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1. Introduction
A Riesz product is an infinite product
[+ o]
1 (1 + o, cosn,z), (1)
v=1
where the positive integers », satisfy a condition
Mya/M, 2 ¢ 2 3, (2)
and where «, is real and satisfies the conditions 0 < |e,| < 1 for all v.
Let
k ’
P = XM B = Mo~ e

Then p; < w;, since, by (2),

My < nk§q-i =ng/(q—1) < mglg—2)/(g—1) < nk+1(1—§494) < e

The partial products of (1) are non-negative since |«,| < 1. Replacing
products of cosines by linear combinations of cosines, we see that the
kth partial product of (1) is a non-negative trigonometric polynomial

Ik k
() =1+ Y y,cosve = ] (1 +a;cosnzx), (3)
1 1

with y, = 0 if v is not of the form n; +n, + ..., where £k >4, > ¢, >....
P4y is formed by adding to p, a polynomial
Pri1— Pr = Pr+1 COS Ny,

the lowest term of which is of rank y;, > p;. Allowing k£ — o0 we obtain
from (3) the formal series

o]
143 y,cosvz. (4)
1

No two terms obtained by replacing products of cosines by linear
combinations of cosines are of the same rank, for suppose that an integer N
can be expressed in the two forms

N=ngtn,+...=n5%n,+... (43>%>...0;>7J>...), (5)
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with j; < 4;. Then n;, =an;_,+bn;,_,+..., where a, b, ... take only the
values 0, +1, +2. But
Ny b0y o4 ... <2my (143714 ...) = 3n,,_y,
i.e. ny < 3n;_,, which contradicts (2). Thus j, = 4,, and we have
TR RS S T
Repetition of this argument shows that ¢, = j,, %5 =7j3, ..., and that
corresponding signs in the two forms in (5) are the same. It follows,
in particular, that
Yn, = % (6)

In this paper I shall sketch briefly some of the applications of Riesz
products which have been made. The background which I give to each
application is minimal (or even less!). Most of these applications, like
the earliest one, due to F. Riesz and mentioned in the next section,
are of a negative character; the property

Pi(®) 2 0 (7)
provides for the satisfaction of certain conditions, and a suitable choice
of the coefficients «, in (1) then shows that certain further conditions
are not necessarily satisfied. It is, however, a notable fact that some
of the most important applications of Riesz products have been in the
proof of results (with a distinctly positive flavour)t concerning lacunary
series and lacunary coefficients. The proofs of these results contain
features not to be found in the purely negative applications of Riesz
products. They are described briefly in §§2-4. The content of §§1-4
is in Zygmund’s book (1).

2. Further properties of Riesz products
By (3) and (7), the partial sums of (4) have the property
s/zk(x) = pk(x) Z 0:
and as a consequence we deduce ( (1) I, 209)

THEOREM 1. The series (4) associated with (1) is the Fourier—Stieltjes
sertes of a non-decreasing continuous function F defined by
T
F(x)—F(0) = lim | p,(t)dt. (8)
k—>wJ0
In particular, if «, does not tend to 0 (e.g. if o, = 1, n, = 3*) then, by
(6), we obtain an example of a continuous function of bounded variation
whose Fourier coefficients are not o (1/n). This was historically the first
such example and the first use made of a Riesz product (2).

t Though applications of these are usually of a negative nature.
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The next two theorems, which are due to Zygmund, give more
information about the function F of (8).

THEOREM 2. If X o2 = o0 then F'(x) = 0 almost everywhere.

Combination of Theorems 1 and 2 shows that, if ¥ a2 = 00, then F(z)
is a continuous singular function and (4) is not a Fourier series. This
fact was used in a paper by M. Weiss mentioned in §5.

THEOREM 3. If o, — 0 and X &2 = oo, then both the series (4) and the
conjugate series converge almost everywhere, the former to zero.

Some negative consequences of this theorem, and of Weiss’s theorem
described in § 5, are to be found in ((3) 79-80).

3. Szidon’s theorem on lacunary series

A trigonometric series 3 (a;cosmx+b;sinm;x) is said to be lacunary
if an inequality m,,,/m; > A > 1 is satisfied for all j. The behaviour of
such series is peculiar in that, roughly speaking, what happens over any
interval in (0, 27) (or even, in some cases, over any set of positive measure)
determines what happens over the whole of the interval (0,27), and
virtually any regular behaviour of the series implies strong consequences
in the behaviour of the coefficients a;, b;. The following theorem is due
to Szidon (see ((1) I, 247-48), where the theorem is stated in a slightly
stronger form).

TaeorEM 4.7 If a lacunary series
2 (ajcosmx +bysinmzx)  (myy,/m; > A > 1)
18 the Fourier series of a bounded function, then 3 (|a;|+|b;|) < co.

Let

— 2 2\1/2 ; — n. . .
p; = (@ +b;*)2, a;cosmx+b;sinmx = p; cos(mx +x;),
and consider

o
I {1+ cos(nz+£,)}, (9)
where
iy /T = q = 8.
(9) is a modified form of Riesz product with essentially the same properties
as (1). In particular, the partial products of (9) are non-negative poly-
nomials with constant term 1, and associated with (9) is a series

143y, cos(ve+m,). (10)

t The conclusion of this theorem also holds under the weaker assumption that
the lacunary series is the Fourier series of a function bounded over an interval
in (0, 277).
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As in the case of the product (1), y, = 0 unless

v=mntn,t.. (J1> 7> .0); (11)

and there is at most one such representation of any given v, so that in
particular the n;th term of (10) is cos(n;x + §;).
The sum in (11) is contained between

(=g —q2—...) = n;(q—2)/(q~—
n,(L+g1+q72+...) = n;9/(¢g—1),

so if ¢ is large enough say ¢ > ¢q(A), the v with y, # 0 are confined to the
intervals (n;/A,n;A). We split {m,} into » subsequences

{m]'7‘+s}j=0,1,... (S = 1, 2: "'17):
and take r so large that ¢ = A" > max(3, ¢4(2)). Fixing s, we write

and

k
Ré(x) = 'HO {1+ cos(my,, & + xjr+s)}'
j=

Suppose, now, that the given lacunary series is the Fourier series of a
function f(x), where |f(z)| < M. Since the ranks of the non-zero terms
of R¢ are in the intervals (my,, /A, mj, . A),j=0,1, ..., k, and the only
non-zero term of the lacunary series which has its rank in such an
interval has rank m,,, , it follows that

1 27 1 ren k k
- fo J@R@ s = | "f() 3, 008ty 2+ i1) 45 = 3 pyre

ff z) da

k
S0 Y pjmps S 2M. Allowing k — o0 we obtain Z Pirvs < 2M, and
j=0 j=0

But, since R > 0, we have
’ <M= j Re(z)dw = 2,

summing over s, 3 p; < 2Mr, which implies that 3 (|a;|+0;]) < 2Mr.

4. Banach’s theorem on the prescription of lacunary coefficients
Suppose that

{a0, b,} (12)
is a sequence of pairs of real numbers. By the Riemann-Lebesgue
theorem, if the sequence (12) is that of the Fourier coefficients of an
integrable function, then |a,|+|b,| = 0. By Parseval’s theorem, if the
sequence is that of the Fourier coefficients of a continuous function,
then Y (a,%+0b,2) is convergent. Trivially, if the sequence is that of the
Fourier-Stieltjes coefficients of a function of bounded variation, then
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|a,|+]b,] = O(1). The converse of each of these three statements is
false, but a converse does hold if only certain subsequences of (12) are
prescribed.

THEOREM 5.1 Let {n,} be a sequence of positive integers such that
/T > A > 1

for all k, and let {x,,y,} be a sequence of pairs of real numbers.
) If ¥ (2,2 +y,2) < oo, then there is a continuous function with Fourier
coefficients satisfying
Oy, = s b'nk = Y- (13)

ng

(i) If |z |+ |y, | = O, then there is an integrable function with Fourier
coefficients satisfying (13).

(i) If =z, y, are bounded, then there ts a continuous non-decreasing
function with Fourier—Stieltjes coefficients satisfying (13).

We sketch the proof of (iii) only. (ii) then follows from (iii) by an
argument not relevant to Riesz products, and the proof of (i) is on similar
lines. As in the last section, we write p; = (2,2+¥,2%)'2, and we write
4, () = x; cosnx +y, sinn;z. There is no loss of generality in assuming
that p, <1 for all k&. We suppose first that A > 3, and consider the
modified Riesz product

l {1+4,,(=)}
k=1

Since p;, < 1, A > 3, expansion of this product yields a formal trigono-
metric series analogous to (10), and the conclusion of (iii) follows by a
correspondingly modified form of Theorem 1.

For 1 < A < 3, we choose an integer 7, as in the proof of Szidon’s
theorem, such that A” > 3, and we split {»,} into r sequences:

N1 Wpp1s Moppas --o5 Moy Mpgps Mopyas oo ovs Ty Ngpy Ngpy .o
The sum
© © o
HO (1 + An.r+1) H (1 + A'nn-+a) -t Ho(l + A"ar+r) (14)
s= 5=0 $=

is then the Fourier—Stieltjes series of a continuous non-decreasing
function. Again as in the proof of Szidon’s theorem, if r is large enough,
the r series originating from the products in (14) have no terms in
common, and the conclusion of (iii) again follows.

In the remainder of this paper I describe some of the negative results
which have been obtained by using Riesz products.

t See ( (1) II, 131-32), where appropriate references are given.
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5. M. Weiss’s theorem
If the partial sums s,(x) of a trigonometric series

o]
> (@, cos nx + b, sin nx) (15)
1
satisfy the condition
2m
[ 1su@)1dz = o), (16)

0

then (15) is a Fourier—Stieltjes series. Steinhaus conjectured that, under
the hypothesis (16), |a,|+|b,| = 0. This was shown to be true by
Helson.{ Littlewood raised the question whether (16) implies that (15)
is a Fourier series. Mary Weiss has provided a negative answer to this
question (4).

THEOREM 6. If 3,2 = 00 and
Ak=|a1|+|a2|++lan|: a!'11,1471,=0(1) (17)
(e.g. if o, = n~V2), then the series (4) associated with (1) is the Fourier—

Stieltjes series of a continuous singular function, and its partial sums
satisfy the condition (16).

Under the hypothesis that 3} «,2 = oo, the first part of the conclusion
is contained in Theorems 1 and 2. The proof of the second part of the
conclusion under the additional hypothesis (17) is ingenious, but difficult
to summarize in a paper of this nature. The question whether (15) is
a Fourier series under the stronger hypothesis s,(z) > 0 for all z and =
seems to remain open.

6. A problem on rearrangements of Fourier coefficients

Suppose that ¢y, ¢;, ¢_;, Cg) C_y, ... is & sequence of complex numbers
tending to 0, and let ¢,* = ¢,* > c_,* > ¢,* > c_,* > ... be the sequence
feol, leqls 1€—ql, -.. rearranged in descending order of magnitude (with
corresponding repetitions in the c,* if several of the |c,| are equal). For
a measurable function f(z) defined in (0, 27), we write

1) =5 1)

Hardy and Littlewood (5) drew attention to the problem of determining
whether, if 3 c,e”? is the Fourier series of a function f(z), I c,*en%
is then the Fourier series of a function f*(z) and

J(f*) < 4J(f), (18)
where 4 is an absolute constant. The question was raised, in particular,
t See, for example ( (1) I, 286).
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whether (18) is true for 4 = 1. Lehmer (6) found a trigonometric poly-
nomial which demonstrated that (18) is false for 4 = 1. Subsequently
I showed (7), using a Riesz product, that (18) is false for any 4, and
even for trigonometric polynomials. The main features of the argument
relating to Riesz products were use of the fact that the polynomial
() of (3) is non-negative (in the case o, = 1, n, = 3*), and a calculation
of the number of cosines in p,(x) which have the same coefficient, the
result of which is contained in

THEOREM 7. In the polynomial

m—1

Q171(x) = H (1 -+ COoS 3"22)
0

there are exactly 28(37-:-%1) cosines with coefficient equal to

2=, §=0,1,2,....m—1.

In the same paper the stronger result was proved that if Y c,e™ is
a Fourier series then Y, ¢, *e"® need not be.

7. A property of bounded starlike functions

Suppose that f(z) = 3 a,2" is regular and univalent for |z| < 1, and
1

let

9(2) = #f"(2)/f ().
f(z) is said to be starlike (with respect to the origin) if the image of
|2| < 1 under the transformation w = f(2) is a domain D with the property
that, for any w in D, all of the points tw, 0 < ¢ < 1, are contained in D.
It is well known that a necessary and sufficient condition for f(z) to be

starlike is that
Rg(z) >0 (|z] <1).

Clunie and Keogh (8) showed that, if f(z) is starlike and bounded, then
a, = O(1/n).

We then showed that this result is best possible in the sense that the

inequality

k
|an| > ﬁ

can occur for a constant k£ > 0 and a sequence of values of n. The function
f(z) which was constructed for this purpose was one for which

g(z) = 1+ 2 y,2",
0]
where 1+ 3y, cosnx is again of the form (4) with «, = 1, », = 4’ in (1).
1

The only property of Riesz products which we used was (7).
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8. A strengthened form of a theorem of Wiener

Let {s,}, n =0, 1, 2, ..., be a sequence of complex numbers. {s,} is
said to be almost convergent to s if, as p - o,

n+p

(P+1)7 2 s

tends to s uniformly with respect to =.

{s,} is said to be almost periodic if, corresponding to any positive
number ¢, there are numbers N, [ such that in every interval (k,k+1)
(k > 0) there is an integer p for which |s,,,—s,| < ¢ for all n > N.

Let F(x) be a real function of bounded variation over (0, 27), and let

1
€ = o f i dF ().
27T 0

Suppose that
F0)=G0)+H(®H),
where G(f)= ¥ p,, is a function with discontinuities p,, at A,
A< 0
m=1, 2, ..., and H(f) is a continuous function. In (9), Keogh and
Petersen, strengthening a theorem of Wiener, proved that

[e o]
(i) {|c,[?} is almost convergent to (4m)=2 X w,,2; (ii) for F () to be continuous
1

it 18 necessary that {|c,|?} (or {|c,|}) should be almost convergent to zero,
and sufficient that {|c,|?} (or {|c,|}) should be summable to zero by some
summation method which contains almost convergence.

In the course of the proof of this result we showed that if H(f) has
no singular part, then {c,}, {lc,|}, and {|c,[?} are almost periodic
sequences. We pointed out that this is not true, in general, if H(6) has
a singular part, and gave the counter-example

Tz m
F(z) = lim IT (1 + cos 47¢) dt.
m—>o0 J0 p=1
For this function, ¢, =1 if n is of the form 47, but otherwise ¢, < 3,
so none of the above-mentioned sequences is almost periodic.
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