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In this paper, the joint problem of ordering and offering price discount by a supplier to his
sole/major buyer is analyzed. The objective is to induce the buyer to alter his erder schedule
and size so that the supplier can benefit from lower set up, ordering, and inventory holding
costs. We generalize the quantity discount pricing model of Monahan (1984) to: (1) explicitly
incorporate constraints imposed on the amount of discount that can be offered; and (2) relax
the implicit assumption of a lot-for-lot (or order-for-order) policy adopted by the supplier. An
algorithm is developed to solve the supplier’s joint ordering and price discount problem.
(INVENTORY/PRODUCTION—POLICIES, PRICING; INVENTORY/PRODUCTION—
DETERMINISTIC MODELS; PURCHASING)

1. Introduction

Quantity discount models have been studied traditionally from the point of view of
the buyer, but not the supplier. These studies focus on the problem of determining the
economic order quantities for the buyer, given a quantity discount schedule set by the
supplier. Examples of these studies include Ladany and Sternlieb (1974), Subramanyam
and Kumaraswamy (1981), Hadley and Whitin (1963), Jucker and Rosenblatt (1985),
Peterson and Silver (1979), Rubin, Dilts, and Barron (1983) and Sethi (1984).

The quantity discount problem from the point of view of the supplier, however, has
not been adequately addressed. Recently, Monahan (1984) has studied the important
economic implications from the supplier’s point of view of offering quantity discounts
to his sole or major buyer. An “optimal” quantity discount pricing schedule has been
developed, and the induced economic ordering quantity of the buyer, resulting from
the discount, has been shown to be a simple function of the ratio of the set up costs
of the buyer and the supplier.

Monahan’s result is an interesting one. He shows that, by appropriately setting the
price discount, the supplier can always improve his profit. The “optimal” (to the
supplier) ordering quantity of the buyer resulting from the discount arrangement is,
by a factor, larger than his initial economic order quantity. The surprising result is
that this factor is independent of the opportunity costs of holding inventory of both
the supplier and the buyer.

There are two major issues that Monahan has overlooked in his niodel. First, there
should be some constraints imposed on the amount of price discount that can be
offered. In Monahan’s model, there is no guarantee that the amount of price discount
given by the supplier is always less than the selling price of the product. In fact, one
can construct examples such that the amount of price discount using Monahan’s
method exceeds the selling price of the product. Given such a price discount schedule,
it is clear that the buyer’s optimal EOQ is infinity, since no constraints are imposed
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on the buyer’s EOQ. The supplier would also not be in business, given this situation.
Hence, without imposing some constraint on the amount of the price discount offered,
it is possible to end up with a solution that is unrealistic and impractical.

Second, one of the potential benefits to the supplier in offering quantity discounts
is to alter the pattern of orders placed by the buyer which may reduce the opportunity
cost of holding inventory for the supplier. Such a link is missing in Monahan’s model.
In fact, Monahan’s model assumes that the supplier always employs an order-for-order
policy, and that the number of set ups for the supplier is exactly the same as that for
the buyer. Such a policy may be neither optimal nor feasible. If the supplier
manufactures the product himself, it may not always be advisable for him to use a
lot-for-lot type of production policy, especially when the set up cost is high. Similarly,
if the supplier orders the product from yet another external vendor, it may be desirable
for the supplier to order a larger quantity each time he places an order and to incur
higher inventory holding cost but reduce the total set up costs of ordering. Monahan’s
order-for-order assumption for the supplier is a restrictive one. In fact, it will be seen
later that this is the assumption that leads to the simplified result obtained by Monahan
that we described earlier. Namely, the factor of increase in the buyer’s ordering
quantity is independent of the opportunity cost of holding inventory for both the
supplier and tha buyer.

The purpose of this paper is to generalize Monahan’s model to address the two
issues mentioned above. Explicit constraints are imposed on the model so as to ensure
that the real price of an item is nonnegative. These constraints turn out to be effective
in providing lower and upper bounds for a search algorithm for the optimal pricing
problem to be described below. In addition, the order-for-order assumption of the
supplier is dropped, and the problem of simultaneously solving for the optimal ordering
and price discount problem for the supplier is addressed. It is shown that the optimal
solution now depends on both the holding cost and set up cost of the supplier and the
buyer. An algorithm is presented. Monahan’s results, of course, become a special case
of our generalized model. We conclude our paper with possible extensions to the
generalized model.

2. A Generalized Model

In this section, we present the generalized quantity discount pricing model. As far
as possible, we retain the notation used by Monahan.

Let:

D, = total yearly number of units demanded by the buyer (equal to that demanded
by his customers); the buyer’s demand is assumed to be constant and uniform;

S, = the buyer’s set up cost per order;

P, = the current, delivered unit price paid by the buyer;

H, = the buyer’s yearly inventory holding cost, expressed as a percentage of the
value of the item (%/year);

Q| = the buyer’s current order size.

As described in Monahan, the current order size of the buyer without price discount
is the familiar Wilson lot size formula:

Q. = V2D,S\/H\P,. 1)

Hence, the buyer would place D,/Q, orders each year, evenly spaced, with an
interval of Q,/D, throughout that time. Suppose now that the supplier requests the
buyer to increase his current order size by a factor X (K = 1). Then Monahan (see
equation (6) of the referenced paper) shows that the amount of price discount that the
supplier must give the buyer to compensate him for his increased inventory expenses
is at least

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



QUANTITY DISCOUNT PRICING AND SUPPLIER'S PROFITS 1179

d(K) = V28,H,P\/D, (K — 1)’/2K, €))

where d(K) is the per unit dollar discount offered when the buyer orders K times his
current order size. Monahan refers to this value as the “practical” break even discount,
as opposed to the “‘exact” discount that should be given, which is slightly smaller (see
equation (7) of Monahan). In practice, Monahan notes that the differences between
the practical and the exact discount tend to be minor, and even when they are not,
the differences could be viewed as added incentive to the buyer to go along with the
larger order policy. In this paper, we also use the same “practical” break-even discount
as an approximation. Henceforth, the optimal pricing and ordering policies in this
paper are only “optimal” to the approximate problem, as in Monahan.

Next, we let:

S, = the supplier’s set up cost per order;

5 = the supplier’s yearly inventory holding cost, expressed as a percentage of the
value of the item (%/year);

P, = the unit cost of producing or acquiring the item by the supplier.

We shall assume that the replenishment time (production lead time) for the supplier
is negligible. Again, if the lead time is constant, such an assumption is equivalent to
the supplier’s placing an order with its external vendor (or beginning production) in
advance by a period exactly equal to the lead time. In the case of the production lead
time, we also assume that the productive capacity of the supplier is much greater than
D, so that the inventory “build up” cost of the supplier need not be considered.

Since the buyer’s quantity is fixed at KQ,, the supplier is faced with a stream of
demands, each with order size KQ, and at fixed intervals of KQ,/D,; year apart. Given
such a stream of demands, it can be easily shown that the supplier’s economic order
(or production) quantity should be some integer multiple of XQ,. Let this quantity be
denoted by k(KQ,), where k is a positive integer.

We now consider the inventory holding costs to the supplier when his order (or
production) size is k(K(Q,) units. As illustrated in Figure 1, the total inventory held
per ordering cycle of the supplier is:

[(k— IXKQ\) + (k= 2XKQ)) + - - - +2(KQy)+ KQ, +0)(KQy/D1) = (k~ 1)k(KQ\)/2D;.
The length of the order cycle is k(KQ,)/D,, and thus the average inventory held up
per year is:
k(k — IXKQXKQ\/Dy) _ (k — DKO,
2kKQ\/Dy) 2 '
The supplier’s yearly profit function is given by his gross revenue minus his set up
cost and inventory holding cost:
YNP = D\P, — Dyd(K) — (D\So/kKQ)) — (k — DKQ\H3P,/2,
where d(K) is as given by (2).
Define H, = H5P,/P,, we can then rewrite YNP as
YNP = D\P, — D\d(K) — (D\So/kKQy) — (k — )KQ,H,P,/2. 3

Evidently, as it is unrealistic for the price discount offered by the supplier to exceed
the current price of the product, we need to impose the constraint P; > d(K). In fact,
a more reasonable constraint that should be imposed on d(K) would look like:

Py — P, —dK)=z A, 4)
where A is some profit margin (per unit), A = 0, that the supplier desires (obviously,
P, — P, = A)

The supplier’s problem is thus to determine the optimal k and X simultaneously so
as to maximize YNP of (3) subject to (2) and (4). Finally, as we are considering the
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FIGURE 1. Inventory Level at the Supplier.

supplier’s price discount schedule which will induce a larger ordering quantity from
the buyer, we also have X = 1.

Before we proceed 10 solve the supplier's probiem, we note that constraint (4) can
be reduced to a linear constraint on K. Substituting (2) into (4) and rearranging terms,
constraint (4) can be written as the following quadratic relationship in K:

K*=2[l +(P,— P,— A)VD2SIH\P]JK+ 1 <0. 5
Define:
K=1+(P,— P, — AVD,2SH,P, — {[I + (P, — P, — AWD, /25, H,P\)> — 1}'?,

and

K = l + (P‘ - P2 - A)VD|/2S1H1P| + {[l + (P] - P2 - A)VD1/281H|P|]2 - l}llz.
©
Then, (5) is equivalent to: K < K < K.

Furthermore, it is easy to see that K < 1. Thus, constraints (4) and X = 1 combined
become:

l=sK=<K O]

We can thus rewrite the supplier’s joint (k, K) problem from (3) as:
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Maximize YNP = D\P, — [V2S,H\P,D\(K — 1)*/2K] — (D:So/kKQ))
— (k= DKQH,Py /2 (8)
s.t. 1<=K<K and k=1,2,3,....

The current model of price discount offered by the supplier is similar to that of
Monahan’s. It is, however, different from the work of Goyal (1976) in several aspects.
Goyal presents an integrated inventory model for a single supplier-single customer
system where the total inventory costs of both levels are jointly minimized. Such a
model is appropriate if collaborative arrangement can be enforced by some contractual
agreement between the buyer and the supplier. Usually, it is only reasonable for cases
when the buyer and the supplier belong to the same organization. When the buyer
and the supplier are two separate entities, the problem is not that simple. In Goyal’s
model, the inventory holding costs are assumed to be independent of the price of the
item. This is only appropriate if prices are completely fixed. Our model and that of
Monahan, of course, assume that price is a decision variable for the supplier to change
the behavior of the buyer. By assuming that inventory holding costs are constant, the
pricing problem evidently does not exist. Moreover, as illustrated by the numerical
example provided by Goyal, the buyer can be worse off in the solution. Indeed, Goyal
suggested that one of the methods to induce the buyer to increase the order quantity
to the desired level is to “offer a carefully chosen quantity discount scheme.” Of
course, once discounts are introduced, the inventory holding costs are no longer
constant. Our model thus exactly addresses this issue of discounts offered by the
supplier so as to compensate the buyer.

When the supplier and the buyer indeed belong to the same organization, the
problem of determining the “optimal” price is not appropriate, since the meaning of
a price charged to the buyer by the supplier does not exist. We can illustrate this point
in the following manner. Suppose that price is the decision variable for the joint two-
level system where the buyer continues to use (1) as his order size. The total inventory
and set up costs are then given by:

(So/k)VH\P,D\/2S, + (k — 1)H,P,VD,S\/2H,P, + V2D,S,H,P,.

It is easy to see that the optimal price for the joint system is to set k = 1, and
P; — 0, so that the total set up and inventory holding costs — 0!

Summarizing, when both the supplicr and the buyer belong to the same organization,
the pricing problem is meaningless, and Goyal’s model should be used for determining
the ordering policies of the joint system. Our model and that of Monahan are
appropriate when both the supplier and the buyer are separate entities, and that price
discount is the instrument for the supplier to change the buyer’s behavior in the form
of a compensation.

3. A Solution Procedure

In this section, we first examine the properties of the supplier’s joint (k, K) problem.
Based on this analysis, an algorithm is presented to solve the problem.
For a given k, we observe that:

dYNP/dK = —VS,H,P,D,\/2[1 — (1/K?)] + (D\So/kQ,K?) — (k — YQ1H,P,/2,  and
)

d®YNP/dK? = —(Y28,H,P\D,/K?) — (2D, S:/kQ,K?) < 0. (10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1182 HAU L. LEE AND MEIR J. ROSENBLATT

Hence, given k, YNP is a concave function in K, K = 0. The optimal value of X,
for a given k, is obtained by setting (9) equal to zero, which gives:

_ SiH\PDy | DS, S.H\P.D, (k—l)QtzPn)]”z
K@ [(\ 2 +an)/( V=2 T2 '

Substituting in @; from (1) and simplifying, we have:
K*(k) = {[1 + SykS\V/[1 + (k — DHy/H ]} (1

From (11), we note that the optimal value of K, for a given £, is now a function of
both the set up and holding cost of both the buyer and the supplier. In fact, when
k = 1, i.e., an order-for-order policy is used by the supplier, K*(k) is reduced to (2),
which is the simple relationship that Monahan has obtained.

Now to solve the supplier’s joint (k, K) problem, one can start with k = 1, find
K*(1), determine if K*(1) is in the range of (I, K), and consequently obtain the
optimal value of X for this range. The process is repeated for k = 2, 3,. . . , and so
on. The optimal solution is the combination (k, K) that gives the highest YNP. Such
a procedure is, of course, computationally cumbersome. Furthermore, there is no
stopping rule for k to guarantee optimality. We now explore additional properties of
the solution to (8) which result in a (typically) more efficient algorithm for solving the
problem.

Consider a given K in (8). The optimal k* for this X is given by the k* that satisfies:

YNP(k*|K) = YNP(k* + 1K) and YNP(k*K) > YNP(k* — 1|K). (12)

Substituting (8) into (12) and appropriately rearranging terms, (12) is equivalent to
K*(ke* + 1) = (So/S)(H,/H-) and KHc*k* — 1) < (Sof/S\NH,/H>), or

(So/S)(H\/H?) (S2/S\)(H\/H3)
\V ewr+n X\ Tewron (13)
K=\ /———(S”Ij;()(f‘l/fl’) k=1,2,.... (14)

Then our result shows that &* is the optimal k to (8), if K lies in the range as
defined by (13). That is, k = 1 is optimal if K; < K < o0, k = 2 is optimal if K; < K
< K, and so on.

Using the requirement that K < K, we immediately establish that a lower bound for
the optimal value of k is given by:

Define:

- (So/S)H\/H>)
K<\/"kwx-1 -
k(k — 1) < (S2/S\)(H\/H2)/ K. (15)

The lower bound for the optimal value of k, k, is then the largest integer k that
satisifies (15).

Similarly, using the fact that K > 1, we can derive an upper bound for the optimal
value of k, k, as the smallest integer k that satisfies:

(So/SHN/H) < k(k + 1). (16)

The result of (15) and (16) effectively limit our search for the optimal value of k to
be between k and k.
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We now present three propositions which are useful for the development of an
algorithm to solve the supplier’s problem. The first proposition states that, for any &,
the optimal K* should alwavs be smaller than the upper bound value for which this &
is appropriate.

PROPOSITION |. Foragiven i, k < i <k, then K*i) < K;_,, where KXi) and K;_,
are as defined in (11) and (14) respectively.

PROOF. By definition of k as in (16), we have, forall i < k,

_ (S SINH\/HY) > i(i — 1). (17
Now, fori < k,

Kiy = KOV = {[S:H/SiHLili — D} = 1}/{1 + (i — DHy/H,},

which is clearly positive, in light of (17). Therefore, K-, > K*(i). Q.E.D.

The implication of Proposition 1 is significant. It shows that if one wants to
determine the range (K, Ki—1), where K*(i), k < i < K, lies, we should always look
for the values of A such that k = i. This is because:

<Ky <Kij<--- <Ky<K.

PROPOSITION 2. For a given i, k < i < k, suppose that K; < K*(i) < Kj_,, for some
integer j, j > i. Then k, k = i, i+ 1,i+ 2,...,j— 1, cannot be optimal for the
supplier’s problem.

PROOF. Suppose j > i. For all | < K < K and k = i, the profit obtained is inferior
to that of k = i and K = K*(i), by definition of K*(i). However, we have also shown
that for all K; < K < K;_,, the optimal k to be used should be j. Hence, the solution
k = i and K = K*(i) must be inferior to some solution with k = jand K; < K < Kj_;.
Thus, k = i cannot be optimal.

Next, assume j > i + 1, we consider kK = i + 1. From (11), it is clear that
K*(i + 1) < K*(i). This implies that K*(i + 1) will lie in the range: K, < K*(i + 1)
< K,_;, where n = j. Now all solutions with k = i + 1 and any positive K are inferior
to the one with k = i + 1 and K = K*(i + 1), which is inferior to some solutions with
k=nand K, < K < K,_,. Hence, k = i + 1 cannot be optimal. In a similar manner,
we can show that k=i, i+ 1,. . . ,j— 1 cannot be optimal. Q.E.D.

PROPOSITION 3. | < K*(K) < Kx-,.

PROOF. K*(k) < K, is a consequence of Proposition 1.
Now,

[K*(R))2 — 1 = {(S/kS)) — (kK — DHo/H\ }/{1 + (k — )Ho/H\}

= Ho{(S:H\/SiHp) — k(k — DY/{HIK{1 + (k ~ DHy/H A1},

which is nonnegative by (17). Q.E.D.

The results of Propositions 1 to 3 can then be used to derive the following algorithm:

(1) Start with i = k.

(2) Determine j, j = i, such that K; < K*(i) < Kj-,.

(3) Ifi=j, then (i, K*(})) is a candidate for the solution to the supplier’s problem.
Seti=1i+1.

Ifj> i, thenseti=j.

(4) Ifi <k, then go to (2).

If i = %, then (k, K*(k)) is a candidate for the solution to the supplier’s problem.

(5) Stop. Determine the optimal solution from the set of candidates by comparing
their respective profits.
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Propositions 1 to 3 guarantee that the above procedure will derive the optimal k for
the problem considered. Since K*(k) and K} are both decreasing in k, the j’s obtained
via step (2) are always increasing in magnitude. Proposition 3 guarantees that there
always exists a j such that j < k, using such a procedure. Hence, using the algorithm,
we will never end up with j obtained in step (2) such that j > k. Proposition 1 shows
that such a j is also greater than or equal to §, which is, in turn, greater than or equal
to k. The termination step (4) is guaranteed by Proposition 3. Moreover, computational
savings from using Proposition 2 can be significant. Once we find a j in step (2), all
intermediate values of k that are between j and i can be discarded. As soon as j hits
k, the algorithm may terminate. The procedure bears a striking resemblance to the
traditional models of determining economic order quantities for a buyer, given a
quantity discount schedule (see Johnson and Montgomery 1974, Love 1979, and Hax
and Candea 1984, and the efficient procedure suggested by Rubin et al. 1983).

Once the optimal (k, K) is obtained, the price discount d(X) can be found by
equation (2).

Finally, the following proposition provides the conditions under which the order-
for-order policy (i.e., k = 1), implicitly suggested by Monahan, is optimal.

PROPOSITION 4. If (So/Hy)/(S\/H,) < 2, then the order-for-order policy is optimal.

PROOF. From equation (16), it is known that the upper bound for the optimal
value of k, k, is the smallest integer satisfying

(S2/S\)(H\/H,) < k(k + 1). Q.E.D.

The implication of this proposition is realized in the following special case. If the
set up costs and the holding costs of both the supplier and the buyer are equal, then
an order-for-order (lot-for-lot) policy is optimal.

4. Extensions and Conclusion

In this paper, we have generalized the quantity discount pricing model of Monahan
(1984) to: (1) explicitly incorporate constraints imposed on the amount of discount
that can be offered; and (2) relax the assumption of lot-for-lot (or order-for-order)
policy adopted by the supplier. These generalizations are realistic extensions to
Mcnahan’s model. The supplier would, of course, never offer a price discount so that
the price of the product becomes negative or small enough so that he would incur a
loss by selling the product to the buyer. In a2 manufacturing or external supply
environment, the order-for-order or lot-for-lot policy may not be always optimal to .
the supplier. Our generalizations explicitly deal with these two major issues.

Analysis of the problem shows that the extent to which the supplier would offer a
price discount so as to induce the buyer to order a larger quantity every time he places
an order is a function of both the set up and inventory holding costs of both the
supplier and the buyer. This is a more reasonable result than that of Monahan’s which
is independent of the holding costs of both parties. Furthermore, it is shown that
Mcnahan’s result is essentially a special case of the generalized model presented in
this paper.

An algorithm based on some properties of the supplier’s problem is developed to
solve the supplier’s joint ordering and price discount problem. Optimality of the
algorithm relative to the problem studied is guaranteed by means of a series of
propositions.

In this model, it is implicitly assumed that the cost for the supplier to process the
buver’s orders is negligible, compared to the supplier’s set up cost. However, when this
is not the case, then the processing cost of the buyer’s orders should be included. Let
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U, be the cost of processing a buyer’s order by the supplier, then we need to modify
the supplier’s net profit function, YNP, as

D\P, — [V28,H\P\D\(K — 1¥/2K] — (D\Sy/kKQ))

— (D1\U/KQy) — (k — DKQ HP\/2.

For a given k, the K*(k) that optimizes the above expression is a slight modification
of (11):
K*(k) = {[1 + (So/kS)) + (Uo/SDI1 + (k ~ 1)Ho/H\]}' 2.

The search for the optimal (k, K) can proceed as before, although here the results of
Propositions 1 to 3 cannot be applied directly.

Finally, we refer to Monahan (1984) for an excellent discussion on the operational
and managerial issues concerned with the implementation of this kind of pricing
discount in the supplier-buyer relationship.
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