
THE BANG SOLUTION OF THE COEFFICIENT PROBLEM – 1
Possible introduction (written in common English).

They call themselves Analysts, but what they do
is just manipulating inequalities !...

(ascribed to Arnold)

Let T be a measure space with probability measure µ. Let ψj : T → R be an

orthonormal system of functions in L2(T ), i.e. ||ψj ||2 = 1 for every j and (ψi, ψj)
def
=∫

T
ψiψjdµ = 0 for every i ̸= j. Suppose that X is some other space of functions on T such

that ||f ||2 ≤ ||f ||X for every f ∈ X (the main example to keep in mind is X = L∞(T )).
The question we are going to discuss is whether we can say anything nontrivial about the
decay of the Fourier coefficients (f, ψj) =

∫
T
fψjdµ of functions f ∈ X.

Of course, we always have the Bessel inequality:∑
j

(f, ψj)
2 ≤ ||f ||22 ≤ ||f ||2X .

Definition

We will call the space X large (with respect to the system {ψj}) if for every sequence
{aj} of positive numbers satisfying

∑
j a

2
j = 1 there exists a function F ∈ X such that

|(F, ψj)| ≥ aj for every j.

Roughly speaking, this definition means that the Bessel inequality is the only thing
about the decay we may say for sure.

Note that ifX is large, we can find a solution F of the coefficient problem |(F, ψj)| ≥ aj
with uniformly bounded norm (i.e. such that ||F ||X ≤ C where C > 0 does not depend

on aj). Indeed, otherwise for every k = 1, 2, . . . one can choose a sequence {a(k)j } with∑
j(a

(k)
j )2 = 1 and such that there is no function F ∈ X with ||F ||X ≤ 4k satisfying

(F,ψj)| ≥ a
(k)
j for all j. But then for the sequence aj

def
=
∑∞

k=0 2
−ka

(k)
j there is no F ∈ X

solving the coefficient problem |(F, ψj)| ≥ aj (because aj ≥ 2−ka
(k)
j for every k and thereby

we should have ||F ||X ≥ 2k for every k which is impossible), but still
∑

j a
2
j ≤ 1.

Which spaces are large and which are not ? There exists the following

Conjecture:

X is large iff there is a constant c > 0 such that for every sequence {bj} of positive
numbers satisfying

∑
j b

2
j = 1 one can find f ∈ X such that

||f ||X = 1 and
∑
j

bj |(f, ψj)| ≥ c.

The conjecture means that the set of sequences { {|(f, ψj)|} : f ∈ X, ||f ||X ≤ 1}
(which is star-like with respect to the origin, but by no means convex) can be treated up
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to a certain extent as a convex set and one may switch from the problem to its dual and
back.

In most cases when X is known to be large (including those we will add below to the
existing list) it is very easy to see that the element f solving this dual problem exists.
An interesting exception is the space X = U(T ) of the functions defined on the unit
circumference T with uniform convergent Fourier series with respect to the standard base

{zk}∞k=−∞ (the norm in U(T) is defined by ||f ||U (T)
def
= supn,m∈Z ||Sn,mf(z)||∞ where

Sn,mf(z)
def
=
∑m

k=n f̂(k)z
k). It is known that U(T ) is large with respect to any orthonormal

system {ψj} satisfying supj ||ψj ||∞ < +∞, say, but to check solvability of the dual problem
for this space is only a very little bit easier then to solve the coefficient problem itself.

Despite the conjecture above is quite old, there has been found no evidence of that
the fact so general should hold. So, a lot of people now (me among them) believe that
it is false. Meanwhile de-Leeuw, Kahane, Katznelson and others invented quite powerful
technique allowing to check that X is large for many particular spaces X. Their idea was

to consider the random sum fε
def
=
∑

j εjajψj (where εj = 1 or εj = −1 with probability
1
2 each) and to show that with positive probability this sum “almost belongs” to X. The
exact meaning of this phrase is that for every A > 0 it is possible to decompose fε into the
sum fε = gA + hA such that ||gA||X ≤ A, ||hA||2 ≤ ∆(A) and ∆(A) decays fast enough as
A→ +∞. Then they proceeded by “minor corrections” as follows:

Suppose that we have a function F ∈ X of norm ||F ||X ≤ M which solves the
coefficient problem for all j but those in some exceptional set J and that

∑
j∈J a

2
j ≤ b2

(for instance, we may start with F ≡ 0, M = 0, J which is the whole index set and
b = 1). Let us choose the signs εj in such a way that fε =

∑
j∈J εjajψj almost belongs

to X. Note that the function F̃
def
= F + 2fε solves the coefficient problem |(F̃ , ψj)| ≥ aj

for every j but, unfortunately, does not belong to X in general. Nevertheless, it lies not
very far from X: as for every A > 0 we can decompose fε into the sum gA + hA where
||gA||X ≤ Ab and ||hA||2 ≤ ∆(A)b (the factor b is due to the condition

∑
j∈J a

2
j ≤ b2, not

1, as in the definition of ∆(A) above), the functuon F̃ can be decomposed into the sum of

FA
def
= F + gA and hA. When we take FA instead of F̃ , some of the Fourier coefficients get

spoiled but since the L2-norm of the difference hA is small, we cannot substantially spoil
too many of them. Namely, let c ∈ (0, 1) and let J ′ = {j : |(FA, ψj)| < (1 − c)aj}. Then
for every j ∈ J ′ we have |(hA, ψj)| ≥ caj and therefore

∑
j∈J ′

a2j ≤ c−2||hA||22 ≤ ∆(A)2b2

c2
def
= b′

2
.

For j /∈ J ′ the coefficients (FA, ψj) are easy to repair: just take F ′ def
= 1

1−cFA. Thus,
having started with the function F ∈ X of norm ||F ||X ≤M and with the exceptional set

J for which
∑

j∈J a
2
j ≤ b2, we got a new function F ′ of norm ||F ′||X ≤ M ′ def

= M+Ab
1−c and

a new exceptional set J ′ for which
∑

j∈J ′ a2j ≤ b′
2
where b′ = ∆(A)b

c . If we contrive to get
b′ < b without essential increase in the norm estimate M , we will be able to iterate the
procedure. To have the process convergent, we need to construct three sequences {Ak},
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{bk} and {ck} (k = 0, 1, . . . ), for which b0 = 1; bk+1 = ∆(Ak)bk
ck

, ck ∈ (0, 1) for every k; {bk}
decreases to 0 as k → ∞ and, at last, both series

∑∞
k=0 ck and

∑∞
k=0Akbk converge (the last

condition comes just from the necessity of having an uniform bound for the norms of the
corresponding functions Fk ∈ X, but what it actually implies is

∑
k ||Fk −Fk+1||X < +∞

which is more than enough for the existence of the limit F = limk→∞ Fk ∈ X).

Let’s now figure out when such sequences exist. As ck = ∆(Ak)bk
bk+1

, the problem re-

duces to the choice of {bk} and {Ak} satisfying the conditions
∑∞

k=0
∆(Ak)bk

bk+1
< +∞ and∑∞

k=0Akbk < +∞. (If we take just arbitrary sequences satisfying these conditions, several
first ck may turn out to be greater than 1, but this can be easily corrected by enlarging
finite number of corresponding Ak’s). Uniting these two conditions in one

∞∑
k=0

bk

(
∆(Ak)

bk+1
+Ak

)
< +∞,

we see that we also have almost no freedom in choosing {Ak} if {bk} is given: Ak should

minimize the expression ∆(A)
bk+1

+A. Since ∆(A) is a decreasing function and since we do not

care about constant factors like 2, the best choice comes from solving ∆(A)
bk+1

= A. Denoting

the solution of the equation ∆(A) = At by A(t) (for any continuous decreasing function
∆ it exists for all t > 0 and is a decreasing continuous function of t), we find out that all
we need is to construct a sequence {bk} starting with b0 = 1 and decreasing to 0 such that∑

k bkA(bk+1) < +∞.
The trivial estimate

∑
k

bkA(bk+1) >
∑
k

(bk − bk+1)A(bk+1) ≥
∫ 1

0

A(t)dt

shows that we should assume at least that
∫
0
A(t)dt < +∞. On the other hand, whatever

∆ is, A(t) turns out to be quite regular function. Indeed, since t
2 (2A(t)) = tA(t) =

∆(A(t)) ≥ ∆(A( t2 )), we have A( t2 ) ≤ 2A(t) for every t > 0.
Thus, taking bk = 2−k, we get

∞∑
k=0

bkA(bk+1) =
∞∑
k=0

2−kA(2−k−1) ≤ 4

∫ 1

0

A(t)dt.

So, the condition
∫
0
A(t)dt < +∞ is also sufficient.

What does it mean in terms of the original function ∆ ? Changing variable from t to

A, we get
∫∞

Ad
(

∆(A)
A

)
< +∞ and it remains only to integrate by parts to obtain the

celebratred

De-Leeuw – Kahane – Katznelson theorem:

If

∫ ∞ ∆(A)

A
dA < +∞, then X is large in L2(T ) with respect to the system ψj.
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For instance, when X = L∞(T ) and the norms ||ψj ||∞ are uniformly bounded, we
may use the Khinchin theorem to get that fε ∈ L4, say, with estimate for the norm ||fε||4
not depending on the sequence {aj}. This gives ∆(A) ≤ CA−1 which is more than enough
to apply the theorem and to conclude that L∞(T ) is large.

Though quite powerful in general, the de-Leeuw – Kahane – Katznelson approach has
two unpleasant restrictions: to proceed their way one should assume at the very least that

1) X is dense in L2(T );
2) All ψj almost belong to X themselves.

Correspondently, there remained two problems which could not be solved by the de-
Leeuw – Kahane – Katznelson approach:

1. The ”support” problem:

Let T ′ be a subset of T of positive measure. Is the space X = Lp(T ′)
def
= {f ∈ Lp(T ) :

supp f ⊂ T ′} (2 ≤ p ≤ ∞) large or not ?
and

2. The “minimal assumptions” problem:

Let again X = Lp(T ). What are the minimal requirements on the system {ψj} which
garantee that X is large with respect to this system ?

The first question was open even for p = 2, T = T, (as usual, we denote by T the
unit circumference with the Haar measure on it) and the standard base ψj = zj (j ∈ Z)!
Of course, the density of X in L2(T ) can be restored if we completely forget about T \ T ′

and consider T ′ as the whole space (with the measure dµ′ def
= dµ

µ(T ′) ). Then we should also

forget about the the original system ψj and consider the functions ψ′
j

def
=
√
µ(T ′)ψj |E .

(the renormalization which preserves L2-norm) instead. Unfortunately the system {ψ′
j} is

no longer orthogonal. In general it can be just an arbitrary system of functions satisfying

||
∑

j cjψ
′
j ||L2(T ′,µ′) ≤

(∑
j c

2
j

) 1
2

. And it is also fatal: first, now we cannot say that the

coefficients (fε, ψ
′
j) of the sum fε =

∑
j εjajψj are just εjaj and second, we no longer

have a possibility to correct one coefficient without substantial influencing others (just
because ψ′

j may be even linearly dependent now) and it seems that the entire idea of
“minor corrections” fails.

As to the second problem, the de-Leeuw – Kahane – Katznelson technique can be
applied only if we assume a priori something like ψj ∈ L2 log2+δ L, but there is no evident
reason for a condition of this kind to be necessary (and actually it is not).

What are we going to do ?

Consider the sets Sj
def
= {f ∈ L2(T ) : |(f, ψj)| < aj}. Obviously, X is large iff the

unit ball BX
def
= {f ∈ X : ||f ||X ≤ 1} of the space X cannot be covered by sets Sj with

arbitrarily small
∑

j a
2
j . Since in general BX is just a convex set, symmetric with respect to

the origin and since from the geometric point of view Sj is a strip of width 2aj , the whole
thing resembles a lot the famous “plank problem” posed by Tarski in the very beginning
of the century and solved by Bang in 1950s:
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Plank problem:

Given a convex set B ∈ R2 (or Rn, for Bang’s solution it is all the same), is it possible
to cover it by several strips of total width less than the width of B ? (The width of a convex
body is defined as the width of the narrowest strip containing it).

The conjectured answer was “no”, but it took about 40 years to prove that. The
proof, when found, was . . . 2 pages long and required from the reader only basic knowlege
of elementary geometry. For reader’s convenience it is included into this paper as an
appendix.

Of course, to solve the coefficient problem as it was stated above you cannot just
apply the result (because the width of BX is 0 unless X = L2(T ) and because we need to
estimate from below the sum

∑
a2j , not

∑
aj), but it turns out that a minor modification

of the proof is enough. (So minor that I actually even do not pretend to be an author
of the next two sections; rather I act there like a shadow that enters and goes over many
strange places which completely eliminate the attention of his master just passing by).

We will deal with both the “support” and the “minimal assumptions” problems si-
multaneously, so, from the very beginning we will assume that the inequality∥∥∥∥∑

j

cjψj

∥∥∥∥
2

≤
(∑

j

c2j

) 1
2

is the only a priori information about the system ψj we have.

THE BANG SOLUTION OF THE COEFFICIENT PROBLEM - 2
Between L2 and L∞ (written in Analysis language).

Let T be a measure space with probability measure µ. Let, as before, {ψj} be a

system of functions satisfying ||
∑

j cjψj ||2 ≤
(∑

c2j
) 1

2 for every cj ∈ R.
The question we are going to solve below is when X = Lp(T ) (2 ≤ p ≤ ∞) is large

with respect to the system {ψj}. Also we will give a good estimate for the norm of the
function F , solving the coefficient problem.

Trivial necessary condition.

In general it is ||ψj ||X∗ ≥ β > 0. For the case X = Lp(T ) this means(∫
T

|ψj |q
) 1

q

≥ β > 0 for every j (Bp)

where q is the exponent conjugate to p, i.e. 1
p + 1

q = 1.

Our aim is to show that (Bp) is also sufficient. More precisely, we have the following

Theorem:

If the system {ψj} satisfies (Bp), then for every sequence of positive numbers aj
satisfying

∑
j a

2
j = 1 we can find a function F ∈ Lp(T ), such that

||F ||p ≤
(
3π

2

)1− 2
p

β−2 ≤ 5β−2 and

∣∣∣∣∫
T

Fψjdµ

∣∣∣∣ ≥ aj for every j.
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Remark:

1) Without additional assumptions on ψj the estimate for the norm is almost the
best possible one for small β. Indeed, consider T = {1, 2} with the measure µ defined by

µ{1} = µ{2} = 1
2 . Then Lp(T ) is merely R2 with the norm ||(x1, x2)||p =

(
|x1|p+|x2|p

2

) 1
p

.

Let n be a large positive integer. Put ψj
def
=
√

2
n (cos

πj
n , sin

πj
n ) (j = 1, . . . , n). Note that

||ψj ||2 =
√

1
n and therefore

∥∥∥∥∑
j

cjψj

∥∥∥∥
2

≤
√

1

n

∑
j

|cj | ≤
(∑

c2j

) 1
2

.

On the other hand, for every 1 ≤ q ≤ 2

||ψj ||q ≥
√

1

2n

def
= β.

Let now aj =
√

1
n (j = 1, . . . , n). Notice that for every j = 1, . . . , n − 1 we have

||ψj − ψj+1||2 ≤
√

1
n

π
n and thereby for every p ≥ 2 we get

∣∣∫
T
Fψjdµ−

∫
T
Fψj+1dµ

∣∣ ≤√
1
n

π
n ||F ||p If the signs of

∫
T
Fψjdµ and

∫
T
Fψj+1dµ are different for some j, then, due to

the previous inequality, at least one of them doesn’t exceed
√

1
n

π
2n ||F ||p and therefore

||F ||p ≥ 2n

π
=

1

π
β−2.

If all the signs are the same, we get the same result from ||ψ1 + ψn||2 ≤
√

1
n

π
n .

2) Another curious observation is that all the conditions (Bp) are equivalent if we do
not care about the exact value of β. So, if any of the spaces Lp(T ) is large, then all of
them are !

Proof of the theorem:

Consider all sign corteges ε = {εj} where εj = +1 or −1. For each of them put

fε
def
=
∑

j εjajψj . Regardless of the choice of the signs we have fε ∈ L2(T ) and ||fε||2 ≤ 1.

Let now Φ : R → R+ be any C2-smooth even function satisfying Φ(0) = Φ′(0) = 0
and 0 < Φ′′(x) ≤ 1 for every x ∈ R.

It is easy to check that the integral I(f)
def
=
∫
T
Φ(f)dµ is well-defined and continuous

in L2(T ). As the family {fε} is compact in the topology of L2(T ), one can find a cortege
ε̄ for which I(fε) attains its maximal value. Let f = fε̄. Fix now some j and consider the
function fj which is obtained from fε̄ by replacing ε̄jajψj by −ε̄jajψj in the corresponding
sum. So fj = f − 2ε̄jajψj .
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We have

0 ≤
∫
T

Φ(f)dµ−
∫
T

Φ(fj)dµ =

∫
T

Φ′(f)(f − fj)dµ+
1

2

∫
T

Φ′′(g)(f − fj)
2dµ.

where g(t) lies between f(t) and fj(t) for every t ∈ T . Recalling what f − fj is, we get
from here

ε̄j

∫
T

Φ′(f)ψjdµ ≥ aj

∫
T

Φ′′(g)ψ2
jdµ.

If we contrive to choose Φ(x) in such a way that Φ′(f) ∈ Lp(T ) for every f ∈ L2(T ) and
that the integral on the right can be estimated from below by some constant depending

on β only, it will remain only to put F
def
= AΦ′(f) with constant A large enough.

Case p = 2.

Here the choice is easy: just put Φ(x) = x2

2 . Then Φ′(f) = f and Φ′′(g) ≡ 1, so the

integral reduces to
∫
T
ψ2
j ≥ β2. Thus, the function F

def
= β−2f is what we are looking for.

General case.

Let Φ(x) be the solution of the equation Φ′′(x) = (1 + x2)
2
p−1 for which Φ(0) =

Φ′(0) = 0. As p ≥ 2, we really have Φ′′(x) ≤ 1 for every x ∈ R.
Note that

|Φ′(x)| ≤
∫ |x|

0

(1 + s2)
2
p−1ds ≤

(∫ |x|

0

ds

) 2
p
(∫ |x|

0

(1 + s2)−1ds

)1− 2
p

≤
(π
2

)1− 2
p |x|

2
p .

Thus,

||Φ′(f)||p ≤
(π
2

)1− 2
p

(∫
T

|f |2dµ
) 2

p

≤
(π
2

)1− 2
p

.

On the other hand,(∫
T

(1 + g2)dµ

)1− q
2
(∫

T

(1 + g2)
2
p−1ψ2

jdµ

) q
2

≥
∫
T

|ψj |q

for 1− q
2 + ( 2p − 1) q2 = 0.

As g2 ≤ f2 + f2j , we get
∫
T
(1 + g2)dµ ≤ 3 and therefore

∫
T

Φ′′(g)ψ2
jdµ =

∫
T

(1 + g2)
2
p−1ψ2

jdµ ≥ 31−
2
q

(∫
T

|ψj |q
) 2

q

≥ 31−
2
q β−2 = 3

2
p−1β−2.

So, F = 31−
2
p β−2Φ′(f) is what we need.

THE BANG SOLUTION OF THE COEFFICIENT PROBLEM – 3

7



Beyond L∞ (written in Banach space geometry language)

Our main aim here will be to emphasize the geometric charachter of the problem and
of our approach to it. Every time when we can make the geometry clearer by some loss in
constants, we will do it. So, when doing L∞-case again, we will get the estimate ≈ β−3

for the norm instead of the best possible β−2. The reader may think himself over what
should be changed to gain exactly the same result as before.

Let H be a Hilbert space over R, B be a closed convex set, containing the origin (from
this point we will call such sets “standard”). Denote by PBf the nearest to f (in the
metrics of H) element of B. We get a projection PB : H → B (unfortunately not linear in
general).

Lemma 1.

For every f ′, f ′′ ∈ H we have ||PBf
′ − PBf

′′|| ≤ ||f ′ − f ′′||.

Proof:

As B is convex, (f ′ − PBf
′, g − PBf

′) ≤ 0 for every g ∈ B. In particular, (f ′ −
PBf

′, PBf
′′ − PBf

′) ≤ 0. Analogously, (f ′′ − PBf
′′, PBf

′ − PBf
′′) ≤ 0. Thus,

(f ′ − f ′′, PBf
′ − PBf

′′)

= ||PBf
′ − PBf

′′||2 − (f ′ − PBf
′, PBf

′′ − PBf
′)− (f ′′ − PBf

′′, PBf
′ − PBf

′′)

≥ ||PBf
′ − PBf

′′||2.

The statement of Lemma 1 follows from here immediately.
Actually, this all means just the following: if you have four points X,Y, Z, T in space

and the angles XY Z and Y ZT are not less than π
2 , then |Y Z| ≤ |XT |.

Thus, PBf depends continuously on f (actually we proved that PB ∈ Lip1). Let’s
now show that it also depends continuously on B.

Lemma 2.

Let BH = {x ∈ H : ||x|| ≤ 1} be the unit ball in H. Let δ > 0, f ∈ H. If two standard
sets B and B′ satisfy PB′f ∈ B + δBH and PBf ∈ B′ + δBH (i.e. PB′f is not more than
δ distant from B and vice versa), then

||PBf − PB′f || ≤
√
2||f ||δ

Proof

Let a = ||f − PBf ||, b = ||f − PB′f ||. Suppose, for definiteness, that a ≥ b. If a = 0,
then PBf = PB′f = f and there is nothing to prove. Otherwise f and B lie in different
half-spaces separated by the hyperplane orthogonal to f − PBf and containing the point
PBf . Let H+ be the half-space containing f and H− be the half-space, containing B.
As a ≥ b, we have PB′f ∈ H+. Let u = ||PBf − PB′f ||, v be the distance from PB′f
to H−. The Pithagorean theorem gives v2 − (a − v)2 = u2 − b2, or, what is the same,
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u2 = b2−a2+2av. As v doesn’t exceed the distance from PB′f to B, which is not more than
δ, and as b ≤ a, we get u ≤

√
2aδ. Since 0 ∈ B, we have a = ||f − PBf || ≤ ||f − 0|| = ||f ||

and the conclusion of Lemma 2 follows immediately.

The Bang functional ΦB.

Let B be a standard set in H. Consider the functional ΦB : H → R defined by

ΦB(f) = ||f ||2 − ||f − PBf ||2 = 2(f, PBf)− ||PBf ||2 (f ∈ H).

The functional ΦB has the following remarkable

Property:

Φ(f)− Φ(f ′) ≤ 2(PBf, f − f ′)− ||PBf − PBf
′||2.

Proof:

Φ(f)− Φ(f ′) = 2(f, PBf)− 2(f ′, PBf
′)− ||PBf ||2 + ||PBf

′||2

= 2(PBf, f − f ′) + 2(f ′, PBf − PBf
′)− (PBf + PBf

′, PBf − PBf
′)

= 2(PBf, f − f ′) + (2f ′ − PBf − PBf
′, PBf − PBf

′)

= 2(PBf, f − f ′) + 2(f ′ − PBf
′, PBf − PBf

′)− ||PBf − PBf
′||2.

It remains only to note that the second term is nonpositive.

Observation:

Let {ψj} be a system of vectors in H, B be a standard set and, at last, {aj} be a
sequence of positive numbers.

Suppose that every cortege ε = {εj} where εj = 1 or−1 the series
∑

j εjajψj converges
in H to some element fε.

Consider the cortege ε̄ for which ΦB(fε) attains its maximal value (as ΦB is continuous
and as convergence of all the series

∑
j εjajψj implies their uniform convergence in H with

respect to the choice of signs εj , the cortege ε̄ exists and can be constructed by diagonal
process, say). Let f = fε̄ be the corresponding element of H. Fix some j consider the
series in which ε̄j is replaced by −ε̄j . Let f ′j = f −2ε̄jajψj be the sum of this series. Then

|(PBf, ψj)| ≥
||PBf − PBf

′
j ||2

4aj

Proof:

We have 0 ≤ ΦB(f) − ΦB(f
′
j) ≤ 2(PBf, f − f ′j) − ||PBf − PBf

′
j ||2 which results in

2(PBf, f − f ′j) ≥ ||PBf − PBf
′
j ||2 and, after recalling that f − f ′j = 2ε̄jajψj , in

ε̄j(PBf, ψj) ≥
||PBf − PBf

′
j ||2

4aj
.
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It remains to note that |ε̄j | = 1.

Let now X = L∞(T ), H = L2(T ) where T is some measure space with probability

measure µ. Let ψj be a system of vectors in H satisfying ||
∑

j cjψj || ≤
√∑

j c
2
j for every

cortege of coefficients cj ∈ R and obvious necessary condition
∫
T
|ψj |dµ ≥ β > 0. At last,

let aj > 0 satisfy
∑

j a
2
j = 1.

Then for every cortege ε we have the corresponding series convergent in L2(T ) to the
sum fε of norm ||fε||H ≤ 1. Let s > 0, B = sBL∞(T ). The projection PBf is easy to
compute for every f ∈ H. Namely,

(PBf)(t) =


−s, if f(t) ≤ −s;
f(t), if − s ≤ f(t) ≤ s;

s, if f(t) ≥ s

(t ∈ T ).

Thus, (for the same f and f ′ as above), ||PBf − PBf
′||2 ≥

∫
E
|f(t) − f ′(t)|2dµ(t) =

4a2j
∫
E
ψ2
jdµ, where E = {t ∈ T : |f(t)| ≤ s, |f ′(t)| ≤ s}. The measure of the complement

T \E of the set E can be estimated from above by 2
s2 (just from Tschebyshev inequality).

On the other hand, if µ(T \ E) ≤ β2

4 , then∫
T\E

|ψj |dµ ≤ µ(T \ E)
1
2 (

∫
T

ψ2
jdµ)

1
2 ≤ β

2

and thereby ∫
E

ψ2
jdµ ≥

(∫
E

|ψj |dµ
)2

≥ β2

4

Thus, if we put s = 4
β , say, we will have

|(PBf, ψj)| ≥
β2

4
aj

for every j. Then the function F = 4
β2PBf has L∞-norm ||F ||L∞(T ) ≤ 16

β3 and its Fourier

coefficients with respect to ψj are greater than aj in absolute value. So, L∞(T ) is large in
L2(T ).

From boundedness to continuity.

If T is a topological space and the space C(T ) of bounded continuous functions (with
the same norm as in L∞) is dense in L2(T ), there is a temptation to improve the constructed
function g with large Fourier coefficients to a continuous one.

Indeed, if the set {ψj} is finite, all we need is to take the new function F ′ ∈ C(T )
sufficiently close to F in L2-norm. We can do it for any finite system with uniform estimate
for the norm, the space C(T ) is complete and therefore . . . nothing follows ! One of many
strange things connected with the problem is that nobody can prove or disprove the result
that general (namely, it is not known whether it is always enough to check that X is large
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with respect to all finite subsystems of the system {ψj} (which you may assume even
exactly orthogonal) with uniform estimate for the norm to conclude that X is large).

So, instead of referring to some general principle, we have to work by hand. Let
us consider again the standard set B = sBL∞(T ) with s = 4

β as before, the sequence of

numbers aj > 0 satisfying
∑

j a
2
j = 1 and the corresponding family {fε =

∑
j εjajψj : εj =

1 or − 1}. Note that the family {fε} is compact and thereby the set {PBfε} is compact
as well (both in topology of L2(T ), of course). As sBC(T ) is dense in B = sBL∞(T ) (again,
in L2-sense), we can find for every δ > 0 a finite set of elements g1, . . . , gN(δ) ∈ sBC(T )

such that for every cortege ε the element PBfε is not more than δ distant from one of gm.
Let B(δ) be the convex hull of the origin and the points gm. Then B(δ) is a standard
set for every δ > 0 and B(δ) ⊂ sBC(T ) ⊂ B (the main advantage of B(δ) compared to
sBC(T ) is that B(δ) is closed in topology of L2(T )). Besides, every element PBfε is not
more than δ distant from B(δ). Fix some ε and consider again the pair of functions f = fε
and f ′j = f − 2εjajψj . We have

||PB(δ)f − PB(δ)f
′
j || ≥ ||PBf − PBf

′
j || − ||PB(δ)f − PBf || − ||PB(δ)f

′
j − PBf

′
j ||.

But, as we saw above, the first term on the right is at least βaj while lemma 2 together

with the estimates ||f ||, ||f ′j || ≤ 1 implies that both other tems do not exceed
√
2δ. Thus,

if δ ≤ β2a2
j

32 , we still have

||PB(δ)f − PB(δ)f
′
j || ≥

β

2
aj .

Let us now consider some sequence δk → 0 and define the functional Φ : H → R to
maximize by

Φ(f) =
∞∑
k=1

1

k(k + 1)
ΦB(δk)(f).

Again, let ε̄ be the cortege for which Φ attains its maximal value. For the functions f = fε̄
and f ′j = f − 2ε̄jajψj we get

0 ≤ Φ(f)− Φ(f ′j) ≤
∞∑
k=1

1

k(k + 1)
[2(PB(δk)f, f − f ′j)− ||PB(δ)f − PB(δ)f

′
j ||2]

Thus, for the function F =
∑

k
1

k(k+1)PB(δ)f (which clearly is in C(T )) we have

ε̄j(F, ψj) ≥
1

4aj

∞∑
k=1

1

k(k + 1)
||PB(δ)f − PB(δ)f

′
j ||2.

But

∞∑
k=1

1

k(k + 1)
||PB(δ)f − PB(δ)f

′
j ||2 ≥

∑
k : δk ≤ β2a2

j

32

1

k(k + 1)

β2

4
a2j =

β2a2j
4k(aj)

,

11



where for every a > 0 the index k(a) is defined as the first index k for which δk ≤ β2a2
j

32 .
This results in

|(F, ψj)| ≥
β2

16

aj
k(aj)

for every j. As the sequence δk can tend to 0 as fast as we desire, k(a) is just an arbitrary
decreasing finction which has values 1, 2, 3, . . . and tends to infinity as a → 0. Therefore
the sequence { aj

k(aj)
} is nothing but an arbitrary sequence bj of positive numbers satisfying∑

j b
2
j < 1. Thus, C(T ) is large and we have done.

How about U(T) ?

For a while I thought that I knew how to get the result that the space U(T) (i.e. the
space of functions defined on the unit circumference T for which their Fourier series with
respect to the standard base zj converges uniformly with norm defined as the supremum
of L∞-norms of partial sums) is large under the same assumptions about ψj as before,
but then I discovered that I made quite rough (though very hard to notice) mistake in my
reasoning. Nevertheless, the “simple” part of what I was doing has survived and gives the
following result which is only a little weaker:

Proposition:

Suppose that a sequence of numbers aj ∈ (0, 12 ), say, satisfies the condition∑
j

a2j | log aj |γ <∞ with some γ > 2.

Then there is a function F ∈ U(T) for which |(F,ψj)| ≥ aj for every j.

Proof:

Let us do the same as for the case X = C(T ). The main difference is that now we can
approximate an element PBfε ∈ B = sBL∞(T) by an element g ∈ U(T) only if we allow
the norm ||g||U(T) to grow to infinity. Fortunately, we do not need it to grow very fast.
The best possible estimate is given by the famous

Kislyakov correction theorem:

If ||f ||L∞(T) ≤ 1, then for every δ ∈ (0, 12 ), say, there exists g ∈ U(T) such that

||f − g||L2(T) ≤ δ while ||g||U(T) ≤ C log 1
δ (C > 0 is some absolute constant).

We can now repeat the construction of standard sets B(δ) using the Kislyakov theorem
instead of trivial approximation of bounded functions by continuous ones. For every δ > 0
we see that B(δ) ⊂ B+ δBL2(T) and the U(T)-norms of all elements in B(δ) do not exceed
Cs log s

δ . It allows to repeat all the estimates except that for the norm of the element
F constructed. Now, to get the series

∑
k

1
k(k+1)PB(δ)f convergent in U(T) we have to

demand
∑

k
1

k(k+1) log
1
δk
<∞.

We will just put δk = exp{−k
2
γ } to provide that (any further advance which we could

gain from a better choice is hardly noticable compared to the distance to the desired result
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that U(T) is large). This gives k(a) ≈ | log a|
γ
2 for small a and we conclude that for every

sequence of numbers aj ∈ (0, 12 ) satisfying
∑

j a
2
j = 1 there is a function F ∈ U(T) such

that for every j

|(F, ψj)| ≥
aj

| log aj |
γ
2

,

which is equivalent to the Proposition to prove.
THE BANG SOLUTION OF THE COEFFICIENT PROBLEM – 4

How Bang solved the plank problem.
LetB ⊂ Rn be a compact convex body with smooth boundary covered by finitely many

open strips Sj (general case can be easily reduced to this one by standard approximation

argument). Let H be the width of B, hj be the width of Sj . Put aj
def
=

hj

2 and consider
the vectors ψj of length aj orthogonal to the boundary hyperplanes of the corresponding
strips Sj .

Bang’s solution consists of two independent steps:

Lemma 1:

If ψ is a vector of length a < H
2 , then the intersection (B − ψ) ∩ (B + ψ) contains a

homotetic image of B with coefficient H−2a
H

Corollary:

If
∑

j hj < H, then there exists a point x0 ∈ Rn such that for every sign cortege

ε = {εj} the point xε
def
= x0 +

∑
j εjψj ∈ B.

Lemma2:

For every x0 ∈ Rn at least one of the points xε doesn’t belong to any of the strips Sj.

Proof of lemma 1:

Let yz be the longest section of B by a line parallel to ψ. Let ℓ be the length of the
interval yz, c be the middle of this interval. Note that the tangent hyperplanes to B at
the points y and z are parallel (othewise we might move the line yz a bit and get a longer
section). Since ℓ is not less than the distance between these hyperplanes, we conclude that
ℓ ≥ H.

As ψ = a
ℓ (z − y), for every x ∈ B we have

2a

ℓ
c+

ℓ− 2a

ℓ
x+ ψ =

2a

ℓ

y + z

2
+
ℓ− 2a

ℓ
x+

a

ℓ
(z − y) =

2a

ℓ
z +

ℓ− 2a

ℓ
x ∈ B

(because B is convex, x, z ∈ B and 2a
ℓ + ℓ−2a

ℓ = 1). Therefore, 2a
ℓ c +

ℓ−2a
ℓ x ∈ B − ψ.

Analogously we get that also 2a
ℓ c +

ℓ−2a
ℓ x ∈ B + ψ. It remains to note that the point

2a
ℓ c +

ℓ−2a
ℓ x runs over the image of B under the homotopy with the center c and the

coefficient ℓ−2a
ℓ ≥ H−2a

H as x runs over B.

Proof of the corollary:
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By induction in the number of vectors ψj we find that the intersection ∩ε(B −
∑

j εjψj)

contains a honotopic image of B with the coefficient
H−
∑

j
hj

H > 0 and therefore is not
empty. Every point of this intersection can be taken as x0.

Remark to the step 1:

We didn’t use this part of Bang’s solution in our reasoning at all because in our case
we had the body B symmetric with respect to the origin which allows just to put x0 = 0.
Also, it is this part where the distinction between

∑
j aj in the plank problem and

∑
j a

2
j

in the coefficient problem comes from: in the plank problem we deal with completely
arbitrary vectors ψj and therefore the triangle inequality is the only estimate for the norm
we can use, while in the coefficient problem we had our vecrors mutually orthogonal and
might apply the Pithagorean theorem instead.

Proof of lemma 2:

Let pk be any point of the “middle” hyperplane of the strip Sk. Then

Sk = {x ∈ Rn : |(x− pk, ψk)| < a2j .

As adding ψj to a point means pushing the point toward the “positive” side of the
strip Sj while adding −ψj means pushing it in the opposite direction, it is natural to try to
find the point xε which lies from the positive or from the negative side of Sk corresponding
to whether εk = 1 or −1. This gives the system

εk(xε − pk, ψk) ≥ a2k (k = 1, 2, . . . )

of inequalities to solve. Recalling that xε = x0 +
∑

j εjψj , we get

εk(x0 − pk, ψk) +
∑
j

εkεj(ψk, ψj) ≥ a2k (k = 1, 2, . . . ).

Note that when j = k, we have the term ε2k|ψk|2 = a2k on the left. Cancelling it out,
we get left with

εk(x0 − pk, ψk) +
∑
j:j ̸=k

εkεj(ψk, ψj) ≥ 0 (k = 1, 2, . . . ).

Let Φ(ε)
def
=
∑
k

εk(x0 − pk, ψk) +
∑

j,k:j<k

εkεj(ψk, ψj). Note that the inequality above is

exactly 1
2 (Φ(ε)−Φ(ε′)) ≥ 0 where ε′j = εj for every j ̸= k and ε′k = −εk. Thus, if we take

the sign cortege ε̄ for which the function Φ(ε) attains its maximal value, the corresponding
point xε̄ will lye in none of the strips. That’s all !

THE BANG SOLUTION OF THE COEFFICIENT PROBLEM – 5
Concluding remarks (written a year later).

This paper was written about a year ago. I intentionally delayed with its publication
hoping that someone would be able to combine Bang’s approach with some other idea
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(say, with the classical Kahane–Katznelson–de-Leeuw technique) and to get the result
that U(T) is large with respect to a system {ψj} satisfying the same a priori assumption

∥
∑

j ajψj∥2 ≤
(∑

j a
2
j

)1/2
and the trivial necessary condition

∫
T |ψj |dµ ≥ β > 0. Despite

the paper has got quite famous during that year and despite all my own efforts, this has
not happened yet. Moreover, even a simpler question about “largeness” of X = H∞(D)
in H = H2(D) remains unanswered.

Still I’ve got several interesting remarks from various people. Two most interesting of
them were the following.

First, Keith Ball pointed out to me that the “coefficient problem” can be solved
completely if one is interested in majorizing a ℓ1 sequence {aj} instead of ℓ2 that. Namely,
in 1991 he proved the following

Theorem.

Let X be any Banach space, ψj ∈ X∗ be any family of bounded linear functionals on
X such that ∥ψj∥X∗ = 1 for every j. Then for any sequence {aj} of positive numbers
satisfying

∑
j aj < 1 there exists f ∈ X such that ∥f∥

X
≤ 1 and |(f, ψj)| ≥ aj for every j.

The proof of the theorem can be found in [3].
The second remark is due to Francoise Lust-Piquard. She noticed that the Bang

approach works also in a “non-commutative” setting. Among other results her forthcoming
paper [4] contains the following

Proposition.

Let {aij}∞i,j=1 be a matrix with positive entries such that

∞∑
j=1

a2ij ≤ 1 for every i and
∞∑
i=1

a2ij ≤ 1 for every j.

Then there exists a bounded operator A : ℓ2 → ℓ2 of norm ∥A∥ ≤ 10, say, such that its
matrix satisfies |Aij | ≥ aij for every i, j.

The above condition is obviously necessary for existence of such an operator of norm 1.
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