is a single cubic, so spline
and polyinterp produce the same curve.

3.18. (a) The Vandermonde matrix is very badly conditioned.
cond(vander(1900:10:2000)) = 3.0562e+48

(b) What does the check box about centering and scaling do? The check box
replaces x by (x - mean(x))/std(x).
(c) The function F(s) = condest(vander((-50:10:50)/s)) is minimized
at s = 42.6 where F(s) = 1.3e4.
sigma = std(-50:10:50) = 33.17 and F(sigma) = 3.3e4. So sigma is
not the optimum scaling, but it’s not too bad.
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Zeros and Roots

Exercises

4.1. fzerogui(’x^3-2*x-5’,[0,3])
Easy problem. Converges to x = 2.09455148154233 in 7 steps.

fzerogui(’sin(x)’,[1,4])
Easy problem. Converges to x = pi in 7 steps, all secant.

fzerogui(’x^3-.001’,[-1,1])
Moderately difficult. There is only one real root, but there are two nearby
complex roots. Requires 15 steps to converge to x = 1/10.

fzerogui(’log(x+2/3)’,[0,1])
Easy problem. Converges to x = 1/3 in 6 steps.

fzerogui(’sign(x-2)*sqrt(abs(x-2))’,[1,4])
This is the “perverse” example where Newton’s method fails. f ′(x) is un-
bounded. fzero uses secant for all its steps. Slow convergence, only about
half a decimal digit per step. Converges to x = 2 in 32 steps.

fzerogui(’atan(x)-pi/3’,[0,5])
Easy problem. Converges to x = sqrt(3) in 8 steps.

fzerogui(’1/(x-pi)’,[0,5])
Sign change is a pole, not a zero. Take over 50 steps towards x = pi. Even-
tually divides by zero and generates an error in the plot scaling.

4.2. (a)

>> syms x
>> f = x^3 - 2*x - 5;
>> z = solve(f)

<messy symbolic expressions>

27
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>> z(1)
ans =
1/6*(540+12*1929^(1/2))^(1/3)+4/(540+12*1929^(1/2))^(1/3)

>> length(char(z))
ans =

340
>> double(z)

2.09455148154233
-1.04727574077116 + 1.13593988908893i
-1.04727574077116 - 1.13593988908893i

(b)

>> p = [1 0 -2 -5]
p =

1 0 -2 -5
>> roots(p)
ans =

2.09455148154233
-1.04727574077116 + 1.13593988908893i
-1.04727574077116 - 1.13593988908893i

(c)

>> F = inline(char(f));
>> fzerotx(F,[2,3])
ans =

2.09455148154233

(d)

>> Fp = inline(char(diff(f)));
Fp =

Inline function:
Fp(x) = 3.*x.^2-2

>> x = 1i;
>> x = x - F(x)/Fp(x)
x =
-1.00000000000000 + 0.40000000000000i

>> x = x - F(x)/Fp(x)
x =
-0.56274873971876 + 1.77192889360573i

Use uparrow to iterate .....

>> x = x - F(x)/Fp(x)
x =
-1.04727574077116 + 1.13593988908893i
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(e) Can bisection be used to find the complex root? No. There is no notion
of sign change or positive/negative for complex numbers.

4.3. p(x) = 816x3 − 3835x2 + 6000x− 3125
(a) What are the exact roots of p?

>> p = poly2sym([816 -3835 6000 -3125])
p = 816*x^3-3835*x^2+6000*x-3125

>> factor(p)
ans = (16*x-25)*(17*x-25)*(3*x-5)

>> z = solve(p)
z =
[ 25/15]
[ 25/16]
[ 25/17]

(b)

>> p = inline(char(p));
>> ezplot(p,1.43,1.71)
>> hold on, plot(double(z),zeros(3,1),’o’)

(c)

>> x = 1.5
>> x = x - (816*x^3-3835*x^2+6000*x-3125)/(2448*x^2-7670*x+6000)

Use up arrow to iterate. Converges easily to the nearest root,
x = 1.47058823529416 = 25/17

(d) Starting with x0 = 1 and x1 = 2, the secant method converges to
1.6666666666666666 = 25/15.

(e) Starting with the interval [1, 2], what does bisection do? The first step
reduces the interval to [1, 1.5], which contains only one root. Consequently,
converges to x = 1.47... = 25/17.

(f) What is fzerotx(p,[1 2])? Why? The initial secant step happens to
be to x = 1.69..., which is near the root at 25/15. fzerotx then takes 10
steps, 7 with IQI, to converge to 25/15. The interval [a,b] always includes
all three roots.

Note that none of these methods found the ”middle” root, 25/16.

4.4. The convergence test in fzerotx is

m = 0.5*(a - b);
tol = 2.0*eps*max(abs(b),1.0);
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if (abs(m) <= tol) | (fb == 0.0)
break

end

This says that we have luckily found a b for which f(b) is exactly zero, or
the length of the interval, abs(b-a), is roundoff error in b or 1. Note this is
a relative error test if b is larger than 1, but an absolute error test if b is less
than 1.

4.5. In fzerotx interpolation is done by the secant method if c is equal to a or
by inverse quadratic interpolation if a, b, and c are distict. Interpolation is
acceptable if it leads to a point within the interval [a,b] that is not too close
(using the quantity tol) to the end-points.

4.6. See iqi.m. Lagrange formula for inverse quadratic interpolation is:

x =
(0− fb)(0− fc)

(fa − fb)(fa − fc)
a +

(0− fa)(0− fc)
(fb − fa)(fb − fc)

b +
(0− fa)(0− fb)

(fc − fa)(fc − fb)
c

Cramer’s rule for inverse quadratic interpolation is:

x =

det




f2
a fa a

f2
b fb b

f2
c fc c




det




f2
a fa 1

f2
b fb 1

f2
c fc 1




The IQI portion of fzerotx is:

m = (a - b)/2;
s = fb/fc;
q = fc/fa;
r = fb/fa;
p = s*(2*m*q*(q - r) - (b - c)*(r - 1));
q = (q - 1)*(r - 1)*(s - 1);
p = -p;
d = p/q;
x = b + d;

See iqi.m for code that uses the Symbolic Toolbox to verify that all three x’s
are equal. The computations in fzerotx are arranged to avoid unnecessary
underflow and overflow, particularly if IQI is not used.

4.7. z = fzerotx(@besselj,[0 pi],0) tries to find a zero of besselj(nu,x)
considered as a function of its first argument, nu, and with its second argu-
ment, x, set to zero. In other words, it is trying to find a zero of Jx(0), not
J0(x). Since besselj(pi,0) = 0, fzerotx exits immediately with b = pi.
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4.8. Secant method on sign(x−a)
√
|x− a|. This is the “perverse” example where

Newton’s method fails. f ′(x) is unbounded. Converge is roughly linear, with
the interval length is reduced by an irregular, sign-changing factor between
0.1 and 0.5 each step. Converges to x = 2 in 32 steps.

4.9. First ten x = tan x.

for k = 1:10
z(k) = fzerotx(’tan(x)-x’,[k k+1/2-k*eps]*pi);

end

z
= 4.4934 7.7253 10.9041 14.0662 ... 29.8116 32.9564

z/pi
= 1.4303 2.4590 3.4709 4.4774 ... 9.4893 10.4903

4.10. See bessel10.m.

4.11. (a) What is the largest value of n for which Γ(n + 1) and n! are exactly
represented.

vpa(’22!’) - prod(1:22)
= 0

vpa(’23!’) - prod(1:23)
= nonzero

Thus, n = 22 is the largest integer for which n! is exact in double.

(b) What is the largest value of n for which Γ(n+1) and n! do not overflow?
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gamma(171) = 7.2574e+306
gamma(172) = Inf

4.12. (a) What is the relative error in Stirling’s approximation and in Gosper’s
approximation when x = 2?

x = 2;
s = gammaln(x+1)/(x*log(x) - x + log(2*pi*x)/2)
g = gammaln(x+1)/(x*log(x) - x + log(2*pi*x+pi/3)/2)

s =
1.0634

g =
1.0019

(b) How large must x be for Stirling’s approximation and for Gosper’s ap-
proximation to have a relative error less than 10−6?

S = inline( ...
’gammaln(x+1)./(x.*log(x) - x + log(2*pi*x)/2) - 1.000001’)

G = inline( ...
’gammaln(x+1)./(x.*log(x) - x + log(2*pi*x+pi/3)/2) - 1.000001’)

fzerotx(S,[2,200])
ans =

144.4059

fzerotx(G,[2,100])
ans =

15.2927

4.13. See gammalninv.m.

4.14. What is the speed limit for this vehicle?

v = (0:10:60)’
d = [0 5 20 46 70 102 153]’
[v d]
eta = 60
x1 = piecelin(d,v,eta)
x2 = fzerotx(inline(’pchiptx(xk,yk,x)-y’, ...

’x’,’y’,’xk’,’yk’),[30 40],eta,v,d)
x3 = pchiptx(d,v,eta)
x4 = fzerotx(inline(’splinetx(xk,yk,x)-y’, ...

’x’,’y’,’xk’,’yk’),[30 40],eta,v,d)
x5 = splinetx(d,v,eta)
u = (0:65)’;
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plot(v,d,’o’,u,pchiptx(v,d,u),’-’,x2,eta,’ro’, ...
[x2 x2],[0,eta],’r-’,[0 x2],[eta eta],’r-’)

axis tight

x1 =
35.83333333333334

x2 =
36.00066760428985

x3 =
35.98756534518393

x4 =
35.86433220451173

x5 =
36.00342638805324

4.15. Kepler’s equation for orbit eccentric anomaly.
(a)

M = 24.851090;
e = 0.1;
F = inline(’E - e*sin(E) - M’,’E’,’M’,’e’)
E = fzerotx(F,[0,2*M],M,e)

produces

E = 24.8204

(b)

M = 24.851090;
e = 0.1;
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E = M;
m = 1;
Esave = 0;
while E ~= Esave

Esave = E;
E = E + 2*besselj(m,m*e)*sin(m*M)/m;
m = m+1;

end
m
E

produces

m = 16
E = 24.8204

4.16. Freezing water mains.

function T = pipetemp(x)
% Temperature of water main at depth of x meters after 60 days.
Ti = 20;
Ts = -15;
alpha = 0.138e-6;
t = 60*24*60*60; % 60 days * (24*60*60) secs/day
c = 2*sqrt(alpha*t);
T = Ts + (Ti - Ts)*erf(x/c);

ezplot(@pipetemp,[0 2])
fzerotx(@pipetemp,[0 2])

ans =
0.6770

4.17. See fmintrace.m.

F = inline(’-humps(x)’);
ezplot(F,-1,2);
axis([-1 2 -115 15])
hold on
fmintrace(F,-1,2,1.e-4)
hold off

4.18. The minimizer of

f(x) = 9x2 − 6x + 2
= 9(x− 1/3)2 + 1
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is x = 1/3. Even with zero tolerance, fmintx(f,0,1,0) produces
x = 0.3333333342261373 because all floating point numbers x in the interval
of length sqrt(eps) about 1/3 produce f(x) = 1.

4.19. fmintx(@cos,2,4,eps) only gets to within about 1.7e-10 of the exact min-
imizer at π because of the quadratic natural of cos(x) near x = π.
fmintx(@cos,0,2*pi) luckily hits pi exactly because the initial interval is
symmetric about the minimizer. fmintx does two golden section steps that
preserve the symmetry, then a symmetric parabolic step.

4.20. Even with tol = 0, fmintx(@F,a,b,tol) terminates in finite time. The con-
vergence test is while abs(x-xm) > tol. With roundoff error, xm is even-
tually exactly equal to x.

4.21. Derive the formulas used in fmintx for minimization by parabolic interpo-
lation. We can assume without loss of generality that x = 0 and fx = 0.
Then the algorithm is

r = w*fv;
q = v*fw;
p = w*r-v*q;
s = 2*(q-r);
if s > 0.0, p = -p; end
s = abs(s);
% Is parabolic interpolation acceptable?
para = ( (abs(p)<abs(0.5*s*e)) & (p>s*a) & (p<s*b) );
if para

e = d;
d = p/s;
xnew = d;

end

The coefficients a and b of the parabola P (x) = ax2 + bx that interpolates
the three points (0, 0), (v, fv), and (w, fw) are the solution to the 2-by-2
Vandermonde system

(
v2 v
w2 w

)(
a
b

)
=

(
fv

fw

)

The next iterate is the solution to P ′(x) = 0, which −b/(2a). By Cramer’s
rule this is

−1
2
det

(
v2 fv

w2 fw

)
/det

(
fv v
fw w

)

This is same as the d computed by fmintx.
The three inequalities defining the acceptability condition para amount to

a < xnew < b

and the length of the next step is less than half of the previous one.



36 Chapter 4. Zeros and Roots

The computations are organized to avoid underflow and overflow, particularly
in quantities that will not be used if the parabolic step is not acceptable.
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Least Squares

Exercises
5.1. [I,J] = ndgrid(1:n)

X = min(I,J) + 2*eye(n,n) - 2
R = chol(X)
(a)

κ1(R) = n2n−1

κ1(X) ≈ (4/3n2 − 4n + 1)4n−2

(b) R = chol(X) and [L,U] = lu(X) have R == L == U’. The diagonals of
R, L and U are all one and so do not reveal the poor conditionings.
[Q,R] = qr(X) produces an R whose diagonal shows some, but not all, of the
poor conditioning.

5.2. See censusoutlier.m. The high degree polynomial fits are most affected by
the outliner. The spline and exponential fits are also affected, but not as
much. The extrapolated portion of the pchip fit is not affected at all.

5.3. See censusdoomsday.m. The degree 8 polynomial fit goes to zero on Sept.
21, 2013.

5.4. x =
9
2
6

sigma = norm(x);
u = x;
u(1) = u(1) + sigma;
rho = 1/(sigma*u(1));

37
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I = eye(3,3);
H = I - rho*u*u’;

format rat
H =

-9/11 -2/11 -6/11
-2/11 54/55 -3/55
-6/11 -3/55 46/55

format short
H =

-0.8182 -0.1818 -0.5455
-0.1818 0.9818 -0.0545
-0.5455 -0.0545 0.8364

u =
20
2
6

H*u
-20
-2
-6

tau = rho*u’*x;
v = x - (tau/2)*u
v =

-1
-1
3

H*v =
-1
-1
3

5.5. Householder reflections involve

σ = sign(xk)‖x‖
u = x + σek

ρ = 1/(σ̄uk)

(a) Note that σ̄xk is real.

u′u = (x + σek)′(x + σek)′

= x′x + σ̄xk + x̄kσ + σ̄σ
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= σ̄σ + 2σ̄xk + σ̄σ
= 2σ̄(xk + σ)
= 2σ̄uk

Hence ρ = 2/‖u‖2 = 1/(σ̄uk)

(b) Note that ρ is real, hence

H ′ = I − (ρuu′)′

= I − ρuu′

= H

and

H ′H = (I − ρuu′)′(I − ρuu′)
= I − 2ρuu′ + ρ2uu′uu′

= I

(c)

Hx = x− ρuu′x
= x− ρ(x + σek)(x′ + σ̄ek)x
= x− ρ(x′x + σ̄xk)(x + σek)
= x− (x + σek)
= −σek

(d) For any vector y, let τ = ρu′y. Then

Hy = y − ρuu′y
= y − τu

5.6. X = reshape(1:15,3,5)’

X =
1 2 3
4 5 6
7 8 9

10 11 12
13 14 15

(a)

rank(X)
2

Z = pinv(X), B = X\eye(5,5), S = eye(3,3)/X

Z =
-0.3889 -0.2444 -0.1000 0.0444 0.1889
-0.0222 -0.0111 -0.0000 0.0111 0.0222
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0.3444 0.2222 0.1000 -0.0222 -0.1444

B =
-0.4000 -0.2500 -0.1000 0.0500 0.2000

0 0 0 0 0
0.3333 0.2167 0.1000 -0.0167 -0.1333

S =
-0.6111 0 0 0 0.1111
-0.0278 0 0 0 0.0278
0.5556 0 0 0 -0.0556

(b)

normf = inline(’norm(X,’’fro’’)’);
I = eye(5,5); E = eye(3,3);

[normf(Z) normf(B) normf(S)
normf(X*Z-I) normf(X*B-I) normf(X*S-I)
normf(Z*X-E) normf(B*X-E) normf(S*X-E)]

0.6777 0.6791 0.8361
1.7321 1.7321 2.1794
1.0000 1.2247 1.0000

(c)

iseq = inline(’norm(X-Y,’’fro’’) <= 200*eps’)

[iseq(X*Z*X,X) iseq(Z*X*Z,Z) iseq(X*Z,(X*Z)’) iseq(Z*X,(Z*X)’)
iseq(X*B*X,X) iseq(B*X*B,B) iseq(X*B,(X*B)’) iseq(B*X,(B*X)’)
iseq(X*S*X,X) iseq(S*X*S,S) iseq(X*S,(X*S)’) iseq(S*X,(S*X)’)]

1 1 1 1
1 1 1 0
1 1 0 1
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5.7. Various least squares fits to erf(t)
See fiterf.m. I’m not satisfied with this exercise. I will probably eliminate
part (c) from the final version of the book. Using the exp(−t2) weighting
does not help very much. The graph shows the errors from four different fits.
The fourth is based on exp(t2)erfc(t), but that doesn’t work very well either.
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5.8. See sinusoidalfit.m.
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5.9. Statistical Reference Datasets. See nist.m.

Norris

beta =

-2.623230737740738e-001
1.002116818020455e+000

Pontius

beta =

6.735657894733633e-004
7.320591604010027e-007

-3.160818713450353e-015
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5.10. Filip data set. See xfilip.m. As it runs, you will notice that there are three
warning messages. The first comes while using polyfit on the uncentered
data set. Polyfit warns that the problem is badly conditioned, but it goes
ahead and produces 11 nonzero coefficients. The second warning using back-
slash on the uncentered data. The third warning comes from trying to invert
the normal equations matrix.
Backslash says that the Vandermonde matrix is rank deficient and then pro-
duces a “basic” solution with only 10 nonzero coefficients. Pseudoinverse also
decides the rank is 10, but produces 11 nonzero coefficients.
The program shows two fits, one labeled rank 11 and one labeled rank 10.
The rank 11 fit is the official one, using the NIST coefficients or any Matlab
computation with centered data. The rank 10 curve is actually two different
fits that are graphically indistinguishable.
The norm of the residual from the rank 10 fits is slightly larger than from the
rank 11 fits, but the coefficients are three orders of magnitude smaller. Now
you see why this data set is controversial.

Warning: Polynomial is badly conditioned. Remove repeated
data points or try centering and scaling.

> In c:\moler\ncm\leastsquares\solutions\xfilip.m at line 31
Warning: Rank deficient, rank = 10 tol = 1.3012e-004.
> In c:\moler\ncm\leastsquares\solutions\xfilip.m at line 42
Warning: Matrix is close to singular or badly scaled.
> In c:\moler\ncm\leastsquares\solutions\xfilip.m at line 56

beta =
NIST Polyfit Centered

-4.0296252508e-05 -4.0296249018e-05 -4.0296252508e-05
-2.4678107827e-03 -2.4678105736e-03 -2.4678107827e-03
-6.7019115459e-02 -6.7019109892e-02 -6.7019115459e-02
-1.0622149858e+00 -1.0622148992e+00 -1.0622149858e+00
-1.0875318035e+01 -1.0875317163e+01 -1.0875318035e+01
-7.5124201739e+01 -7.5124195808e+01 -7.5124201739e+01
-3.5447823370e+02 -3.5447820609e+02 -3.5447823370e+02
-1.1279739409e+03 -1.1279738541e+03 -1.1279739409e+03
-2.3163710816e+03 -2.3163709051e+03 -2.3163710816e+03
-2.7721795919e+03 -2.7721793826e+03 -2.7721795919e+03
-1.4674896142e+03 -1.4674895042e+03 -1.4674896142e+03

normr =
2.8210837956e-02 2.8210838089e-02 2.8210838026e-02

beta =
NIST Vandermonde Pseudoinverse

-4.0296252508e-05 2.8639147336e-06 2.9900011430e-06
-2.4678107827e-03 1.2468099822e-04 1.3161883533e-04
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-6.7019115459e-02 2.2361988969e-03 2.4039951090e-03
-1.0622149858e+00 2.0799334515e-02 2.3140890647e-02
-1.0875318035e+01 9.8981445320e-02 1.1977164300e-01
-7.5124201739e+01 1.3574047553e-01 2.5772725697e-01
-3.5447823370e+02 -8.8115156549e-01 -4.0645879443e-01
-1.1279739409e+03 -4.5333693227e+00 -3.3419030994e+00
-2.3163710816e+03 -7.1441784855e+00 -5.3507499126e+00
-2.7721795919e+03 0 1.3649967097e+00
-1.4674896142e+03 8.1337811876e+00 8.4430473114e+00

normr =
2.8210837956e-002 3.2722405980e-002 3.2726981819e-002

−9 −8 −7 −6 −5 −4 −3
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
NIST Filip data set

Data
Rank 11
Rank 10
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5.11. Longley data set. See xlongley.m.

beta
MATLAB NIST

-3482258.63459545 -3482258.63459582
15.0618722713330 15.0618722713733

-0.03581917929260 -0.03581917929259
-2.02022980381711 -2.02022980381683
-1.03322686717351 -1.03322686717359
-0.05110410565322 -0.05110410565358
1829.15146461335 1829.15146461355

corrcoeff =
1.0000 0.9916 0.6206 0.4647 0.9792 0.9911
0.9916 1.0000 0.6043 0.4464 0.9911 0.9953
0.6206 0.6043 1.0000 -0.1774 0.6866 0.6683
0.4647 0.4464 -0.1774 1.0000 0.3644 0.4172
0.9792 0.9911 0.6866 0.3644 1.0000 0.9940
0.9911 0.9953 0.6683 0.4172 0.9940 1.0000
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5.12. Planetary orbit, Heath97. See heath.m. Two orbits, one from original data,
one after small random perturbation.

c =
-2.2537948175
-0.0063247132
-5.5221834331
1.2898102053
7.3773544034

c =
-2.4423051434
1.7739414419

-9.5532799239
1.1162584602
8.0629704039
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Chapter 6

Quadrature

Exercises
6.1. [Q,cnt] = quadgui(@humps,0,1,1.e-4)

Q = 29.85832444437543
cnt = 93
Points concentrated near humps at .3 and .9.

[Q,cnt] = quadgui(@humps,0,1,1.e-6)
Q = 29.85832540194041
cnt = 265
Points concentrated near humps at .3 and .9.

[Q,cnt] = quadgui(@humps,-1,2,1.e-4)
Q = 26.34496347100993
cnt = 165
Some function values negative. Points concentrated near humps.

[Q,cnt] = quadgui(@sin,0,pi,1.e-8)
Q = 1.99999999999795
cnt = 121
Easy problem. Points almost evenly spaced.

[Q,cnt] = quadgui(@cos,0,9/2*pi,1.e-6)
Q = 1.00000000010262
cnt = 241
Slightly wider spacing near odd multiples of pi/2.

[Q,cnt] = quadgui(@sqrt,0,1,1.e-8)
Q = 0.66666666218158
cnt = 153

47
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Points strongly concentrated near x = 0 where f ′(x) blows up.

[Q,cnt] = quadgui(’sqrt(x)*log(x)’,eps,1,1.e-8)
Q = -0.44444444104962
cnt = 205
Points strongly concentrated near x = 0 where f ′(x) blows up.

[Q,cnt] = quadgui(’1/(3*x-1)’,0,1)
Warning: Divide by zero.
Error in ==> d:\moler\ncm\ncm\quadgui.m (quadguistep)
Nonintegrable singularity at x = 1/3

help beta
BETA Beta function.

Y = BETA(Z,W) computes the beta function for corresponding
elements of Z and W. The beta function is defined as
beta(z,w) = integral from 0 to 1 of t.^(z-1) .* (1-t).^(w-1) dt.

B = beta(11/3,13/3)
[Q,cnt] = quadgui(’t^(8/3)*(1-t)^(10/3)’,0,1,1.e-8)
B = 0.00737204436004
Q = 0.00737204438345
cnt = 73
Points nearly evenly spaced.

B = beta(26,3)
[Q,cnt] = quadgui(’t^25*(1-t)^2’,0,1,1.e-8)
B = 1.017501017501012e-004
Q = 1.017502956491289e-004
cnt = 49
Points concentrated under the peak near t = 1

6.2. format rat
S1 = [1 0 4 0 1]/6
S2 = [1 4 2 4 1]/12
Q = S2 + (S2 - S1)/15
Q =

7/90 16/45 2/15 16/45 7/90
syms x
for p = 1:7, I(p,1) = int(x^(p-1),-2,2); end
I =

[ 4]
[ 0]
[ 16/3]
[ 0]
[ 64/5]
[ 0]
[ 256/7]
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X = [1 1 1 1 1; -2 -1 0 1 2];
for p = 3:7, X(p,:) = X(2,:).*X(p-1,:); end
4*X*Q’ =

4
0

16/3
0

64/5
0

128/3
This is Boole’s quadrature rule.

∫ 2

−2

f(x)dx ≈ 2
45

(7f(−2) + 32f(−1) + 12f(0) + 32f(1) + 7f(2))

The rule is exact for f(x) = xp, p = 0, . . . , 5, but not for f(x) = x6.

6.3. See trapforpi.m

3.134926113810990 6.667e-003 0.666653977880305
3.139925988907159 1.667e-003 0.666665873053596
3.141175986954129 4.167e-004 0.666666617063072
3.141488486923612 1.042e-004 0.666666663562410
3.141566611923134 2.604e-005 0.666666666484161
3.141586143173127 6.510e-006 0.666666666666060

The error is proportional to 1/n2.

6.4. See quadtxforpi.m

F = inline(’2./(1+x.^2)’);
for k = 1:32

tol = 1/2^k;
[Q,cnt] = quadtx(F,-1,1,tol);
err = Q-pi;
disp(sprintf(’%10.2e %10.2e %5d %7.3f %9.1f’, ...

tol,err,cnt,-log(tol)/cnt,tol/err))
end

-log(tol)/ tol/
tol err cnt cnt err

5.00e-01 -2.16e-02 5 0.139 -23.2
2.50e-01 -2.16e-02 5 0.277 -11.6
1.25e-01 5.25e-04 9 0.231 238.1
6.25e-02 5.25e-04 9 0.308 119.0
3.13e-02 5.25e-04 9 0.385 59.5
1.56e-02 5.25e-04 9 0.462 29.8
7.81e-03 5.25e-04 9 0.539 14.9
3.91e-03 1.44e-06 17 0.326 2711.7
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1.95e-03 1.44e-06 17 0.367 1355.8
9.77e-04 1.44e-06 17 0.408 677.9
4.88e-04 1.44e-06 17 0.449 339.0
2.44e-04 1.44e-06 17 0.489 169.5
1.22e-04 7.55e-09 33 0.273 16162.3
6.10e-05 7.55e-09 33 0.294 8081.2
3.05e-05 7.55e-09 33 0.315 4040.6
1.53e-05 7.55e-09 33 0.336 2020.3
7.63e-06 6.11e-08 41 0.287 124.9
3.81e-06 4.06e-08 49 0.255 93.9
1.91e-06 1.18e-10 65 0.203 16130.6
9.54e-07 1.18e-10 65 0.213 8065.3
4.77e-07 1.18e-10 65 0.224 4032.7
2.38e-07 9.06e-10 81 0.188 263.2
1.19e-07 2.21e-10 113 0.141 538.3
5.96e-08 2.62e-10 121 0.137 227.5
2.98e-08 2.62e-10 121 0.143 113.8
1.49e-08 1.85e-12 129 0.140 8064.0
7.45e-09 1.37e-11 153 0.122 544.6
3.73e-09 6.06e-12 209 0.093 614.8
1.86e-09 2.53e-12 249 0.081 736.1
9.31e-10 2.84e-14 257 0.081 32768.0
4.66e-10 2.84e-14 257 0.084 16384.0
2.33e-10 2.13e-13 305 0.073 1092.3

The function evaluation count is roughly proportional to log(tol), and ac-
curacy is roughly proportional to tol, although the “constants” of propor-
tionality are not really constant.

6.5.
∫ 1

0

x4(1− x)4

1 + x2
dx

syms x
f = x^4*(1-x)^4/(1+x^2)
int(f,0,1)
ans =

22/7-pi

A reminder of the famous approximation π ≈ 22
7 .

F = inline(char(f))
quadtx(F,0,1,tol)

Presents no difficulties. Default tolerance requires only 25 function evalua-
tions. Tolerance = 10−16 requires only 2101 function evaluations.

6.6. f = inline(’exp(-x.^2)’)
for x = .1:.1:1
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E = 2/sqrt(pi)*quadtx(f,0,x);
err = E - erf(x);
disp([x err]),

end

1.0000e-001 -6.8660e-012
2.0000e-001 -1.2790e-011
3.0000e-001 -1.9464e-010
4.0000e-001 -4.1409e-010
5.0000e-001 -7.1429e-011
6.0000e-001 -1.8632e-010
7.0000e-001 1.1478e-008
8.0000e-001 3.3274e-010
9.0000e-001 7.4209e-010
1.0000e+000 2.1616e-009

Default tolerance leads to error less than 10−8 or better.

6.7. β(z, w) =
∫ 1

0

tz−1(1− t)w−1dt

function Q = mybeta(z,w)
F= inline(’t^(z-1)*(1-t)^(w-1)’,’t’,’z’,’w’);
Q = quadtx(F,eps,1-eps,1.e-8,z,w);

The limits of integration avoid the singularities at 0 if z < 1 and at 1 if
w < 1. This function works satisfactorily if you avoid very small or very
large arguments.

6.8. Γ(x) =
∫ ∞

0

tx−1e−tdt

function [Q,cnt] = mygamma(x)
F = inline(’t^(x-1)*exp(-t)’,’t’,’x’);
[Q,cnt] = quadtx(F,eps,5*x,1.e-8,x);

This is not a very good way to evaluate the gamma function. quadtx is
not designed to handle infinite integrals. The upper limit of 5x is chosen
because the integrand is pretty small by then. mygamma(15) gets an accurate
answer, but takes almost 50,000 function evaluations. I gave up waiting for
mygamma(18) to finish.

6.9.
∫ 4π

0

cos2 x dx = 2π

quadtx samples the integrand 5 times, at kπ, k = 0, . . . , 4. All 5 samples are
equal to 1, so quadtx thinks the integrand is equal to 1 everyplace and believes
the integral is equal to 4π. quadtx samples the integral 7 times initially, at
x = [a a+h a+2*h (a+b)/2 b-2*h b-h b] where h = 0.13579*(b-a). It
would take an integrand that “knows” about these 7 points to fool quad.
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6.10.
∫ 1

0

x sin
1
x

dx

= 1/2*cos(1)+1/2*sin(1)+1/2*sinint(1)-1/4*pi
= 0.37853001712416

quadtx(’x*sin(1/x)’,0,1) divides by zero immediately. The resulting Inf
leads to potentially infinite recursion.
[Q,cnt] = quadtx(’x*sin(1/x)’,realmin,1,1.e-12) takes 24057 function
evaluations and produces a result with an error of 4.8e-9.

6.11.
∫ 1

0

xxdx

syms x
I = int(x^x,0,1)
Warning: Explicit integral could not be found.
I = int(x^x,x = 0 .. 1)
vpa(I)
ans = .78343051071213440705926438652698

[Q,cnt] = quadtx(’x^x’,0,1,1.e-18)
Q = 0.78343051071213
cnt = 141813

6.12.
∫ 1

−1

log(1 + x) log(1− x)dx = 4 + 2 log (2)2 − 4 log (2)− 1
3
π2

= -1.101550828099831261279552
Integrand is an upside down U. There are integrable singularities at both ends
of the interval. quadtx(f,-1,1) takes log(0) and never recovers. Integrate
over slightly smaller interval to avoid singularity.
quadtx(f,-1+eps,1-eps) = -1.10155178223377
Justifification: Near x = 1, log (1 + x) ≈ log(2). The neglected tail is
bounded by log(2)*int(log(1-x),1-eps,1), which is less than 26*eps.
Similarly near x = −1.

for k = 1:12
tol(k) = 1/10^k;
[q(k),cnt(k)] = quadtx(f,-1+eps,1-eps,tol(k));

end
err = double(I)-q;

The error is very close to the tolerance. This can be seen by
loglog(tol,err,’o-’)

or

tol err
0.10000000000000 0.09625018963983
0.01000000000000 0.01116357559052
0.00100000000000 0.00129450070918
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0.00010000000000 0.00015165834782
0.00001000000000 0.00001732943837
0.00000100000000 0.00000095413394
0.00000010000000 0.00000010616909
0.00000001000000 0.00000001164213
0.00000000100000 0.00000000119678
0.00000000010000 0.00000000012307
0.00000000001000 0.00000000001207
0.00000000000100 0.00000000000104

The plot
loglog(tol,cnt,’o-’)

shows that the function count is roughly a power of tol. Some curve fitting
shows that cnt is roughly inversely proportional to tol.^(1/6).

cnt round(38./tol.^(1/6))
49 56
73 82
97 120

129 176
185 259
289 380
441 558
641 819

1017 1202
1609 1764
2473 2589
3937 3800

6.13.
∫ 2

−2

x10 − 10x8 + 33x6 − 40x4 + 16x2 dx = 10240/693

quadtx samples the integrand 5 times, at −2,−1, 0, 1, and 2. All 5 sam-
ples are equal to 0, so quadtx thinks the integrand is equal to 0 everyplace
and believes the integral is equal to zero. For any c between -2 and 2,
quadtx(f,-2,c) + quadtx(f,c,2) computes the integral correctly.

6.14.
∫ 2

−1

1
sin(

√
|t|)dt

quadtx(f,-1,2,1.e-15)
ans =

5.31411561028878

The singularity at the origin is integrable and, because the interval of inte-
gration is not symmetric about the origin, the integrand is never evaluated
at exactly 0.
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6.15. See quadtxmod.m.

quadtxmod(@log,0,1)
Warning: Log of zero.
In c:\moler\ncm\quad\solutions\quadtxmod.m at line 32
Warning: Modifying endpoint
In c:\moler\ncm\quad\solutions\quadtxmod.m at line 39
ans =

-1.0000

6.16. See quadtxmod.m.

quadtxmod(inline(’1./x’),-1/2,1)
Warning: Maximum function count exceeded. Singularity likely.
In c:\moler\ncm\quad\solutions\quadtxmod.m at line 53

6.17. Lobatto rule.
∫ 1

−1

f(x) dx ≈ w1f(−1) + w2f(−x1) + w2f(x1) + w1f(1)

Taking f(x) = 1, x2, x4 leads to

w1 + w2 = 1
w1 + w2x

2
1 = 1/3

w1 + w2x
4
1 = 1/5

The solution is x1 = 1/
√

5, w1 = 1/6, w2 = 5/6. In quadl.m, these parame-
ters are mixed in with the parameters for the higher order Kronrod formulas
in the statements
s = [ ... 1/sqrt(5) ... ]
and
Q1 = (h/6)*[1 5 5 1]*y(1:4:13)’

6.18. Ek =
∫ 1

0

xkex−1 dx

E0 =
∫ 1

0

ex−1 dx = ex−1
∣∣∣
1

0
= 1− 1/e

Integrate by parts

Ek = xkex−1
∣∣∣
1

0
−

∫ 1

0

kxk−1ex−1 dx = 1− kEk−1

Quadrature:
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f = inline(’x^k*exp(x-1)’,’x’,’k’)
for k = 1:20

E(k) = quadtx(f,0,1,eps,k)
end

Forward recursion:

E0 = 1 - 1/exp(1);
E(1) = 1 - E0
for k = 2:20

E(k) = 1 - k*E(k-1);
end

Backward recursion:

E(32) = 0;
for k = 32:-1:2

E(k-1) = (1 - E(k))/k
end
E(21:32) = [];

Quadrature is accurate, but slow. Forward recursion is unstable. The initial
error is multiplied by k at the k-th step. The error in E(20) is 20! times the
initial roundoff error. Backward recursion is stable. Even though E(32) is
totally wrong, the error is divided by k at the k-th step.
Here are the results from the three methods, with asterisks in place of incor-
rect digits.

0.36787944117144 0.36787944117144 0.36787944117144
0.26424111765712 0.26424111765712 0.26424111765712
0.20727664702865 0.20727664702865 0.20727664702865
0.17089341188538 0.17089341188539 0.17089341188538
0.14553294057308 0.14553294057307 0.14553294057308
0.12680235656153 0.1268023565615* 0.12680235656153
0.11238350406930 0.112383504069** 0.11238350406930
0.10093196744559 0.10093196744*** 0.10093196744559
0.09161229298966 0.0916122929**** 0.09161229298966
0.08387707010339 0.083877070***** 0.08387707010339
0.07735222886266 0.07735222****** 0.07735222886266
0.07177325364803 0.0717732******* 0.07177325364803
0.06694770257562 0.066947******** 0.06694770257562
0.06273216394138 0.06273********* 0.06273216394138
0.05901754087930 0.0589********** 0.05901754087930
0.05571934593124 0.056*********** 0.05571934593124
0.05277111916899 0.0************* 0.05277111916899
0.05011985495809 **************** 0.05011985495809
0.04772275579621 **************** 0.04772275579621
0.04554488407582 **************** 0.04554488407582



56 Chapter 6. Quadrature

6.19. See trefethen.m.

T = lim
ε→0

∫ 1

ε

x−1 cos (x−1 log x) dx

= 0.323367431678

6.20.

P (s) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk +

s2(s− h)
h2

dk+1 +
s(s− h)2

h2
dk

syms h s
[int((3*h*s^2-2*s^3)/h^3,0,h)
int((h^3-3*h*s^2+2*s^3)/h^3,0,h)
int(s^2*(s-h)/h^2,0,h)
int(s*(s-h)^2/h^2,0,h)]

ans =
[ 1/2*h]
[ 1/2*h]
[ -1/12*h^2]
[ 1/12*h^2]
∫ h

0

P (s)ds = h
yk+1 + yk

2
− h2 dk+1 − dk

12

6.21. (a) See splinequad.m and pchipquad.m
(b)

x = 1:6
y = [6 8 11 7 5 2]

[pchipquad(x,y)
splinequad(x,y)
trapz(x,y)]

ans =
35.4167
35.2500
35.0000

(c)

x = round(100*[0 sort(rand(1,6)) 1])/100
y = round(400./(1+x.^2))/100
[pchipquad(x,y)
splinequad(x,y)
trapz(x,y)]
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Division by zero is possible if the x’s are not distinct. Otherwise, a typical
result is

3.1325
3.1442
3.1163

6.22. Discrete spline quadrature with various end conditions.

x = 1:6
y = [6 8 11 7 5 2]
for e = [’c’,’n’,’p’,’s’,’v’]

disp(e)
ppval(fnint(csape(x,y,e)),x(end))

end

complete 35.2778
not-a-knot 35.2500
periodic 35.0000
second derivatives 35.3947
variational 35.3947

6.23. How large is your hand? See handquad.m.
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Chapter 7

Ordinary Differential
Equations

Exercises
7.1. (a) Show ode23tx is exact for f(t, y) = 1, t, and t2, but not for t3.

Experimentally.

f(t, y) = 1, y = t

[t,y] = ode23tx(inline(’t^0’,’t’,’y’),[0 10],0);
err = max(abs(y-t))
err = 0

f(t, y) = t, y = t2/2

[t,y] = ode23tx(inline(’t^1’,’t’,’y’),[0 10],0);
err = max(abs(y-t.^2/2))
err = 0

f(t, y) = t2, y = t3/3

[t,y] = ode23tx(inline(’t^2’,’t’,’y’),[0 10],0);
err = max(abs(y-t.^3/3))
err = 1.1369e-013
% This is just roundoff error.

f(t, y) = t3, y = t4/4

[t,y] = ode23tx(inline(’t^3’,’t’,’y’),[0 10],0);
err = max(abs(y-t.^4/4))
err = 0.0441
% This is not just roundoff error.

59
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Algebraically.

f(t, y) = 1, y = t

yn = tn
s1 = 1, s2 = 1, s3 = 1

yn+1 = yn + h(2s1 + 3s2 + s3)/9
= tn + h(2 + 3 + 4)/9
= tn+1

f(t, y) = t, y = t2/2

yn = t2n/2
s1 = tn, s2 = tn + h/2, s3 = tn + 3h/4

yn+1 = yn + h(2s1 + 3s2 + s3)/9
= t2n/2 + h(2tn + 3(tn + h/2) + 4(tn + 3h/4)/9)
= t2n/2 + htn + h2/2
= t2n+1/2

f(t, y) = t2, y = t3/3

yn = t3n/3
s1 = t2n, s2 = (tn + h/2)2, s3 = (tn + 3h/4)2

yn+1 = yn + h(2s1 + 3s2 + s3)/9
= t3n/3 + h(2t2n + 3(tn + h/)2 + 4(tn + 3h/4)2)/9
= t3n/3 + ht2n + tnh2 + h3/3
= t3n+1/3

f(t, y) = t3, y = t4/4

yn = t4n/4
s1 = t3n, s2 = (tn + h/2)3, s3 = (tn + 3h/4)3

yn+1 = yn + h(2s1 + 3s2 + 4s3)/9
= t4n/4 + ht3n + 3h2t2n/2 + tnh3 + 11h4/48
= (tn + h)4/4− h4/48
6= t4n+1/4

(b) When is the error estimator in ode23tx exact?
The error estimator is the difference between a second order method and a
third order method. (That’s why the method is called ode23.) So it is exact
for f(t, y) = t2, but not for f(t, y) = t3. The error estimator estimates the
error in the low order formula, but the function uses the high order formula
to advance the solution. The function gets the exact solution, within roundoff
error, for f(t, y) = t3, but it doesn’t “know” it’s getting the exact solution.
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7.2. f = inline(’2/sqrt(pi)*exp(-x^2)’,’x’,’y’)
[x,y] = ode23tx(f,[0 2],0)
format long
[x y y-erf(x)]

0 0 0
0.00007089815404 0.00007999999987 -0.00000000000000
0.00042538892422 0.00047999997105 -0.00000000000000
0.00219784277512 0.00247999600678 -0.00000000000000
0.01106011202965 0.01247949114036 -0.00000000000183
0.05537145830229 0.06241619845376 -0.00000000571019
0.14341156510599 0.16071976604159 -0.00000027267420
0.26526185575992 0.29243914999818 -0.00000220506665
0.41928620148511 0.44678270194032 -0.00000953168159
0.61306570673602 0.61403021088296 -0.00003097764172
0.81306570673602 0.74974128938601 -0.00005245563314
1.01306570673602 0.84798787236882 -0.00006603990739
1.21306570673602 0.91368201872542 -0.00007060930407
1.41306570673602 0.95425593569379 -0.00006822715409
1.61306570673602 0.97740226036827 -0.00006227226432
1.81306570673602 0.98959877083580 -0.00005572624995
2.00000000000000 0.99527068734127 -0.00005157767768
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7.3. (a) See myrk4.m.
(b) Cutting the step size in half reduces the error by a factor of 24 = 16.

[t1,y1] = myrk4(inline(’y’,’x’,’y’),[0 1],1,.1);
[t2,y2] = myrk4(inline(’y’,’x’,’y’),[0 1],1,.05);
e = exp(1);
err1 = y1(end)-e, err2 = y2(end)-e, ratio = (y1(end)-e)/(y2(end)-e)
err1 = -2.084323879714134e-006
err2 = -1.358027112985383e-007
ratio = 15.34817574541731

(c) Simple harmonic oscillator. ÿ = −y. See oscillator.m.

oscillator = inline(’[y(2); -y(1)]’,’t’,’y’);
opts = odeset(’reltol’,1.e-6,’abstol’,1.e-6,’refine’,1);
y0 = [1 0];
tspan = [0 2*pi];
h = pi/50;
for k = 1:4

switch k
case 1, [t,y] = ode23(oscillator,tspan,y0,opts);
case 2, [t,y] = ode45(oscillator,tspan,y0,opts);
case 3, [t,y] = ode113(oscillator,tspan,y0,opts);
case 4, [t,y] = myrk4(oscillator,tspan,y0,h);

end
err(k) = max(abs(y(end,:)-y0));
cnt(k) = length(t)-1;

end
fprintf(’ ode23 ode45 ode113 myrk4\n’)
fprintf(’%12.2e %12.2e %12.2e %12.2e\n’,err)
fprintf(’%12.0f %12.0f %12.0f %12.0f\n’,cnt)

ode23 ode45 ode113 myrk4
7.20e-006 7.61e-007 1.24e-006 8.15e-007

210 30 37 100
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7.4. See stiff1d.m. ode23tx requires 416 steps while the stiff solver, ode23s
requires only 57 steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.4

0.45

0.5

One-dimensional stiff problem.
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7.5. ẏ = f1(t, y) = cos t, y(0) = 0

ẏ = f2(t, y) =
√

1− y2, y(0) = 0
ÿ = f3(t, y) = −y, y(0) = 0, ẏ(0) = 1
ÿ = f4(t, y) = − sin t, y(0) = 0, ẏ(0) = 1

(a) What is the common solution?

y(t) = sin(t), 0 ≤ t ≤ π/2

(b) Rewrite these problems as first-order systems.

ẏ = cos t, y(0) = 0

ẏ =
√

1− y2, y(0) = 0
ẏ1 = y2, ẏ2 = −y1, y1(0) = 0, y2(0) = 1
ẏ1 = y2, ẏ2 = − sin t, y1(0) = 0, y2(0) = 1

(c) What is the Jacobian for each problem?

J1 = 0
J2 = −2y/

√
1− y2

J3 =
(

0 1
−1 0

)

J4 =
(

0 1
0 0

)

(d) How much work does ode45 require to solve each problem? See fourjacs.m.

f1 f2 f3 f4

steps 13 58 30 19
fevals 79 385 181 115

For the second formulation, the Jacobian J2 = −2y/
√

1− y2 becomes infinite
as t → π/2 and y → 1.

(e) Change the interval to 0 ≤ t ≤ π.

f1 f2 f3 f4

steps 24 fails 60 37
fevals 145 ∞ 361 223

Notice that f2(t, y) is never negative, so the solution cannot decrease. At
t = π/2 the theoretical solution is no longer unique. As t approaches π/2,
y becomes slightly larger than 1,

√
1− y2 becomes complex and ode45 has

to take impossibly small steps. The other three problems have no difficulties
and require about twice as many steps as they did to reach π/2.

(f) Change the second formulation to ẏ = f2(t, y) =
√
|1− y2|, y(0) = 0.

For t > π/2 and y > 1, the equation becomes ẏ =
√

y2 − 1, y(π/2) = 1, The
solution becomes y = cosh (t− π/2).
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7.6. The Jacobian for the two body problem. See orbitjacobian.m.

7.7. When is the matrix in the Lorenz equations singular and what is its null
vector?



−β 0 η
0 −σ σ
−η ρ −1







ρ− 1
η
η


 =




η2 − β(ρ− 1)
0
0




7.8. Jacobian for the Lorenz equations.

J =



−β y3 y2

0 −σ σ
−y2 ρ− y1 −1




= A +




0 y3 0
0 0 0
0 −y1 0




This function finds the eigenvalues of the Jacobian at the fixed point as a
function of ρ with fixed β and σ.

function lambda = lorenzeigs(rho)
beta = 8/3;
sigma = 10;
eta = sqrt(beta*(rho-1));
A = [ -beta 0 eta;

0 -sigma sigma;
-eta rho -1];

y = [rho-1; eta; eta];
J = A + [0 y(3) 0; 0 0 0; 0 -y(1) 0];
lambda = eig(J);

Evaluating this function for each of the ρs available in lorenzgui shows that
the Jacobian has a pair of complex eigenvalues with positive real part.

7.9. For what ρ is the Lorenz stable? Use fzerotx to find ρ so that the eigen-
values computed by lorenzeigs(rho) from the previous exercise lie on the
imaginary axis. See lorenzstable.m. Result is ρ = 24.737.

7.10. Signature of the Lorenz periodic orbits.

ρ signature

99.65 +--+--
100.50 ++-
160.00 ++--
350.00 +-
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7.11. Period of the Lorenz periodic orbits. See lorenzperiod.m.

ρ period

99.65 2.2033
100.50 1.0962
160.00 1.1529
350.00 0.3885

7.12. See matlab/demos/orbitode

te =
0.0000
3.0953
6.1933

ye =
1.2000 -0.0000 -0.0000 -1.0494

-1.2616 -0.0012 -0.0005 1.0485
1.1989 0.0000 -0.0047 -1.0480

ie =
1
2
1

The events function in orbitode looks for local maxima or minima of the dis-
tance from the initial position. At t = te(1), the capsule is at its initial po-
sition and velocity, y = ye(1,:). At t = te(2), the capsule is at ye(2,:),
which is its maximum distance from the initial position. At t = te(3), the
capsule has nearly returned to its initial position, ye(3,:) ≈ ye(1,:). The
time te(3) required to return to the initial position is the period. The initial
conditions have been chosen to make this periodic orbit possible. The length
of tspan is anything larger than the period.
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7.13. Lotka-Volterra. See predprey.m.
(a) predprey(300,150,5)
(b) predprey(15,22,6.62)
(c) predprey returns the difference between the initial and final values. Try
e = predprey(102,198,alpha) for a few values of alpha between 4 and 5.
alpha = 4.443 yields e = [-0.0055 0.0078].
(c) Or, see predpreyperiod.m.
(d) u = r−1/α, v = f −2/α. Ignore terms of O(uv). Resulting linear system

u̇ = −v
v̇ = 2u

Solutions are combinations of cos (
√

2t) and sin (
√

2t). Period =
√

2π =
4.4429.

7.14. See predpreymod.m.
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7.15. See chute.m.
(a) Free-fall. tf = 11.0600, y′(tf ) = −108.4988.
(b) Paratrooper. tf = 14.2965, y′(tf ) = −53.9416.
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Paratrooper

y(5) = 481.3

tf = 14.30
y’(tf) = −53.94

tf = 11.06
y’(tf) = −108.50

Paratrooper, with and without parachute.
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7.16. See cannonball.m.

wind theta0 tfinal range vfinal nsteps
None 40 5.981 182.3 36.670 67
Steady head 40 5.786 159.7 32.478 67
Intermittent tail 45 6.669 194.6 39.204 85
Gusty 35 5.444 183.2 37.162 223
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Cannonball trajectory with various wind conditions.
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7.17. Bob Beamon long jump. See beamon.m.

v0 theta0 rho distance
10.0000 22.5000 0.9400 7.1333
10.0000 22.5000 1.2900 7.1059
11.1844 22.5000 0.9400 8.9000
11.1844 22.5000 1.2900 8.8575

The lower air density can account for at most 5 centimeters of added distance.
Beamon’s initial velocity was a far more important factor.
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Effect of air density and initial velocity on longjump distance. The two
shorter jumps are low and high altitude with nominal initial velocity. The
two longer jumps are low and high altitute with a sprinter’s initial velocity.
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7.18. (a) Linearized period = 2π
√

L/g = 1.0988.
(b) See pendulum.m.
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(c) The graph shows that as θ0 → 0, T (θ0) → 1.0988
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7.19. CO2 in the atmosphere.
(a). See co2model.m.
(b)

p sigs sigd alks alkd
y0 =

1.0000 2.0100 2.2300 2.2000 2.2600
yfinal =

2.5746 2.1217 2.3380 2.1989 2.2601
ratio =

2.5746 1.0556 1.0484

Large increase in the atmosphere. Slight increases in the ocean.
(c) At t = 2347.8 the CO2 concentrations reaches its maximum, 4.2171.
(d)
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Stiffness with CO2 model and ode45.

(e)
solver steps time(sec.)
ode23tx 1983 8.4220
ode23 1987 7.9420
ode45 1491 11.7070
ode113 3000 9.9750
ode23s 1413 5.2080
ode15s 268 0.9710

The variable order stiff solver is clearly the best for this problem.
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7.20.

y′′ = y2 − 1
y(0) = 0
y(1) = 1

See bvp.m.
(a) Shooting Method. eta = 1.393628
(b) Quadrature. kappa = 0.97110034
(c) Linear Iteration. n = 99, 14 iterations
(d) Newton’s Method. n = 99, 4 iterations
(e) Extra, out of curiousity, use bvp4c.m.
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7.21. Double pendulum.
(a) With initial radius ≥ 2, initial angles larger than about 1.38 radians lead
to chaotic motion.
(b) swinger(0.862,-0.994) produces a nearly periodic orbit.
(c) get(gcf,’userdata’) = theta0, the 2-vector of initial angles.
(d) Changing the sign of alpha in swinginit causes the other possible initial
configuration to be chosen.
(e) Modify swinger so that other masses are possible. Later ...
(f) Modify swinger so that other lengths are possible. Later ...
(g) Time scales inversely as

√
g. The solution of the linearized, single pen-

dulum involves sin (
√

gt). The effect of gravity on the nonlinear, double
pendulum is similar.
(h) Combine swingmass and swingrhs into one function. and use ode23tx.
Later ...
(i) These equations are not stiff. Small step sizes are required to follow the
chaotic motion.
(j) Floating point arithmetic is the force that knocks the inverted pendulum
away from its vertical position. We can’t balance directly above the center
because π is not a floating point number. The closest we can get is pi, the
IEEE double precision number nearest to π. It turns out that

π − pi ≈ .5515 eps ≈ 1.225 · 10−16

The first noticeable movement of the inverted pendulum occurs at about
t = 53. Before t = 53, the state of the pendulum is changing, but it is not
apparent on the screen. There are two different regimes, linear behavior for
t up to about 36 and then exponential behavior for t between 36 and about
53.
A simplified model is provided by Euler’s method for a single pendulum.
With p = θ, q = θ̇, and ε = π − pi, Euler’s method is

p0 = π + ε
q0 = 0

pn+1 = pn + hqn

qn+1 = qn − h sin pn

As long as h|qn| < eps, the addition pn + hqn rounds to pn and pn remains
equal to pi. Furthermore, as long as pn = pi, the computed value of sin pn

is ε. Consequently, for the first several hundred steps, Euler’s method is
effectively

pn+1 = pn

qn+1 = qn − hε

The pendulum appears to remain balanced in its vertical position, but the
first derivative is growning linearly with t, that is q(t) = −εt.
The linear behavior changes when h|qn| reaches eps. Then pn begins to
be affected numerically. We have set the maximum step size for ode23 at
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h = .05. So qn begins to change the last few bits of pn after

t = eps/(hε) ≈ 1/(.05 · .5515) ≈ 36.3

Let’s denote this value of t by tm where m = t/h = 726 steps.
For pn close to π, we have sin pn ≈ π−pn. Let p̃n = pn−m−π and q̃n = qn−m.
Now the Euler model is

p̃n+1 = p̃n + hq̃n

q̃n+1 = q̃n + hp̃n

Both p̃n and q̃n grow like (1 + h)n, that is exponentially. This exponen-
tial behavior continues until either qn or pn − π is large enough that our
simplifications are no longer reasonable.
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Inverted double pendulum

The plot shows the initial behavior of θ̇1(t) versus t on a logarithmic scale.
For t < 36.3, θ̇1(t) is increasing linearly with t. For 36.3 < t < 53, θ̇1(t)
is increasing exponentially, so its logarithm increases linearly. For t greater
than about 53, the pendulum begins to move on the screen and the chaotic
behavior soon sets in.
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Chapter 8

Fourier Transforms

Exercises
8.1. The telephone number in touchtone is 1-508-647-7001.

8.2. Modify touchtone.m so that it can dial a telephone number. Later.

8.3. Modify touchtone so that it determines the segments. Later.

8.4. Make a recording of a phone number. Later.

8.5. Prove that FHF = nI.
Let ω = e2πi/n. If k 6= l, let m = l − k. Then

(FHF )k,l =
n−1∑

j=0

ω−kjωlj

=
n−1∑

j=0

ωmj

= (1− ωmn)/(1− ωm)
= (1− 1)/(1− ωm)
= 0

If k = l,

(FHF )k,k =
n−1∑

j=0

ω−kjωkj

=
n−1∑

j=0

1

= n
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8.6. fftmatrix(n,j) A five-point star results if n is divisible by 5 and j = 2*n/5
or j = 3*n/5. A regular pentagon results if n is divisible by 5 and j = n/5
or j = 4*n/5.

8.7. el Niño. See elnino.m. The strongest peak is at 12 months per cycle, i.e.
yearly. There is another peak spread across three components with 28, 33.6,
and 42 months per cycle, i.e. a little less than three years.
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8.8. Train whistle. See trainwhistle.m The frequencies (in Hz.) of the peaks,
and the ratios to the first peak, are

700 1
875 5/4

1167 5/3
2100 3
2625 15/4
3500 5

The first three peaks are fundamental tones. The fourth and sixth peaks are
the first two overtones of the first fundamental tone. The fifth peak is the
first overtone of the second fundamental tone.
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8.9. Bird chirps. See chirps.m. The first chirp has lower frequencies and the fifth
chirp has higher frequencies than the others.
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Chapter 9

Random Numbers

Exercises
9.1. rand(’state’,13)

randgui rand
Computes π to four digits. Pure luck.

9.2. See randgui2.m.

9.3. With a transposed random matrix in randgui randssp, the autocorrelation
of length 3 in randssp no longer affects the points in 3-dimensional space.

9.4. (a) See randphi.m.
(b) subplot(2,1,1), hist(randmcg(10000,1),50)

subplot(2,1,2), hist(randphi(10000,1),50)
randphi produces a histogram that is “too close” to uniform.
(c) randgui randphi does not converge to π, but rather to some value that
starts with 3.26... Can anybody tell me what this value is?

9.5. (a) See randjsr.m.
(b) subplot(2,1,1), hist(randjsr(10000,1),50)

subplot(2,1,2), hist(randtx(10000,1),50)
(c) randgui randjsr works as expected.

9.6. See randnpolar.m.

9.7. (a) See brownian2.m.
(b) See brownian3.m

9.8. (a) A single deck of cards is represented by the integers 1:52. Our blackjack
simulation uses four of these single decks. The combined deck is shuffled with
randperm, which uses rand. Cards are dealt from the bottom of the deck.
A counter keeps track of the current length of the deck. Dealing one card
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consists of accessing the last integer in the array and decrementing the length
of the array.
(b) Our simulations do not reshuffle until the shoe is nearly depleted, but
let’s find the probability of a blackjack for a freshly shuffled shoe containing
four 52-card decks. The probability that the first card is an ace is 16/208.
The probability that the second card is worth 10 points is (64/207). The
probability of ace followed by 10 is therefore (16/208)(64/207). Similarly,
the probability of 10 followed by ace is (64/208)(16/207), the same as ace-10.
To qualify as a blackjack, the dealer must not have ace-10 or 10-ace in his
first cards. Consequently, the probability of blackjack from a fresh deck is

2(16/208)(64/207)(1− 2(15/206)(63/205)) ≈ 0.045437.

An extensive simulation with 5 million hands found surprisingly good agreeent.
There were 227125 blackjacks, so the observed probability was 0.045425.
See blackjackmod.m.
(c) blackjackmod(10000,’bjpays10’). Player disadvantage about 2%.
(d) blackjackmod(10000,’pushloses’). Player disadvantage over 10%.
(e) blackjackmod(10000,’extraaces’). Player advantage more than 2%.
(f) blackjackmod(10000,’nokings’). Player disadvantage almost 4%.



Chapter 10

Eigenvalues and Singular
Values

Exercises
10.1. magic(4) Singular

hess(magic(4)) Hessenberg
schur(magic(5)) Schur
pascal(6) Symmetric
hess(pascal(6)) Tridiagonal
schur(pascal(6)) Diagonal
orth(gallery(3)) Orthogonal
gallery(5) Defective
gallery(’frank’,12) Hessenberg
[1 1 0; 0 2 1; 0 0 3] Schur
[2 1 0; 0 2 1; 0 0 2] Jordan

10.2. M is a magic square of order n. Its largest eigenvalue, and its largest singular
value, is the magic sum,

µn = n(n2 + 1)/2

The vector e of all ones is the corresponding eigenvector, and left and right
singular vector.

Me = µne

and

MT Me = µ2
ne

Since M is a positive matrix, the Perron-Froebenium theorem insures that
µn is the largest eigen- and singular value.
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10.3. See ffteig.m. The eigenvalues of fft(eye(n)), scaled by
√

n are 1, −1, i,
and −i, but, surprisingly, not in equal numbers. For example, for n = 20,
there are six 1’s, five -1’s, five -i’s, and four i’s. In general,

eigenvalue multiplicity
1 floor((n+4)/4)

-1 floor((n+2)/4)
-i floor((n+1)/4)
i floor((n-1)/4)

(I don’t have an elementary explanation of this behavior.)

10.4. e = 2*sin((-(n-1)/2:(n-1)/2)’*pi/(n+1))

10.5. See trackeigs.m

10.6. (a) A = gallery(5) is defective. Its eigenvalue λ = 0 has multiplicity five,
but only one eigenvector. So, condeig(A) should be infinite.
(b) The eigenvalues computed with finite preciswion arithmetic are distinct,
and each has its own eigenvector.

10.7. (a) Symbolic algebraic expressions are essentially character strings that do
not have sortable numeric values until they are evaluated.
(b) factor eigenvalue

x 0
(x-1020) 1020
(x^2-1020*x+100) 510+100*26^(1/2), 510-100*26^(1/2)
(x^2-1040500) 10*10405^(1/2), -10*10405^(1/2)
(x-1000)^2 1000, 1000

(c) What do each of these statements do?
e = eig(sym(rosser)), Maple computes eigenvalues symbolically.
r = eig(rosser), Matlab computes eigenvalues numerically.
double(e) - r, Matlab computes the difference.
double(e - r), Maple computes the difference.

(d) The roundoff errors in the eigenvalues computed by Matlab using double
precision floating point are on the order of eps*norm(rosser) = 2.2650e-13.
(e) Change R(1,1) from 611 to 612. The characteristic polynomial of the
modified matrix cannot be factored over the rationals.

10.8. Both P = gallery(’pascal’,12) and F = gallery(’frank’,12) have char-
acteristic polynomials that are unchanged if λ is replaced by 1/λ. The Pas-
cal matrix is symmetric, so its eigenvalue problem is perfectly well condi-
tioned. condeig(P) is all ones. The computed eigenvalues, p = eig(P),
satisfy p.*flipud(p) == 1 as well as can be expected, given the fact that
p(12)/p(1) is almost 1012. On the other hand, the Frank matrix has a no-
toriously poorly conditioned eigenvalue problem. In fact, that’s its claim to
fame. Some of the values of condeig(F) are greater than 107. The computed
eigenvalues should be sorted, f = sort(eig(F)). Then f.*flipud(f) == 1
to only about seven digits, which is consistent with condeig(F).
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10.9. Compare three ways to compute singular values.
svd(A) is the recommended method.
sqrt(eig(A’*A)) is actually somewhat faster, but less accurate because the
small singular values are clobbered when you form A’*A.
eig([0 A; A’ 0]) could be eight times slower because the matrix is twice
as big. It also requires more storage. Its accuracy is comparable with the
recommended method.

10.10. I found the number of iterations required by eigsvdgui on random sym-
metric and nonsymmetric matrices to be to be suprisingly consistent. The
nonsymmetric eigenvalue algorithm requires about 3.5n or 3.6n, sometimes
up to 4.0n, iterations. The symmetric eigenvalue algorithm and the SVD
algorithm both require about 1.7n or 1.8n iterations.

10.11. A = diag(ones(n-1,1),-1) + diag(1,n-1)
eigsvdgui(A,’eig’) iterates forever. The QR algorithm leaves the ma-

trix unchanged. This is the matrix that Wilkinson had in mind when he
introduced the ad hoc shift. Our simple implementation does not have this
important safety feature.
eigsvdgui(A,’symm’). Nothing unusual here.
eigsvdgui(A,’svd’). The SVD is computed without any arithmetic or

iterations, just permutations.

10.12. (a) If V ΣU ′ = X ′, then UΣV ′ = X. Consequently the SVD of X and X ′

just swap U and V . However, in Matlab 6.5 and earlier, economy SVD only
works for tall, skinny matrices. (In Matlab 7.0, we’ll have it both ways.)
Since we concatenated R, G and B together horizontally, we prefer to compute
the economy SVD of the transpose.
(b) imagesvd.m does all the work. Enjoy!

10.13. (a) The female swings her pelvis a little more and keeps her arms closer to
her body.
(b) See walkerab.m.
(c) See walkerwave.m.
(d) The five rows of subplots correspond to five components or postures. The
three columns are x, y, z coordinates. Each subplot shows male and female
components. The subplot in position (4,1) shows the most variation, but its
scale is tiny compared to the others. It’s hard to see much difference between
male and female in these plots, even though we can see it easily with the gui.
(e) See walkerphase.m

10.14. help sparse says
Any elements of s which have duplicate values of i and j
are added together.

Consequently, sparse(i,j,1) counts duplicate paris.
Figure 10.1 shows digraph.m operating on itself. There are only 453 charac-
ters, and it’s a computer program. But there are lots of comments, so even
here we find the vowels.
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Figure 10.1. digraph(’digraph.m’)

10.15. circlegen(h). See figure 10.2.
cos θ = 1− h2/2, λ = e±iθ

If θ = 2π/p for integer p, the orbit is discrete with p points.
h = default, θ = 2π/30
h = 1/φ, θ = 2π/10
h = φ, θ = 6π/30
h = 1.4140, orbit creeps counterclockwise slowly
h =

√
2, θ = 2π/4

h = 1.4144, orbit creeps clockwise slowly
h < 2, |λ| < 1, a bounded ellipse.

h = 2, An = ±
(

2n− 1 2n
−2n −(2n + 1)

)
, linear growth.

h > 2, |λ| > 1, exponential growth.

10.16. Euler’s methods. See figure 10.3.
(a) Explicit. λ = 1± ih, |λ| > 1, Increasing spiral.
(b) Implicit. λ = 1/(1± ih), |λ| < 1, Decreasing spiral.

10.17. See circlegenrho.m. rho and kappa are essentially equal, except when the
orbit is only a discrete set of points, and when the step size gets very close
to 2.
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h = default h = 1/φ h = φ

h = 1.4140 h = sqrt(2) h = 1.4144

h < 2 h = 2 h > 2

Figure 10.2. Circle generator with various step sizes
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Figure 10.3. Explicit and implicit circle generators



88 Chapter 10. Eigenvalues and Singular Values



Chapter 11

Partial Differential
Equations

Exercises
11.1. (a) h should equal 1/(n + 1).

(b) (1/h)D is a one-sided approximation to the first derivative.
(c) DT D and DDT are equal to −A, except for the first or last row.
(d) (1/h4)A2 approximates the fourth derivative operator.
(e) (1/h^2)*(kron(A,I)+kron(I,A)) is 4h for [0, 1]× [0, 1]
(f) plot(inv(full(-A))) shows that the elements of A−1 are piecewise linear
functions of the row and column indices, with breaks at the diagonal.

11.2. (a) See bellshape.m

(b) u = (
√

π/2)(t erf(t)− erf(1)) + (1/2)(e−t2 − e−1)

11.3. See waveguide.m.

11.4. See humpspdes.m.
(a) The residual is on the order of 10−12

(b) limit t →∞ u(x, t) = u(x) from part (a).
(c) limit t → ∞ u(x, t) is the linear function interpolating the boundary
values, humps(0) = 5.1765 and humps(1) = 16.
(d) u(x, t) is periodic in t with period 2.

11.5. See peakspdes.m.
(a) The residual is on the order of 10−12

(b) limit t →∞ u(x, y, t) = u(x, y) from part (a).
(c) limit t →∞ u(x, y, t) is the harmonic function interpolating the boundary
values, peaks(x,y), for |x| = 3 or |y| = 3.
(d) Two-dimensional wave equation with peaks as the initial value. Solution
is not periodic and does not approach a limit as t →∞.

11.6. Method of lines. Later.

89



90 Chapter 11. Partial Differential Equations

11.7. See ncm/pdegui.
(a) n = number of grid points ≈ c/h2 where
Region c
Square 4
L 3
H 3
Disc 28/9
Annulus 22/9
Heart 19/9
Drums 14/9

(b) For the heat equation, the maximum stable time step is (1/4)h2. For the
wave equation, the maximum stable time step is (1/

√
2)h.

(c) The Poisson problem in pdegui is 4hu = 1 and the eigenvalue problem
with index = 1 is 4hu = λu with u ≥ 0. Since both problems have positive
source terms, the solutions are similar.
(d) Both pdegui and membranetx compute the eigenvalues and eigenfunctions
of the L-shaped membrane. Even though their methods are very different,
the resulting contour plots are identical, except for a 90◦ rotation.
(e) The regions Drum1 and Drum2 have different shapes, but the same eigen-
values. Before 1992, many people believed that this was not possible.

11.8. See pdeguihand.m.

11.9. See capacity.m.

0.03514 0.21403

0.00242
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11.10. See ncm/pennymelt.m
(a) What is the limiting behavior of u(x, y, t) as t → ∞ ? This is a hard
question because we haven’t been forthcoming about the boundary condi-
tions. The code has

% Finite difference indices
[p,q] = size(U);
n = [2:p p];
s = [1 1:p-1];
e = [2:q q];
w = [1 1:q-1];

and

U = U + sigma*(U(n,:)+U(s,:)+U(:,e)+U(:,w)-4*U);

This amounts to Neumann boundary conditions. The discrete Laplacian is
singular in this situation. The steady state satisfies

U(n,:)+U(s,:)+U(:,e)+U(:,w) = 4*U

Thus, the steady state is a constant. What constant? With exact arith-
metic, mean(U(:)) would remain constant. The mean of the penny data is
101.8268, so this is the theoretical steady state value. But with rounding
error, we drift away from this value and the actual result depends upon the
history of the computation. It takes a very long time to see the limiting value.
(b) The explicit algorithm is stable δ ≤ 1/4.
(c) The ADI algorithm is stable for all values of δ.

11.11. See pennypois.m.

11.12. See pennywave.m.
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11.13. See waves9.m.

11.14. See triplets.m. It finds the high-multiplicity eigenvalues of the square, but
does not know where they fit in the numbering of the eigenvalues of the L.
50 = 12 + 72 = 72 + 12 = 52 + 52

65 = 82 + 12 = 72 + 42 = 42 + 72 = 12 + 82

11.15. See membranetx.m, membrane.mat, and membraneshow.m.
The function membranetx looks for a file named membrane.mat that contains
precomputed eigenvalues of the L-shaped membrane, together with informa-
tion about their multiplicities. If the file is not available, membranetx can
recompute it.
The statement load membrane should put two arrays of length 150, lambdas
and syms, in the workspace. lambdas(k) is the kth eigenvalue. syms(k) = 1
if the eigenfunction is symmetric about the center line and is not an eigen-
function of the square. syms(k) = 2 if the eigenfunction is antisymmetric
about the center line and is not an eigenfunction of the square. syms(k) >= 3
for eigenfunctions that come from reflecting eigenfunctions of the square into
the three squares that make up the L. syms(k) = 4, 5, ... for eigenvalues
of multiplicity 2, 3, ...
(a) [sum(syms==1) sum(syms==2) sum(syms>=3)]/length(syms) computes
the fraction of eigenvalues for each symmetric class. It turns out that each
of the three fractions is about 1/3.
(b) k = min(find(syms==5)) = 105. lambdas(103:105) are all equal to
50π2. See membraneshow(103:105).
(c) k = min(find(syms==6)) = 138. lambdas(135:138) are all equal to
65π2. See membraneshow(135:138).
(d) membranetx assumes that all the multiple eigenvalues of the L are also
multiple eigenvalues of the square and hence integer multiples of π2. It uses
this information, instead of tolerances, to determine the rank of A(λ) and
select the requisite number of columns of V from the SVD for coefficients.
pdegui does not use any symmetry information, even though the eigenfunc-
tion symmetries of the L are preserved in the finite difference eigenvectors.
Instead, it relies the Arnoldi algorithm in eigs to determine multiplicities.

11.16. help cameratoolbar

11.17. See ncmlogo3d.m.


