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A B S T R A C T   

A 1500-year, high-resolution deep-sea benthic foraminifera record from the Athos Basin of the North Aegean 
Trough (northeastern Mediterranean) has been analyzed for the development of a paleoclimatic scenario. The 
data analysis points out that the quantity and quality of the seafloor’s organic matter could be a crucial con-
trolling factor for the faunal succession. During 550–1000 AD (within the Medieval Climate Anomaly), the 
relatively high benthic foraminiferal accumulation rates together with the predominance of meso-eutrophic taxa, 
such as Bolivina dilatata/spathulata, may be interpreted as the result of high precipitation. Consequently, 
increased riverine discharges into the North Aegean Sea and the associated warm climatic conditions appear to 
persist for a long time and are related to a negative phase of the North Atlantic Oscillation. Later on, the 
establishment of an oligo-mesotrophic seafloor environment is documented by the diminishing benthic fora-
miniferal accumulation rates associated with an increment in the abundances of Gyroidinoides altiformis. During a 
colder phase of the Little Ice Age (17th century), the relative abundances of the opportunistic foraminiferal 
species Bulimina inflata and Bulimina marginata can be related to high marine productivity, most probably due to 
enhanced winter mixing conditions. Finally, during the last 100 years, a faunal shift to eutrophication preferent 
species, and the persistent occurrence of Chilostomella mediterranensis, reflects a pronounced change in trophic 
conditions, characterized by high amounts of potentially low-quality organic matter in the seafloor, which are 
the result of a gradual temperature increase accompanied with enhanced terrigenous inputs.   

1. Introduction 

High-resolution and well-preserved Holocene sedimentary archives 
provide climate information on multiple timescales that may contribute 
to a better understanding of climate sensitivity to internal variability (e. 
g., atmosphere-ocean feedbacks like the North Atlantic Oscillation – 
NAO and Atlantic Multi-decadal Oscillation - AMO) and external forcing 
such as solar radiation and volcanic activity (e.g., Bond et al., 2001; 
Mayewski et al., 2004; Mann et al., 2009). Recently, an increasing 
number of studies have interpreted such sedimentary archives from 
several deep sites in the Mediterranean, offering good evidence of the 
marine environment responses to the last millennia climate oscillations 
(Incarbona et al., 2008, 2010; 2016; Piva et al., 2008; Sprovieri et al., 

2010; Nieto-Moreno et al., 2011, 2013; Schilman et al., 2011; Grauel 
et al., 2013; Lirer et al., 2014; Goudeau et al., 2015; Cisneros et al., 2016; 
Gogou et al., 2016; Margaritelli et al., 2016; Menke et al., 2017). All 
studies mentioned above report the alternation of decennial to 
multi-centennial timescale warm and cold events, such as the Medieval 
Climate Anomaly (MCA: 600–1200 AD), the Little Ice Age (LIA: 
1200–1850 AD) and the relatively recent Instrumental Period (IP: 1850 
to present). However, the climate responses to these extraordinary 
events differ temporally among the various Mediterranean sub-basins, 
presumably affected by the regional and/or large-scale thermohali-
ne/atmospheric circulation patterns (e.g., Gogou et al., 2016). 

The Mediterranean climate is influenced by a variety of tele-
connection forcing such as NAO, AMO, South Asian Monsoon, Siberian 
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High-Pressure System and El Ni~no-Southern Oscillation (e.g., Luter-
bacher and Xoplaki, 2003; Malanotte-Rizzoli et al., 2014). The Aegean 
Sea, situated in the northeasternmost part of the Eastern Mediterranean, 
is highly sensitive to recent and past climate fluctuations due to its 
transitional location between subtropical and temperate climate sys-
tems, semi-enclosed nature, small size and complex bathymetry as well 
as due to the abundance of local freshwater inputs (e.g., Rohling et al., 
2002; Ehrmann et al., 2007; Gogou et al., 2007; Kuhnt et al., 2007). The 
North Aegean Sea is considered an occasional source of deep water 
formation (a water circulation phenomenon known as the Eastern 
Mediterranean Transient - EMT), which overflows and spills into the 
Eastern Mediterranean through the western and eastern Cretan straits 
(e.g., Theocharis and Georgopoulos, 1993; Roether et al., 1996; Trip-
sanas et al., 2016). EMT is a result of the strong atmospheric influences 
during cool and dry winter periods combined with internal thermoha-
line variability (Zervakis et al., 2000, 2004; Velaoras and Lascaratos, 
2010; Androulidakis et al., 2012; Velaoras et al., 2013; Vervatis et al., 
2013). The newly-formed dense water is an important source for the 
ventilation and nutrient regeneration of the deep water layers, espe-
cially in the various basins of the North Aegean Sea (Souvermezoglou 
and Krasakopoulou, 2002). The Aegean Sea, therefore, provides an ideal 
setting for the investigation of the prevailing surface environmental 
conditions and vertical fluxes of energy and matter into the deep-water 
ecosystems. 

Benthic foraminifera have been proved to be valuable paleoceano-
graphic and paleoenvironmental proxies since they are an important 
component of the deep-sea fauna, very susceptible to the recent and past 
bottom water mass changes (e.g., Gooday et al., 1992). Their distribu-
tion and microhabitat structure, as well as the abundances of certain 
species, are closely related to the quality, quantity and periodicity of the 
organic matter settling from the surface waters to the seabed as well as 
the oxygen content of the bottom water layers (e.g., Jorissen et al., 1995, 
2007; De Stigter et al., 1998; De Rijk et al., 1999, 2000; Schmiedl et al., 
2000; Fontanier et al., 2002). In the oligotrophic deep marine envi-
ronments, such as these of the modern Mediterranean Sea, which are 
commonly characterized by good oxygenation, oxygen appears to be a 
less limiting environmental factor than the sustainable flux of metabo-
lizable organic matter for the distributional patterns and microhabitat 
depth of most foraminifera species (Jorissen et al., 1995). Therefore, the 
foraminifera fauna in the extremely oligotrophic deep settings of the 
Eastern Mediterranean is characterized by low diversity, consisting of 
typical species with low food demands like Gyroidina orbicularis, Gyroi-
dinoides altiformis and Glomospira charoides (De Rijk et al., 1999; 2000). 
However, in the North Aegean basins, which are strongly affected by 
riverine freshwater inputs from the northern borderlands and the Black 
Sea inflows, the enhanced organic flux into the seafloor causes an 
increasing contribution of the deep infaunal taxa Globobulimina spp., 
Chilostomella spp. and Bolivina alata to the foraminifera fauna (Parker, 
1958; De Rijk et al., 1999). Besides the investigation concerning the 
modern benthic foraminifera, the Holocene faunal succession in the 
different Aegean Sea basins has been widely used for establishing 
environmental and climatic reconstructions, providing essential infor-
mation about the response of benthic assemblages to oxygen depletion 
and/or re-oxygenation during and after sapropel S1 deposition (Geraga 
et al., 2000; Mercone et al., 2001; Casford et al., 2003; Kuhnt et al., 
2007; Abu-Zied et al., 2008; Schmiedl et al., 2010; Triantaphyllou et al., 
2016). 

The current study presents a 1500-year, high-resolution deep-sea 
benthic foraminifera record from the Athos Basin (M2 core; North 
Aegean Trough, northeastern Mediterranean) with the aim to investi-
gate the regional impacts of the recent past climate variability on the 
North Aegean deep-water ecosystems. The fluctuations in the forami-
niferal assemblage density, species composition and diversity parame-
ters were used to reconstruct the status of the bottom water masses and 
evaluate, for the first time, their response to prevailing paleoenvir-
onmental and paleoclimatic conditions during the latest Holocene. The 

interpretation of the foraminiferal faunal succession was accomplished 
taking into account the sea surface salinity (SSS) reconstructions based 
on planktonic foraminifer Globigerinoides ruber (white) oxygen isotope 
(δ18O) data, alkenone paleothermometry, determinations of organic 
carbon contents, as well as the δ13Corg and δ15N data. The findings of this 
investigation are expected to be considered for comparison purposes by 
future foraminiferal studies in other deep sites of the Eastern 
Mediterranean. 

2. Regional climate and oceanographic setting 

The North Aegean is a continental marginal sea that connects the 
Eastern Mediterranean with the Black Sea Basin through the Dardanelles 
and Bosporus straits (Fig. 1A). The North Aegean bottom topography is 
complex, demonstrating several deep basins and trenches. One of them 
is the Athos Basin (maximum water depth ~1150 m), which is part of 
the North Aegean Trough (NAT) that is the most prominent tectonic 
feature of the North Aegean Sea. The NAT extends NE-SW and consists of 
the Limnos Basin in the east and the Athos–Sporades Basin in the west 
(Fig. 1B). Southern, it is separated from the northern Skyros and Chios 
basins by a sill occurring at ~350 m water depth. The area is influenced 
by freshwater discharges from major rivers such as Evros, Nestos and 
Strymon, which drain the north Hellenic borderland and the eastern 
Turkish coastline (Karamenderes). 

In the North Aegean, a Mediterranean-type climate prevails, 
demonstrating warm-hot dry summers and mild-cold more humid win-
ters (e.g., Poulos et al., 1997). During winter, intense dry and cold 
polar/continental or arctic air masses from the Balkan Peninsula affect 
the Aegean evaporation and sea surface temperature (e.g., Theocharis 
and Georgopoulos, 1993; Poulos et al., 1997; Rohling et al., 2002). The 
Etesians, which represent a monsoonal-type, cool and dry northeasterly 
wind system, are active during summer and early autumn being a major 
climatic element (e.g., Tyrlis et al., 2012). 

The hydrographic regime of the North Aegean is characterized by a 
seasonal variation in the input rates of the Black Sea Water (BSW), 
entering through the Dardanelles Strait, a northward flow of warm and 
saltier Levantine Water (LW) and the aforementioned (see section 1) 
saline, very dense North Aegean Deep Water (NADW) masses (e.g., 
Zervakis et al., 2000, 2004; Velaoras and Lascaratos, 2005; Androuli-
dakis et al., 2012). The low-salinity (24–28), cold and nutrient-rich BSW 
is injected into the North Aegean down to 50 m depth and follows the 
general cyclonic circulation pattern of the Aegean Sea (Zodiatis, 1994) 
(Fig. 1B). During winter, BSW fills the upper water layers of the north-
ernmost part of the Aegean Sea before its westward migration. During 
summer, the strong Etesians blowing over the Aegean region divert the 
BSW flow to some extent south of the Lemnos Island. BSW creates a 
strong thermohaline front with the saltier (>39), warmer and 
well-oxygenated LW, which inflows via the eastern Cretan Strait and is 
directed northwards along the east margin of the Aegean Sea (Zervakis 
and Georgopoulos, 1998). Finally, the saline, very dense NADW fills the 
water column of the North Aegean down to 400 m depth (Zervakis et al., 
2000, 2004; Velaoras and Lascaratos, 2005) or even deeper (Tripsanas 
et al., 2016). 

The North Aegean region is oligotrophic, showing an estimated 
annual primary production of ~30 g C m� 2 yr� 1 (Ignatiades et al., 
2002). However, during the most productive spring period, especially in 
its northeastern part that is under the direct influence of the BSW, less 
oligotrophic conditions with high values of nutrients and phytoplankton 
biomass can occur (Ignatiades et al., 2002; Siokou-Frangou et al., 2002; 
Zervoudaki et al., 2007; Lagaria et al., 2017), enhancing the organic 
matter fluxes into the deep-water benthic ecosystem (Lampadariou and 
Tselepides, 2006; Lampadariou et al., 2017). 
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3. Material and methods 

3.1. Sedimentary record and age model 

The data analyzed for the goals of the current study were obtained 
from a 48-cm-long sediment core recovered with a multi-corer device, 
during the ‘MEDECOS II’ cruise onboard the R/V ‘Aegaeo’ in 2011, from 
a water depth of 1018 m (40�05.150N, 24�32.680E) in the Athos Basin 
(see M2 location in Fig. 1B). This core consists of olive grey (2.5GY 5/1; 
Munsell color chart) to greyish olive (5Y 5/2; Munsell color chart) ho-
mogeneous hemipelagic mud with limited sand fractions, less than 5% 
dw, and silt fractions and CaCO3 contents ranging from 25 to 45% dw 
and 16–20% dw, respectively (for more details see Roussakis et al., 
2004). 

The age model of the M2 core was adopted from Gogou et al. (2016), 
dating back to the last 1500 years. The M2 age control has been 
accomplished through a combination of 210Pb activity–depth profile and 
five accelerator mass spectrometry (AMS) 14C dates from planktonic 
foraminifera tests. The AMS 14C dates have been converted to calendar 
ages Anno Domini (AD) using the Calib 7.02 software (Reimer et al., 
2013) and the MARINE13 calibration dataset, incorporating the 

correction for the local reservoir effect of ΔR ¼ 58 � 85 years (Reimer 
and McCormac, 2002). Linear interpolation among the 14C dates was 
applied for the construction of the age-depth profile, with the sedi-
mentation rates showing a progressive decrease from the top to the 
bottom of the M2 deposit (87-13 cm kyr� 1). 

Sediment samples, for the subsequent analyses described below, 
were retrieved from the M2 core at 0.5 cm depth intervals, thus, 
providing a time resolution of 8–40 years with an average of ~15 years. 
In this way, a unique, high-resolution sedimentary record for the MCA 
and LIA events, and IP time span as well (Gogou et al., 2016; Luterbacher 
et al., 2012) was created. 

3.2. Organic carbon, δ13Corg and δ15N of the sediment, and planktonic 
foraminifera δ18O analyses 

96 sediment samples were processed for organic carbon (OC) content 
determination and δ13Corg analysis, carried out in the University of 
California, Davis, using a PDZ Europa ANCA-GSL elemental analyser 
interfaced with a PDZ Europa 20-20 isotope-ratio mass spectrometer. 
Before the OC determination (precision within 0.02%), the total carbon 
contents were measured via an OPTIMA isotope-ratio mass 

Fig. 1. (A) Location map of the study area in the Eastern Mediterranean. (B) Bathymetric map of the North Aegean Sea showing also the recovery location of the M2 
core in the North Aegean Trough. The displayed arrows indicate major circulation patterns of the surface water masses according to Lykousis et al. (2002), Zervakis 
et al. (2005) and Poulos (2009). 
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spectrometer, with the analysis precision being � 0.08%; then the car-
bonates were removed using 1N hydrochloric acid. The measured 
δ13Corg values were expressed in ‰ in relation to the standard Vienna 
Pee Dee Belemnite (VPDB), with the overall analytical error, based on 
duplicate measurements, estimated at �0.2‰. 

Likewise, ninety-six sediment samples were processed for the total 
nitrogen (N) content determination and δ15N analysis, carried out in the 
University of California, Davis, using an OPTIMA isotope-ratio mass 
spectrometer interfaced in continuous flow. The measured δ15N values 
were expressed in ‰ with the analysis precision estimated �0.14%. 

For the determination of the oxygen isotopic composition (δ18O), 
thirty-nine sediment samples were used selecting six clean foraminiferal 
specimens of the planktonic species Globigerinoides ruber (white) 
occurring within the 125–250 μm sediment fraction. The measurements 
were carried out in the Stable Isotope Laboratory Department of Earth 
and Planetary Sciences of the University of California, Davis. Repeated 
measurements performed on triplicates provided standard deviations of 
�0.2‰. The δ18O values were expressed in ‰ in relation to the standard 
VPDB and were correlated with the available alkenone-derived sea 
surface temperature (SST) derived for the same sedimentary record (M2) 
by Gogou et al. (2016). 

3.2.1. Sea surface salinity estimation 
Salinity changes were calculated using the expression given by 

Rostek et al. (1993) based on Broecker (1989):  

S ¼ ΔS0 þ S* þ (Δδ18OF� a� bΔT)/c,                                                (1) 

where S and S* stands for past and present-day local surface salinity, 
respectively. ΔS0 express the global change of ocean salinity due to ice 
shield growth; here treated as 0 due to a short period studied (1500 yrs) 
when the global ice-volume and ocean salinity did not change remark-
ably. The correction parameter a stands for the ice volume effect – the 
time-dependent global variations of seawater δ18O due to ice shield 
growth and decay. In the studied period a ¼ 0 (Vogelsang, 1990). The 
constant b relates δ18Ocalcite and δ18Oseawater and represents the tem-
perature effect of G. ruber on δ18O, which is � 0.2‰/K (Duplessy et al., 
1981; Emeis et al., 2000). Coefficient c is relating salinity with 
δ18Oseawater. Regarding the young age of the samples, c ¼ 0.25‰/p.s.u. 
as based on a recent extensive survey of the Mediterranean waters that 
indicate a correspondence between salinity and δ18Oseawater (Pierre, 
1999). Finally, ΔT represents the temperature change from modern to 
past. The alkenone-derived SST values (Gogou et al., 2016) from the 
core-top were used as our modern end-member to calculate ΔT, what 
can be a possible source of error in the estimation. This value may not be 
representative for modern conditions; however, the offset should be 
systematic, and since relative changes in comparison to current condi-
tions are considered, it should not be of relevance. Another source of 
error may be a possible seasonal offset in the formation of the isotopic 
and temperature signal due to the different lifestyles of G. ruber and 
coccolithophore Emiliania huxleyi that forms the alkenone signal, since 
in the method we presumed that their growth season and depth habitats 
are analogous (compare with Emeis et al., 2000). 

3.3. Analysis of benthic foraminiferal assemblages 

For benthic foraminiferal analyses, two to 3 g of 95 freeze-dried 
samples were washed and wet sieved through 63, 125 and 250 μm 
standard sieves. Sub-samples of >125 μm size were examined under a 
Leica APO S8 stereoscope, and all benthic specimens were entirely 
picked, identified and counted (Appendix A-B). Specimens were iden-
tified according to the generic classification of Loeblich and Tappan 
(1987, 1994) and the standardized nomenclature of the World Register 
of Marine Species (WoRMS, 2018). Melonis barleeanus was regarded as a 
synonym of Melonis affinis following the recommendations of Schweizer 
(2006), while Bolivina dilatata and Bolivina spathulata were grouped as 

Bolivina dilatata/spathulata due to the presence of transitional forms 
between these two species. 

The number of the benthic foraminifera (BFN) was expressed as 
specimens per gram of dry bulk sediment for each of the examined 
samples, whereas the relative abundances (%) for all species were 
calculated. The benthic foraminiferal accumulation rate (BFAR: number 
of specimens cm� 2 kyr� 1) was used as a semi-quantitative proxy for the 
flux of organic carbon into the seafloor (e.g., Jorissen et al., 2007) and 
was calculated by multiplying the BFN with the dry bulk density (g 
cm� 3) and the linear sedimentation rate (cm kyr� 1) (Herguera and 
Berger, 1991). The foraminiferal species diversity was used to interpret 
the prevailing environmental conditions. Usually, the benthic forami-
niferal fauna in stable, well-oxygenated ecosystems, governed by 
mesotrophic conditions, are characterized by rich diversity, whereas in 
ecosystems that exhibit extremely oligotrophic or eutrophic and 
oxygen-depleted regimes they appear poor diversity featured by the 
dominance of only a few specific taxa (Jorissen et al., 1995; Schmiedl 
et al., 1998, 2003). For the aims of this study, the species diversity was 
estimated by the Shannon–Wiener index: H’ ¼ -Σpi x Inpi, where pi is 
the proportion of each of the species (Shannon and Weaver, 1999), and 
the exponential form of H0, i.e., expH’. The H0 is a measure of hetero-
geneity evaluation and is based on the distribution of individuals in the 
different species, while, in contrast, expH0 provides a more realistic 
representation of the expected species richness in a sediment sample 
(Jost, 2006). Although the typical of shallow water taxa Ammonia spp. 
and Elphidium spp., and epiphytic Asterigerinata mamilla, Planorbulina 
mediterranensis, Neoconorbina terquemi and Rosalina spp. were treated as 
reworked specimens and excluded from the total sum of the ‘intact’ 
benthic foraminiferal (BF) relative abundances, the ratio (%) between 
the sums of reworked (RW) and total foraminifera (RW þ BF) was used 
as a proxy of matter transport from the inner shelf to the deep-sea 
environment. 

Finally, a Principal Component Analysis (PCA), using the SPSS sta-
tistics software (version 21.0), was carried out in order to identify the 
main components that explain most of the faunal variance (Parker and 
Arnold, 1999). Only benthic species exceeding relative abundances of 
5% in one sediment sample at least were processed for the analysis. The 
data were logarithmically transformed to reduce the score and bias 
caused by the more abundant species against the less abundant ones. 
The Principal Components (PCs) with eigenvalues greater than one were 
retained (Kaiser, 1960). The environmental variables (alkenone-derived 
SSTs, OC, C/N and BFAR) were projected on the component plane as 
additional variables, without contributing to the results of the analysis. 
This can reveal the potential influence of the environmental parameters 
on the faunal patterns. 

4. Results 

4.1. Planktonic foraminifera δ18O record and organic matter (δ15N, 
δ13Corg, OC and C/N-ratios) of the sediment 

The stable oxygen isotope composition of G. ruber, throughout the 
investigated time interval (500–2003 AD), fluctuates between � 0.67 
and 1.07‰, displaying an average of 0.32‰. As shown in Fig. 2, a 
progressive decrease of the δ18Oruber values between 770 and 1000 AD 
(reaching a minimum of 0.19‰ in 980 AD) is followed by a rapid in-
crease up to 1‰ in 1165 AD, then a drop to � 0.25‰ in 1260 AD and 
another increase up to 0.8‰ in 1300 AD. Between 1300 and 1470 AD, 
within the LIA period, the δ18Oruber values decrease up to � 0.3‰ in 
1470 AD. Afterwards, until 2003 AD, the δ18Oruber record is character-
ized by fluctuations, although the minimum and maximum values of the 
record appear in this time interval. 

For the entire study period, the values of the nitrogen-isotope record 
range between � 3.07 and 5.93‰ (Fig. 2). A decreasing trend is noticed 
between 500 and 1000 AD (within the MCA period), with values varying 
from 2.3 to � 0.8‰. From 1100 to 1330 AD, the δ15N values fluctuate 
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between 0 and 2.5‰, then decrease to � 1.7‰ around 1400 AD and 
increase again up to 1.5‰ around 1500 AD. Then, the δ15N values 
decrease to � 2.4‰ in 1620 AD and increase again to 2.1‰ in 1680 AD. 
After a δ15N drop to � 1.9‰ in 1730 AD, for the next 100 years, the 
isotopic values vary between � 1.8 and 3.3‰. A new δ15N increase, up to 
4.7‰, is observed between 1830 and 1936 AD, followed by a reduction 
to � 1.5‰ in 1973 AD. Finally, during the last decades, the δ15N record 
shows an increasing trend reaching a maximum of 2.9‰ around 2000 
AD. 

The δ13Corg values fluctuate from � 26 to � 21.7‰ (Fig. 2). Within 
500–700 AD, the values decrease from � 23 to � 26‰, while after a rapid 
increase in 820 AD (� 22.6‰) a new drop to � 24.5‰ occurs in 970 AD. 
Then, a random fluctuation of the record between � 22.6 and � 25‰ 
occurs till 1100 AD, when an increase appears in 1140 AD, reaching the 
peak of the δ13Corg profile. Till 1400 AD, a decline to � 25‰ is recorded 
and since then, till 2003 AD, the δ13Corg values show a variation between 
� 24.7 and � 21.7‰ indicating a gradual increasing trend. 

During the whole study period, the organic carbon (OC) contents 
range from 0.52 to 1.24% dw (Fig. 2), with the aforementioned mini-
mum and maximum values appearing within the 500–700 AD interval. A 
value (0.56% dw) close to the minimum one occurs in 820 AD and since 
then an increase of the OC content is evident within the MCA period, 
lasting until 955 AD, with the relevant values reaching up to 1% dw. For 
the next 300 years, the OC contents gradually decrease to 0.6% dw till 

1460 AD, rising again up to 0.97% dw in 1620 AD. Through the next 
three centuries, the OC contents fluctuate between 0.55 and 1% dw, 
while an increasing trend (0.6 up to 1.1% dw) is observed during the 
1860–2000 AD interval, within the IP period. 

The C/N atomic ratio shows one peak (in 1050 AD) towards the end 
of the MCA period and another one (in 1300 AD) during the 
commencement of the LIA interval (Fig. 2). However, since then, the C/ 
N values reduce and remain lower during the entire LIA. Afterwards, 
within the IP period, an increasing trend appears but is characterized by 
lower values when compared to the MCA interval. 

During 600–700 AD, the SSS increases (Fig. 2), while for the next 
three centuries a decreasing trend is indicated till 1000 AD. Then, to-
wards the end of the MCA period, a significant SSS rise is observed, but 
after the outset of LIA in 1200 AD, a continuous decline lasting till 1550 
AD is noticed. Since then, SSS demonstrates a pronounced fluctuation, 
which, shows a gradual increase till 1800 AD. Afterwards, during the IP 
period, SSS consistently reduces displaying lower levels when compared 
to these associated with the MCA interval. 

4.2. General characteristics of the benthic foraminifera assemblages 

The BFNs of the M2 record range from 24 to 236 sp. g� 1, with the 
average value being 61 sp. g� 1 (Fig. 3). Two major BFN peaks are 
observed, a higher between 700 and 800 AD (up to 236 sp. g� 1) and a 

Fig. 2. From bottom to the top: δ18Oruber, δ15N, δ13Corg, OC, C/N and SSS profiles derived from the M2 core. All data have been smoothed using a LOESS function (see 
bold lines). 
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lower in the 19th century (up to 126 sp. g� 1). However, this is in contrast 
to the trend illustrated in the BFAR plot (Fig. 3) since the highest peak of 
the distribution (i.e., ~15,000 sp. cm� 2 kyr� 1) appears in the 19th 
century; this discrepancy must be the result of the intensification of the 
sedimentation rate after 1750 AD (Fig. 3). In general, the greater BFAR 
values (showing an average of ~7500 sp. cm� 2 kyr� 1) are observed from 
1800 AD to the present, while the lower ones (showing an average of 
~1000 sp. cm� 2 kyr� 1) are noticed within the LIA (between 1200–1400 
AD). In addition, secondary BFAR peaks can be seen in 750, 1100, 1450 
AD and in the early 17th century, mostly fluctuating below the average 
(3878 sp. cm� 2 kyr� 1) of the whole record. 

Regarding, the foraminifera identification, a total of 142 species 
(including 96 hyaline, 32 porcellaneous miliolids and 14 agglutinated 
forms) and 73 genera were recognized (Appendix A). Throughout the 

studied time interval, the calcareous hyaline taxa appear dominant 
(85–97%) showing an average relative abundance of 93% (Fig. 3). The 
miliolids (1.5–12%, average of 5%) show relatively higher relative 
abundances after 1500 AD, whereas the agglutinated forms (0–6%, 
average of 2%) display a relatively higher proportion within the 19th 
century (Fig. 3). The species diversity indices, H0 and expH0, vary from 
2.0 to 3.1 (average of 2.6) and from 9 to 23 (average of 14), respectively 
(Fig. 3) and, in general, both of them show almost identical patterns 
throughout the entire record. At the beginning of the 19th century, a 
significant peak in both diversities is detected, which is followed by a 
progressively decreasing trend during the last 150 years. Finally, the RW 
values (0–5%, an average of 2%) demonstrate significant fluctuations 
after 1000 AD (Fig. 3). 

4.3. Benthic foraminiferal composition 

Eleven hyaline taxa represent 60–90% of all assemblages in the M2 
sedimentary record. Gyroidinoides altiformis, Melonis affinis, Bolivina 
dilatata/spathulata, Cassidulina carinata, Bulimina marginata, Cassidulina 
crassa, Uvigerina mediterranea and Bulimina inflata are the most abundant 
taxa (frequency peaks of >10%), whereas Uvigerina peregrina, Hyalinea 
balthica and Chilostomella mediterranensis are also well represented 
(relative abundances of �5% in one sample at least). Among miliolids, 
Sigmoilopsis schlumbergeri, Miliolinella subrotunda, Sigmoilinita tenuis and 
Quinqueloculina spp. are the most common species, while frequently 
encountered agglutinated foraminifera comprise Repmanina charoides, 
Spiroplectinella sagittula, Siphotextularia concava and Textularia spp.; 
however, the agglutinated relative abundances do not exceed 5% of the 
total foraminiferal fauna. 

Gyroidinoides altiformis (6–43%, average of 18%) showed relative 
low abundance (average value of 12%) between 550 and ~1000 AD 
(Fig. 4). Towards younger ages, the record showed an increasing trend 
(up to 36% around 1050 AD), with slight fluctuations (average value of 
18%). In the second part of the 18th century and early 19th century, the 
species displayed a significant increase (up to 38%) followed by a 
marked drop, with a minimum abundance of 8% at 1870 AD. After that, 
the relative abundance of G. altiformis was featured by a rising trend 
until the present times. The abundance pattern of M. affinis (0–38%, 
averaging 16%) was characterized by a continuous increase from ~700 
to ~1450 AD, followed by intense fluctuations within a generally 
decreasing trend from ~1600 AD to present (Fig. 4). Uvigerina medi-
terranea (0–12%, averaging 5.5%) was slightly enhanced between 1050 
AD and 1250 AD; then its abundances displayed significant fluctuations 
with short lived peaks centred around 1720, 1795 AD and the first half 
of 20th century. The abundance of C. crassa (0–13%, averaging 3.4%) 
was relatively high from the 1200 AD. Bolivina dilatata/spathulata 
(4–32%, 16% of the assemblages) showed significant abundance 
throughout the studied interval with maximum increment between 550 
and ~1000 AD; its abundance pattern is broadly opposite to that of 
G. altiformis (Fig. 4). Bulimina marginata (0–13%, averaging 6%) and 
C. carinata (0–13%, averaging 3.8%) showed more or less similar fluc-
tuations displaying higher percentages until around 1400 AD (Fig. 4). 
Then, they both decreased until the end of the 16th century; a prominent 
increase followed until around 1850 AD, after which they showed a 
subsequent decreasing trend to the top of the record. Bulimina inflata 
(0–11%, averaging 4%) presented notable frequencies between 550 and 
~1000 AD, and after 1600 AD until present. The higher frequencies of 
U. peregrina (maximum value 8%) and H. balthica (maximum value 5%) 
occurred since about 1000 AD; both species presented an upward 
decreasing trend being rare after 1100 AD (Fig. 4). Chilostomella medi-
terranensis (maximum value 5%), being very rare or totally absent since 
1900 AD displayed a prominent rise in abundance during the second half 
of 20th century. 

Fig. 3. From bottom to the top: Linear sedimentation rates; Number of benthic 
foraminifera (BFN); Benthic foraminiferal accumulation rate (BFAR); Relative 
abundances of calcareous hyaline, porcelaneous (miliolids) and agglutinated 
tests; Shannon–Wiener index (H0); Exponential form (expH0) of H’; Reworked 
(RW) specimens in the M2 core. All data have been smoothed using a LOESS 
function (see bold lines). 
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4.4. Principal Component Analysis 

The PCA of the foraminiferal data set enabled an interpretation of the 
complex patterns of faunal changes in the North Aegean Sea during the 
past 1500 years. The first three PCs have eigenvalues greater than 1. In 
this case, the PC1 accounts for 24% of the total variance in the fora-
miniferal record, while PC2 and PC3 explain a further 16% and 11%, 

respectively (Table 1). 
The 3D component plot (Fig. 5) shows the position of the species in 

relation to the environmental variables on the first three PCs. Bolivina 
dilatata/spathulata, U. peregrina and H. balthica have significant positive 
loadings on the PC1 and appear to follow the increase in BFAR, therefore 
suggesting an organic flux - dependent effect, while G. altiformis and 
M. affinis with negative loadings on the PC1, are negatively correlated 
with BFAR. Chilostomella mediterranensis has a substantial positive 
contribution to PC2, implying correlation with SSTs and OC. In contrast, 
C. crassa shows significant negative loadings for this component. PC3 is 
positively loaded mainly by B. inflata, with negative loadings for 
U. mediterranea. These species are poorly affected by the studied envi-
ronmental variables. 

According to PC score plots (Fig. 6), positive values of PC1 charac-
terize the periods between 550–1000 AD and 1800 AD-to present, 
whereas the highest values of PC2 were found after 1900 AD. After 1200 
AD, PC3 presents significant fluctuations with a distinct peak of more 
positive values between 1600 and 1750 AD. 

5. Discussion 

5.1. Paleoenvironmental interpretation 

The benthic foraminiferal assemblage composition in the North 
Aegean Sea during the past 1500 years, as this is revealed by the analysis 
of the M2 sedimentary record, is relatively diversified being dominated 
by typical species of the Mediterranean Sea (e.g., Barmawidjaja et al., 
1992; Jorissen, 1987; De Stigter et al., 1998; De Rijk et al., 1999, 2000; 
Schmiedl et al., 2000). The faunal succession is interpreted in the 
context of the MCA, LIA and IP paleoclimate phases, using the dating 
suggested by Luterbacher et al. (2012) and references therein. 

5.1.1. Medieval Climate Anomaly (600–1200 AD) 
During 550 to ~900 AD, the benthic foraminiferal record is char-

acterized by elevated BFAR (and BFN) values (Fig. 3), suggesting rela-
tively high levels of organic flux into the seabed. This is further 
supported by the high PC1 score (Fig. 6) associated with a high relative 
abundance of the B. dilatata/spathulata (Fig. 4), which is a taxon 

Fig. 4. Relative abundances (%) of the most important species of the benthic 
foraminifera assemblages in the M2 core. 

Table 1 
Matrix derived from the Principal Component Analysis. Significant loadings are 
shown in bold.   

PC1 (24%) PC2 (16%) PC3 (11%) 

B. dilatata/spathulata 0.769 0.265 0.002 
B. inflata 0.426 0.301 0.529 
B. marginata 0.329 � 0.410 � 0.035 
C. carinata 0.491 � 0.265 � 0.473 
C. crassa � 0.153 ¡0.569 0.302 
C. mediterranensis 0.221 0.705 0.283 
G. altiformis ¡0.601 0.494 � 0.191 
M. affinis ¡0.535 � 0.334 0.460 
U. mediterranea � 0.365 0.179 ¡0.560 
U. peregrina 0.651 0.060 � 0.052 
H. balthica 0.519 � 0.320 � 0.076  

Fig. 5. A PCA-3D plot of the first three principal component axes in 
Related Space. 
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occupying shallow to intermediate infaunal microhabitats (Barma-
widjaja et al., 1992) and considered as an indicator of continuous high 
organic input (e.g., Barmawidjaja et al., 1992; De Stigter et al., 1998; 
Mojtahid et al., 2009). Additionally, several epifaunal to shallow 
infaunal species such as B. marginata, B. inflata, C. carinata, U. peregrina 
and H. balthica, which also indicate mesotrophic to eutrophic 

environment receiving fresh organic matter (e.g., Jorissen, 1987; De Rijk 
et al., 1999; 2000; Morigi et al., 2001), have a constant presence in the 
record of this interval (Fig. 4). The dominant B. dilatata/spathulata is 
well known for its tolerance to oxygen-depleted conditions (Jorissen, 
1999) that may occur in response to an increase of the organic carbon 
loading of the sediment. Oxygen consumption due to organic 

Fig. 6. From bottom to the top: Principal components (i.e., PC1, PC2, PC3) derived from the statistical analysis of the benthic foraminifera assemblages in the M2 
core. All data have been smoothed using a LOESS function (see bold lines); Reconstructed changes of salinity (based on the current investigation of the M2 core) 
compared to the modern one; North Atlantic Oscillation (NAO) index (Baker et al., 2015; Ortega et al., 2015); Atlantic Multidecadal Oscillation (AMO) index (Mann 
et al., 2009); Siberian high, potassium (Kþ) content of the Greenland Ice Sheet Project (GISP) 2 ice core (Mayewski et al., 1997). 
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degradation of labile organic matter and weak ventilation from the 
overlying water masses can lead to oxygen depletion (Jorissen et al., 
1995). Within MCA times, the deep-water formation in the Eastern 
Mediterranean was probably less than today (Siani et al., 2013), nega-
tively affecting the ventilation of benthic ecosystems. Under such low 
oxygen conditions, the anaerobic microbial process on organic matter 
enables nitrate consumption, which is recorded by the decreasing trends 
of the δ15N and C/N ratios till 900 AD (Fig. 2). The 15N depletion of the 
organic substrate seems to be the result of a loss of 15N-enriched nitro-
gen, due to 15N-ammonia formation by nitrate reduction, which, can 
produce bacterial biomass characterized by low values of δ15N and C/N 
atomic ratio below the oxycline (Libes and Deuser, 1988; Arnaboldi and 
Meyers, 2006). However, the relatively diversified foraminiferal as-
semblages, characterized by a typical for marine environment H0 index 
(2.4–2.8) (Fig. 3), along with the almost absence of more resistant to 
low-oxygen conditions deep infaunal species, such as C. mediterranensis, 
during this time interval suggest that severe hypoxic conditions were not 
actually established in the Athos Basin. 

Strong indications of gradual enhancement of the trophic conditions 
are also evident by the OC and δ13Corg curves (Fig. 2). Moreover, the 
δ13Corg values, as an indicator of the origin of organic matter (marine 
versus terrestrial), can be used to interpret the role of riverine/conti-
nental runoffs. During the whole study period, the δ13Corg values vary 
mainly between � 25‰ and � 22‰ indicating a predominance of OC 
from marine source (Meyers, 1994). Still, the relatively lighter values 
within the MCA interval, suggest an increased contribution of terrestrial 
organic carbon to the total organic pool. Indeed, the findings of Gogou 
et al. (2016) suggest that the higher concentrations of biomarkers 
together with the depleted δ13Corg values in the M2 deposit prior to 900 
AD must be the result of higher precipitation and, consequently, higher 
contributions from the riverine runoffs to the North Aegean Sea. 

Around 1000 AD, a distinct change in the density and the composi-
tion of benthic fauna is observed. BFAR and BFN values, generally, 
exhibit a rapid decrease (Fig. 3). At the same time, B. dilatata/spathulata 
appears significantly reduced reaching a relative abundance about 50% 
less than the one prior to 1000 AD, while it is accompanied by a 
contemporaneous prevalence of G. altiformis (Fig. 4), which is a shallow 
infaunal species commonly occurring in mesotrophic to oligotrophic 
environments (e.g., De Rijk et al., 2000; Abu-Zied et al., 2008). The 
findings above suggest a reduction of the nutrient influx to the seabed 
during this time. 

Interestingly, slightly increased frequencies of the shallow infaunal 
taxa B. marginata and U. mediterranea since the second half of the 11th 
century (Fig. 4), can imply relatively higher food availability. The latter 
species is usually common and persistent in the Holocene assemblages of 
the North Aegean and is generally considered as an indicator of a regular 
organic supply from the river systems and Black Sea inflows in the area 
(Schmiedl et al., 2010). Both species are also indicative of 
well-oxygenated bottom waters (Morigi et al., 2001); an interpretation 
that is also supported by the increased δ15N and C/N values (Fig. 2). 
Under oxic conditions, due to microbial mineralization, the amount of 
nitrogen in sediments is reduced, and light 14N is preferentially lost from 
the organic substrate, which becomes progressively enriched in heavy 
15N. Therefore, highly decomposed organic matter contains little ni-
trogen characterized with high C/N ratios and high δ15N values (e.g., 
Altabet, 1988; Altabet and François, 1994; Thornton and McManus, 
1994). 

5.1.2. Little Ice Age (1200–1850 AD) 
In the 1200–1450 AD interval, the BFAR and BFN values remain on 

much lower levels in comparison to those within the MCA period 
(Fig. 3), and the benthic species diversity (H0 and expH0) shows some 
decline, reflecting low organic matter flux into the seafloor. Further-
more, PC1 persists in negative scores and only PC3, in certain time in-
tervals, displays eventually not negative or even significant high scores 
(Fig. 6). Regarding the foraminiferal contents, the strong dominance of 

G. altiformis and intermediate infaunal species M. affinis (Fig. 4) supports 
the interpretation of the occurrence of oligo-mesotrophic conditions 
with an extensive oxygenated layer at the surface sediment (Abu-Zied 
et al., 2008). Interestingly, the shallow infaunal species C. crassa, which 
also prefers oligotrophic to mesotrophic environments and indicates a 
well-ventilated regime (De Rijk et al., 2000), presents a slight increase 
during the early LIA interval, linked to moderate SST and high SSS 
values (Figs. 4 and 6). Since 1450 AD, the increasing BFARs associated 
with the rising relative abundance of B. dilatata/spathulata can be 
attributed to strengthened continental freshwater discharges into the 
North Aegean, evidenced by lipid biomarker data and a pollen-derived 
fluvial discharge index (see Gogou et al., 2016). The decreasing 
salinity further favours this scenario until 1600 AD (Figs. 2 and 6). After 
1600 AD, the enhanced marine productivity (Gogou et al., 2016) and 
associated organic matter fluxes into the deep-water environments can 
be documented by an increase of the relative abundances of opportu-
nistic taxa such as B. inflata and B. marginata (see also the PC3 positive 
scores in Fig. 6). Moreover, salinity increases again, while the gradually 
elevated δ15N and C/N ratios imply the establishment of oxic conditions 
in the area (Fig. 2). Between 1770 and 1820 AD, the important relative 
frequency peaks of G. altiformis and U. mediterranea (Fig. 4) suggest a 
decline of food supply to the sea floor. For the same time interval, a 
distinct reduction in the riverine discharges into North Aegean is re-
ported by Gogou et al. (2016). Afterwards, a shift to relatively high PC1 
scores (Fig. 6) together with (i) a noteworthy rise in BNF, BFAR and 
diversity indexes (H0 and expH0) (Fig. 3), (ii) a sharp reduction of the 
G. altiformis relative abundance (Fig. 4) and (iii) new peaks in the fre-
quencies of B. dilatata/spathulata, B. marginata and C. carinata (Fig. 4) 
evidence a more eutrophic marine environment. Additional support for 
the last interpretation is provided by Skampa et al. (2019) who have 
reported for the same period in the North Aegean an increase in surface 
productivity coupled with the dominance of the coccolithophore 
E. huxleyi and a simultaneous lowering of the stratification index 
coupled with positive NAO shifts. All the aforementioned pieces of ev-
idence could be further connected to the cold event of 1832 � 15 AD 
(Gogou et al., 2016), which has been related to volcanic forcing-driven 
(i.e., the extreme Tambora volcano eruption in 1815 AD; Stothers, 1984) 
cooling of the global near-surface temperatures within the Dalton solar 
minimum (1790–1830 AD; e.g., Wagner and Zorita, 2005). 

Finally, although the RW profile during LIA (Fig. 3), does not 
demonstrate significantly high values, its intense fluctuations could 
reflect sediment transportation due to the relative activity of bottom 
currents; a prominent increase is noted during the 14th century, while 
significant peaks are also detected at around 1590, 1730 and 1830 AD. 
These findings fit nicely to a series of recorded EMT-like events at 1812 
� 18, 1725 � 25 and 1580 � 30 AD (Incarbona et al., 2016), which are 
coupled either with positive NAO shifts and/or reduced solar activity 
and strong volcanic eruptions. 

5.1.3. Instrumental Period (after 1850 AD) 
After 1850 AD the benthic foraminiferal assemblage, on average is 

characterized by increased BFARs, while the diversity decreases 
continually until the present time (Fig. 3). In-between 1850–1900 AD, 
Bolivina dilatata/spathulata is enhanced and dominates the assemblages; 
simultaneous low frequencies of G. altiformis are documented similarly 
to those of the early MCA period, however now under lower SSS con-
ditions (Figs. 4 and 6). After 1900 AD, the fauna is characterized by the 
gradual establishment of the modern foraminiferal assemblage, e.g., 
G. altiformis, which is an important component in the recent oligotrophic 
environments of the eastern Mediterranean (De Rijk et al., 1999; 2000) 
presents an increase contrary to the MCA interval, but 
B. dilatata/spathulata still dominates the assemblage. Furthermore, a 
decrease of C. carinata and B. marginata and a slight increment of less 
opportunistic U. mediterranea (Fig. 4), suggest the presence of low 
quality organic fluxes, linked with elevated terrigenous inputs through 
the northern borderland river systems and the Black Sea inflows 
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(Schmiedl et al., 2010). High PC3 scores are associated with the 
appearance of the deep infaunal C. mediterranensis (Figs. 4 and 6), which 
can feed on more degraded organic matter below the sediment-water 
interface and is well adapted in low oxygen conditions (Fontanier 
et al., 2002). The degree of organic matter preservation is also reflected 
in changes in the δ15N, δ13Corg and C/N ratio values (Fig. 2). Evidently, 
upon degradation of organic matter, C/N ratio increases while δ13C 
values slightly decrease (e.g., Ogrinc et al., 2005) and high δ15N values 
corresponding with a high C/N ratio suggest diagenesis of the organic 
matter (e.g., Thornton and McManus, 1994). All evidences suggest a 
trend towards eutrophicated conditions, feasibly induced by the rising 
SSTs (Fig. 6) being accompanied by enhanced terrigenous inputs and the 
concomitant algal productivity in the euphotic zone (Gogou et al., 2016; 
Skampa et al., 2019). 

5.2. A synthesis of the foraminiferal assemblage response to climate 
variability 

The analysis of the deep-water benthic foraminifera succession in 
North Aegean indicates that an important controlling factor for their 
abundance and distribution during the last 1500 years could be the 
quantity and quality of the seafloor’s organic matter. Although the late 
Holocene was mainly characterized by relative low productivity rates 
and well ventilated conditions (Abu-Zied et al., 2008), time intervals 
with higher values of BFAR and abundance of more eutrophic forami-
niferal species indicate phases with increased organic matter fluxes to 
the sea floor. Since the fresh marine organic matter (phytodetritus) is the 
main food source for benthic foraminifera, changes in primary produc-
tivity have a strong influence on the densities and composition of as-
semblages (Fontanier et al., 2006). However, the organic matter in the 
North Aegean is described as a mixed contribution from autochthonous 
labile and terrestrial organic matter. The latter, contain more refractory 
component with a low nutritional value for the benthic foraminifera (e. 
g., De Rijk et al., 2000). 

Based on the PCA, three distinct faunal changes are evidencing the 
effect of climate variability in the North Aegean ecosystems. 

The most prominent faunal change occurs around 1000 AD (see PC1 
in Fig. 6), when the oligo-mesotrophic G. altiformis replaces the more 
eutrophic B. dilatata/spathulata in the benthic assemblage (Fig. 4). This 
most probably reflects a response to the modification of the rate of the 
continental freshwater inputs to the North Aegean Sea as this is further 
evidenced by the SSS decrement (Figs. 2 and 6). Interestingly, the 
change mentioned above is climatically related with the shift of NAO to 
a positive phase ~1000 AD (or even earlier) after a prolonged period of a 
predominantly negative NAO mode (Fig. 6; Baker et al., 2015). It is well 
known that NAO is the dominant large-scale climate mode of the 
wintertime variability in the Northern Hemisphere causing impacts on 
the temperature and precipitation patterns and, subsequently, on the 
hydro-climatological characteristics of the Mediterranean Sea (e.g., 
Luterbacher and Xoplaki, 2003; Brandimarte et al., 2011). In the Aegean 
Sea, the negative winter NAO phase is connected with a general increase 
in the precipitation frequency, triggering, consequently, extensive con-
tinental runoff. In contrast, the positive NAO phases are often associated 
with drier conditions as a result of the northward track of the westerlies 
(e.g., Tsimplis and Rixen, 2002; Brandimarte et al., 2011; Skliris et al., 
2012) and a consequent upper water column mixing (Skampa et al., 
2019). 

After a continuous positive NAO phase until around 1450 AD, a more 
variable, primarily negative (see curves by Baker et al., 2015 and Ortega 
et al., 2015 in Fig. 6), affects the benthic fauna record till around 1600 
AD, resulting in some recovery of B. dilatata/spathulata. At the same 
time, the AMO is switched into a strongly cooling mode (Mann et al., 
2009) (Fig. 6), whereas the accompanied more intense Siberian high 
contributes to an enhanced invasion of northeasterly cold wind/polar air 
over the Aegean Sea (Mayewski et al., 1997; Rohling et al., 2002) 
(Fig. 6), promoting winter mixing conditions and stimulating primary 

marine productivity (e.g., Skampa et al., 2019) that eventually results in 
an increased provision of organic matter to the deep benthic ecosystems. 
Therefore, although the benthic foraminiferal assemblages during the 
LIA seem to be controlled by relatively oligo-mesotrophic conditions, an 
increase in the abundance of opportunistic foraminiferal species like 
B. inflata in the 17th century (Fig. 4) supports higher trophic levels (see 
PC3 in Fig. 6). This shift is potentially strengthened by the substantial 
decrease in SST (Gogou et al., 2016) (Fig. 6) during the Maunder Min-
imum (1645–1715 AD) of solar activity and the related SSS increasing 
trend; this activity could have resulted in deep-water formation events 
(e.g. Velaoras et al., 2017). 

After around 1800 AD, the high sedimentation rates can be mostly 
associated with the increased terrigenous components from the sur-
rounding borderlands (Roussakis et al., 2004), associated with high 
precipitation during a predominantly negative NAO mode (Fig. 6) as 
evidenced by the SSS decrement (Figs. 2 and 6). Simultaneously, they 
can be linked to the productivity increment as this is evidenced by the 
highest values of BFAR (Fig. 3). During the 20th century, the benthic 
faunal shift to more eutrophic content and, especially, the persistent 
occurrence of C. mediterranensis (Fig. 4) reflects a pronounced change in 
trophic conditions, i.e., higher degradation of the organic matter as a 
response to the progressive increase in SST (De Rijk et al., 2000) that is 
clearly indicated in PC2 loading (Fig. 6). 

6. Conclusions 

Variations in a benthic foraminifera record, obtained from the Athos 
Basin of the North Aegean (northeastern Mediterranean), of the last 
1500 years coincide with distinct shifts in the palaeoenvironmental and 
climatic changes in the broader area. The replacement of the relatively 
eutrophic Bolivina dilatata/spathulata assemblage by the oligo- 
mesotrophic Gyroidinoides altiformis assemblage after 1000 AD is a 
response to decreased precipitation and lower contributions from the 
continental runoff. These conditions are connected to positive NAO 
phase after an extensive time interval of a dominant negative NAO 
mode. An increase in the abundance of opportunistic species like Buli-
mina inflata during the 17th century implies relatively higher trophic 
levels in response to a cooler phase of Little Ice Age. A gradual shift of 
the benthic fauna to a more eutrophic content, i.e., the appearance of the 
deep infaunal Chilostomella mediterranensis, during the last 100 years, 
suggests mainly a response to recent warming of the surface waters. 
Finally, the data analysis indicates that changes in quantity and quality 
of the sedimentary organic matter is an important controlling factor for 
the foraminiferal abundance, proving that degraded organic matter are 
prominently associated with the increment of C. mediterranensis within 
the Instrumental Period. 
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