
ANOTHER PROOF FOR JACKSON THEOREM

THANKS TO: LUDMIL ZIKATANOV

Jackson Theorem is an example of so calleddirect theorems of approximation thory.
We will prove two variants of the Jackson theorem: for approximation with trigonometric
polynomials and approximation with algebraic polynomials.

Theorem 0.1 (Jackson theorem). If f ∈ W 1
∞

(I) then there exists trigonometric polynomial
T (x) of degree n such that

(0.1) En(f) ≤
c

n
‖f ′‖∞.

Before we move to the proof of this theorem, let us first introduce some notation and
state and prove some results that are needed in the proof of the theorem. DefineKn(t) to
be the Jackson kernel:

Kn(t) := λ−1
n

(

sin nt
2

sin t
2

)4

,

whereλn is defined as

λ−1
n =

∫ π

−π

(

sin nt
2

sin t
2

)4

dt, and hence
∫ π

−π

Kn(t) dt = 1.

We now define for a given functionf ∈ L∞(−π, π):

Jn(f ; x) =

∫ π

−π

f(x + t)Kn(t) dt.

Below we prove thatJn(f ; x) is in fact a trigonometric polynomial, which gives the bound
stated in the theorem. In that sense, the proof here is a constructive proof, explicitly giving
a trigonometric polynomialT (x) for which

‖f − T‖∞ ≤
c

n
‖f ′‖∞.

If g(t) is an integrable2π periodic function, anda is a real number, by change of vari-
ablest = τ + 2π we have that

∫

−π+a

−π

g(τ) dτ =

∫ π+a

π

g(t − 2π) dt =

∫ π+a

π

g(t) dt

Date: January 30, 2008.
1



2 THANKS TO: LUDMIL ZIKATANOV

Hence,
∫ π

−π

g(t) dt =

∫

−π+a

−π

g(t) dt +

∫ π

−π+a

g(t) dt

=

∫ π+a

π

g(t) dt +

∫ π

−π+a

g(t) dt =

∫ π+a

−π+a

g(t) dt.

In summary,

(0.2)
∫ π+a

−π+a

g(t) dt =

∫ π

−π

g(t) dt

Lemma 0.2. The following idenatities hold

(0.3)

sin
x

2
+ sin

(

3x

2

)

+ . . . + sin

(

2n − 1

2
x

)

=
sin2

(

n
2
x
)

sin(x
2
)

sin(
x

2
)[−1 + 2

m−1
∑

k=0

cos(kx)] = sin

(

2m − 1

2
x

)

Proof. Denotebl = cos(lx), and recall that for anyα andβ we have

2 sin α sin β = cos(β − α) − cos(α + β).

Hence

2 sin(
x

2
) sin

(

2l − 1

2
x

)

= bl−1 − bl.

The first identity is a consequence of the following:

sin(
x

2
)

n
∑

l=1

sin

(

2l − 1

2
x

)

=

n
∑

l=1

sin(
x

2
) sin

(

2l − 1

2
x

)

=
1

2

n
∑

l=1

bl−1 − bl =
1

2
(b0 − bn)

=
1

2
(1 − cos(nx)) = sin2

(n

2
x
)

.

To prove the second identity in (0.3), we setal = sin
(

2l−1
2

x
)

, and recall that

2 cos(lx) sin(
x

2
) = sin

(

2l + 1

2
x

)

− sin

(

2l − 1

2
x

)

= al+1 − al.
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We then have

sin(
x

2
)

(

−1 + 2

m−1
∑

k=0

cos(kx)

)

= sin(
x

2
) +

m−1
∑

k=1

2 sin(
x

2
) cos(kx)

= a1 +
m−1
∑

k=1

(ak+1 − ak) = am,

which completes the proof. �

We now use the above identities to show thatKn(t) is a trigonometric polynomial.

Lemma 0.3. If f is a 2π-periodic function and f ∈ C(−π, π) then Jn(f ; x) is a trigono-
metric polynomial of order (2n − 2). If f is an even function than Jn(f ; x) is also even.

Proof. Denote

Zn(t) =

(

sin(nt/2)

sin(t/2)

)2

,

we only need to show thatZn is a trigonometric polynomial of order(n−1). Indeed, since
Kn(t) is proportional to[Zn(t)]2, this will imply thatKn(t) is a trigonometric polynomial
of order(2n − 2). Applying the first identity from (0.3), forZn(t) we get

Zn(t) =
sin2(nt/2)

sin2(t/2)
=

1

sin(t/2)

n
∑

m=1

sin

(

2m − 1

2
t

)

.

We now apply the second identity in (0.3) to each term in the sum, to get that

Zn(t) =
1

sin(t/2)

n
∑

m=1

[

− sin(t/2) + 2 sin(t/2)

m−1
∑

k=0

cos(kt)

]

=
n
∑

m=1

(−1) + 2
n
∑

m=1

sin(t/2)
m−1
∑

k=0

cos(kt)

= −n + 2
n−1
∑

k=0

cos(kt)
n
∑

m=k+1

1

= −n + 2
n−1
∑

k=0

(n − k) cos(kt).

Clearly this shows thatZn(t) is a trigonometric polynomial of order(n − 1) and hence
Kn(t) is a trigonometric polynomial of order(2n − 2). Note also thatKn(t) is even and
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is a sum of cosine functions only. This is easy to see by squaringZn(t) and using simple
trigonometric identities.

(0.4) Jn(f ; x) =

∫ π

−π

f(x + τ)Kn(τ) dτ =

∫ π+x

−π+x

f(t)Kn(t − x) dt.

As a consequence, we obtain that

Kn(t − x) =
2n−2
∑

k=0

αk cos(k(t − x))

=

2n−2
∑

k=0

αk cos(kx) cos(kt) +

2n−2
∑

k=1

αk sin(kx) sin(kt).

We then substitute the above expresion in (0.4) and use the fact that f(·), sin(kt) and
cos(kt) are2π-periodic functions. From (0.2) we then have:

∫ π+x

−π+x

f(t)Kn(t − x) dt =
2n−2
∑

k=0

αkξk cos(kx) +
2n−2
∑

k=1

αkηk sin(kx),

where

ξk =

∫ π+x

−π+x

f(t) cos(kt) dt =

∫ π

−π

f(t) cos(kt) dt,

and

ηk =

∫ π+x

−π+x

f(t) sin(kt) dt =

∫ π

−π

f(t) sin(kt) dt.

Hence, from (0.4) it follows thatJn(f ; x) takes the form

Jn(f ; x) =

∫ π

−π

f(t)Kn(t − x) dt

=

2n−2
∑

k=0

αkξk cos(kx) +

2n−2
∑

k=1

αkηk sin(kx).

and clearly is a trigonometric polynomial of the same order asKn(t).
To conclude the proof of the lemma, it remains to show that iff(·) is even function,

thenJn(f ; x) is also even. Since in such casef(t) sin(kt) is an odd function, we obtain
thatηk = 0, for k = 1, . . . , (2n − 2), and henceJn(f ; x) is even function. �

We now turn our attention to the proof of several inequalities from qhich the Jackson
theorem will follow.
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Lemma 0.4. The following inequalities hold:

(0.5) t/π ≤ sin(t/2) ≤ t/2, for all t ∈ [0, π].

(0.6) λn ≥
32

π3
n3.

Proof. (1) To prove thatsin(t/2) ≥ t/π for t ∈ [0, π], we setg(t) = sin(t/2) − t/π.
Clearly we haveg′′ = −1

4
sin(t/2) ≤ 0. Henceg(t) can only have maximum

inside the interval[0, π] and the minimum value is achieved at one of the end
points. Direct calculation shows thatg(0) = g(π) = 0 and henceg(t) ≥ 0 for all
t ∈ [0, π].

(2) To prove the left side inequality in (0.5), we now setg(t) = t/2 − sin(t/2). It is
easy to see thatg′(t) ≥ 0 for all t ∈ [0, π] and henceg(t) ≥ g(0) = 0, which
concludes the proof of (0.5).

(3) The inequality (0.6) is shown as follows:

λn = 2

∫ π

0

[

sin(nt/2)

sin(t/2)

]4

dt ≥ 2

∫ π

n

0

[

sin(nt/2)

sin(t/2)

]4

dt

≥ 2

∫ π

n

0

[

(nt/π)

(t/2)

]4

dt = 2
π

n

24n4

π4
=

32

π3
n3.

�

We will also need the following result.

Lemma 0.5. There exists an absolute constant c, such that:
∫ π

0

tKn(t) dt ≤
c

n

Proof. Using Lemma 0.4, we obtain
∫ π

0

tKn(t) dt =

n−1
∑

k=0

∫ (k+1)π/n

kπ/n

tKn(t) dt

≤ λ−1
n

[

∫ π/n

0

t

(

nt/2

t/π

)4

dt +

n−1
∑

k=1

∫ (k+1)π/n

kπ/n

(k + 1)π

n

(n

k

)4

dt

]

=
n2

λn

[

π6

32
+

n−1
∑

k=1

π2k + 1

k4

]

≤
n2

λn

[

π6

32
+ π2

∞
∑

k=1

(

1

k3
+

1

k4

)

]

≤ cn−1

�
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We are now ready to prove Theorem 0.1.

Proof of Theorem 0.1. Recall that
∫ π

−π
Kn(t) dt = 1, and hence, for allx ∈ [−π, π] we

have

Jn(f ; x) − f(x) =

∫ π

−π

(f(x + t) − f(x))Kn(t) dt

Note thatKn(t) is non-negative and even and by Lemma 0.5 we have:

|Jn(f ; x) − f(x)| =

∣

∣

∣

∣

∫ π

−π

(f(x + t) − f(x))Kn(t) dt

∣

∣

∣

∣

≤

∫ π

−π

|f(x + t) − f(x))|Kn(t) dt =

∫ π

−π

∣

∣

∣

∣

∫ x+t

x

f ′(τ) dτ

∣

∣

∣

∣

Kn(t) dt

≤

∫ π

−π

∣

∣

∣

∣

∫ x+t

x

|f ′(τ)| dτ

∣

∣

∣

∣

Kn(t) dt ≤ ‖f ′‖∞

∫ π

−π

|t|Kn(t) dt

= 2‖f ′‖∞

∫ π

0

tKn(t) dt ≤ 2cn−1‖f ′‖∞.

SettingN = 2(n−1), and recalling thatJn is a trigonometric polynomial of order2(n−1),
for the error of best approximation we have that:

EN (f) ≤
4c

N + 2
‖f ′‖∞,

and the proof is complete. �

Remark 0.6. We remark that iff is even function than, sinceJn(f ; x) is also even, we can
write

(0.7) inf
T∈Tn,even

‖f − T‖∞ ≤ cn−1‖f ′‖∞.

The inequality just stated in the remark gives the followingtheorem for approximation
with algebraic polynomials.

Theorem 0.7. Let f ∈ W 1
∞

(−1, 1). Then

En(f) ≤ cn−1‖f ′‖∞

Proof. Setg(t) = f(cos t), for t ∈ [−π, π]. Note thatg(t) is even and

g′(t) = −f ′(cos t) sin t, and hence ‖g′‖∞,(−π,π) ≤ ‖f ′‖∞,(−1,1).

From Lemma 0.3 we may conclude thatJn(g; x) is even. Define now

J̃n(f ; x) := Jn(g; arccos(x)).
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Note thatJ̃n(f ; x) is an algebraic polynomial of degree≤ 2(n − 1). We then have

‖f − J̃n(f)‖∞,(−1,1) = ‖g −Jn(g)‖∞,(0,π)

= ‖g −Jn(g)‖∞,(−π,π) ≤ cn−1‖g′‖∞,(−π,π)

≤ cn−1‖f ′‖∞,(−1,1).

�

If the functionf is smoother, then we have the following theorem:

Theorem 0.8. Let f ∈ Ck is 2π periodic function. Then, the following estimate holds:

En(f) ≤
c(k)

nk
‖f (k)‖∞.

Proof. We will first prove the following inequality:

(0.8) En(f) ≤
c

n
En(f ′).

To show (0.8), we fixf and denote withq the trigonometric polynomial of ordern for
which we have that

‖f ′ − q‖∞ = En(f ′).

Clearly, we may writeq in the form

q(x) = a0 +

n
∑

k=1

ak cos(kx) + bk sin(kx) = a0 + r(x).

Define now

s(x) =

∫ x

−π

r(t) dt.

Note thats(x) is a trigonometric polynomial of ordern. Hence

En(f) = En(f − s) ≤
c

n
‖f ′ − s′‖∞

=
c

n
‖f ′ − r‖∞(0.9)

≤
c

n
[‖f ′ − q‖∞ + |a0|] =

c

n
[En(f ′) + |a0|].

Sincef is 2π-periodic, we have that
∫ π

−π

f ′(τ) dτ = f(π) − f(−π) = 0.

Direct calculation using the definition ofr(x) shows that
∫ π

−π
r(τ) dτ = 0, as well. Thus

0 =

∫ π

−π

f ′ − r dτ =

∫ π

−π

f ′ − q + a0 dτ,
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and hence

2πa0 =

∫ π

−π

q − f ′ dτ,

Taking abosolute values on both sides of this identity ad by some obvious inequalities, we
get that

2π|a0| ≤ 2π‖f ′ − q‖∞ = 2πEn(f ′).

The proof is then concluded by estimating|a0| with En(f ′) in (0.9). The statement of the
theorem follows by several applications of the inequality (0.8). �
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