ANOTHER PROOF FOR JACKSON THEOREM

THANKS TO: LUDMIL ZIKATANOV

Jackson Theorem is an example of so catle@ct theorems of approximation thory.
We will prove two variants of the Jackson theorem: for appr@tion with trigonometric
polynomials and approximation with algebraic polynomials

Theorem 0.1 (Jackson theorem)f f € WL (1) then there existstrigonometric polynomial
T'(x) of degree n such that

0.) En(f) < <1l

Before we move to the proof of this theorem, let us first introel some notation and
state and prove some results that are needed in the procé ti¢orem. Defind(,(¢) to

be the Jackson kernel:
_, [sin %t 4
S111 5
where)\,, is defined as

. T [(sin% : m
A\, = — dt, andhencel K,(t)dt=1.

S1n 5

We now define for a given functlofl € Loo(—m,m):

Tu(fi2) = /fx+t (t) dt

Below we prove that7,,(f; x) is in fact a trigonometric polynomial, which gives the bound
stated in the theorem. In that sense, the proof here is aractige proof, explicitly giving
a trigonometric polynomidl’(z) for which

C
1f = Tlloo < =[]l
n

If ¢g(t) is an integrabl@r periodic function, and is a real number, by change of vari-
ablest = 7 + 27 we have that

/_ ;m g(7) dr = /W T 2m) dt = / ) i
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Hence,
s —T+a s
/ g(t) dt = / g(t) dt—l—/ g(t) dt
- -7 —7m+a
T+a ™ m+a
= / g(t) dt +/ g(t) dt = / g(t) dt.
™ —nm+a —nm+a
In summary,
T+a s
0.2) / o(t) dt = / o(t) dt
—n+ta -

Lemma 0.2. The following idenatities hold

. T . [ 3z o (2n—1 sin? (%x)
sm——+sm|—|+...+sn x| =—=2

2 2 2 sin(3)
(0'3) m—1

sin(D)[~1+2 ; cos(kz)] = sin <2m2_ 193)

Proof. Denoteb;, = cos(lz), and recall that for any and we have
2sinasin = cos(ff — a) — cos(a + ).

Hence

ox. . 20— 1
251n(§)51n < 5 :L') =b_1 —b.

The first identity is a consequence of the following:

n

o~ (20—1 (21
81n(§)lz:;sm< 5 x)—gan(i)sm( 5 :L')

1 — 1
= 5;@_1—@:5(%—%)

1 n

_ 5(1 — cos(nz)) = sin” (533) '

To prove the second identity in (0.3), we agt= sin (2512), and recall that

20+ 1 20—-1
2 cos(lx) sin(g) = sin ( ;_ x) — sin ( 5 m) = a1 — q.
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We then have

m—1
sin(g) (—1 +2 Z COS(k‘ZL’)) =sin(=) + Z 2sin(=) cos(kx)
k=0

m—1

= o+ Z(ak—H — k) = G,

k=1

which completes the proof. U

We now use the above identities to show that¢) is a trigonometric polynomial.

Lemma0.3. If f isa2r-periodic functionand f € C(—m, 7) then 7, (f; z) isatrigono-
metric polynomial of order (2n — 2). If f isan even function than 7, (f; =) isalso even.

20 (i)

we only need to show thé&,, is a trigonometric polynomial of ordé¢n —1). Indeed, since
K, (t) is proportional td 7, (¢)]?, this will imply that K, () is a trigonometric polynomial
of order(2n — 2). Applying the first identity from (0.3), fo#,,(t) we get

Proof. Denote

sin (nt/2) a 2m — 1
Zalt) = sin®(t/2)  sin t/2 Z s ( t)

We now apply the second identity in (0.3) to each term in thre,40 get that

n

Zn(t) = sin(1t/2) Z [—s1n(t/2 ) + 2sin(t/2) kz:%c:os ]

m=1
n m—1
= Z +QZsm (t/2) Zcos(k‘t)
m=1 k=0
= —n+QZcos (kt) Z 1
m=k+1

= —n—l—QZ n — k) cos(kt).

Clearly this shows tha¥,,(¢) is a trigonometric polynomial of ord€rn — 1) and hence
K, (t) is a trigonometric polynomial of ordéen — 2). Note also thaf<,,(¢) is even and
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is a sum of cosine functions only. This is easy to see by sqgéaf;(¢) and using simple
trigonometric identities.

(0.4) Tu(f52) = /_7r flz+ 1)K, (1) dr = /WH fO)K,(t —x) dt.

—T+T

As a consequence, we obtain that

2n—2
K (t—=z) = Y apcos(k(t —x))
k=0
2n—2 2n—2
= Z ay, cos(kx) cos(kt) + Z oy sin(kx) sin(kt).
k=0 k=1

We then substitute the above expresion in (0.4) and use tteHat f(-), sin(kt) and
cos(kt) are2r-periodic functions. From (0.2) we then have:

T+ 2n—2 2n—2
/ FOELt—2)dt = 3 axticos(hn) + 3 amesin(ka),

-+ k=0 k=1
where

§e = /_7T ' f(t)cos(kt) dt = /_7r f(t) cos(kt) dt,

T+x
and

M = /WH f(t)sin(kt) dt = /7T f(t)sin(kt) dt.

—T+T

Hence, from (0.4) it follows thay,,( f; x) takes the form

In(fi2) = / fOK,(t —z) dt

2n—2 2n—2
= Z gy cos(kx) + Z agny sin(kzx).
k=0 k=1

and clearly is a trigonometric polynomial of the same ordeka(z).

To conclude the proof of the lemma, it remains to show th&t(if is even function,
then 7, (f; ) is also even. Since in such cagg) sin(kt) is an odd function, we obtain
thatn, =0, fork =1,...,(2n — 2), and hence7,,(f; x) is even function. O

We now turn our attention to the proof of several inequaifiom ghich the Jackson
theorem will follow.
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Lemma 0.4. The following inequalities hold:

(0.5) t/m <sin(t/2) <t/2, foral te]l0,n].
(0.6) A > 28,
3
Proof. (1) To prove thakin(t/2) > t/n for t € [0, ], we setg(t) = sin(t/2) — t/7.
Clearly we havey” = —1sin(¢/2) < 0. Henceg(t) can only have maximum

inside the interval0, 7] and the minimum value is achieved at one of the end
points. Direct calculation shows thet0) = g(7) = 0 and hencey(¢) > 0 for all
t e [0,7].

(2) To prove the left side inequality in (0.5), we now gét) = t/2 — sin(t/2). Itis
easy to see that'(t) > 0 for all ¢ € [0, 7] and hencegy(t) > ¢(0) = 0, which
concludes the proof of (0.5).

(3) The inequality (0.6) is shown as follows:

2/0% {(nt/ﬂ)r T2t 82,

- (t/2) n 3
O
We will also need the following result.
Lemma 0.5. There exists an absolute constant ¢, such that:
/ R, (1) dt < £
0 n
Proof. Using Lemma 0.4, we obtain
T n—1 (k+1)7/n
/ R, () dt = > / tK,(t) dt
0 k=0 v km/n
7'('/TL 2 4 n—1 (k+1)7r/n 1 4
< A1 / t(ﬂ) dt+Z/ (e + )”@) dt
0 t/ﬂ- =1 km/n n k
2 n—1
_on 2k+1
— )\—n +Z7T
k=1
< n_2 ——|—7TZZ i <ecnt
-\ k3 k4
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We are now ready to prove Theorem 0.1.

Proof of Theorem 0.1. Recall that[" K, (t) dt = 1, and hence, for alt € [, 7] we
have

™

Tulfi2) — f(z) = / (a4 1) — F@)Ka(t) dt

—Tr

Note that/, (¢) is non-negative and even and by Lemma 0.5 we have:

Tfix) — f(2)] = ) [ a0 - stanman dt)

IN

/Ht () dr| K, (t) dt

Koft) de < £ [ el (0) dt

| U0 - rpigam a= [
G

= 9 f / HE(8) df < 2en7 | f']oo.

IN

SettingNV = 2(n—1), and recalling that7,, is a trigonometric polynomial of ord€(n—1),
for the error of best approximation we have that:

4c ,
Ex(f) £ 51 e

and the proof is complete. O

Remark 0.6. We remark that iff is even function than, sincg,(f; x) is also even, we can
write

(0.7) inf |If = Tllee < en™ | f'l|cc-

TETh even

The inequality just stated in the remark gives the followingorem for approximation
with algebraic polynomials.

Theorem 0.7. Let f € WL (—1,1). Then
E.(f) < en™ 1 f'lloo
Proof. Setg(t) = f(cost), fort € [—m, 7]. Note thaty(¢) is even and
g'(t) = —f'(cost)sint, andhence ||¢'||co,—rm) < || oo (=1,1)-
From Lemma 0.3 we may conclude th@}(g; x) is even. Define now

jn(f; x) = Jn(g; arccos(x)).
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Note that7, (f; x) is an algebraic polynomial of degree2(n — 1). We then have

If = Tl Ollsosi—ty = 1lg = Tnl@)llo 0.0
= g — Tu(9)lo,—mm) < |9l o (—mm)
< en M loos=11)-

If the function f is smoother, then we have the following theorem:

Theorem 0.8. Let f € C* is2r periodic function. Then, the following estimate holds:

(k)
Proof. We will first prove the following inequality:
c /

(0.8) En(f) < ~Eu(f).

To show (0.8), we fixf and denote withy the trigopnometric polynomial of order for
which we have that

1" = alle = En(f")-

Clearly, we may writey in the form

q(z) = ag + Z ar cos(kx) + by sin(kx) = ag + ().

s(x) = /_:: r(t) dt.

Note thats(z) is a trigonometric polynomial of order. Hence

Bf)=Eu(f=5) < —|If =5l

(0.9) = | =7l

Cpy c
< Sl = alle + laol] = S [Ea(F) + lao])
Sincef is 2r-periodic, we have that

/ " fr) dr = f(m) — f(—m) =0

Direct calculation using the definition ofz) shows that/” r(r) dr = 0, as well. Thus

O—/ f —TdT—/ /" —q+aodr,

Define now
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and hence i
27 ay :/ q— f dr,
Taking abosolute values on both sides of this identity addmyesobvious inequalities, we
get that
27| ao| < 27||f" — qlloe = 27 EL(f7).
The proof is then concluded by estimatifag| with £, (f’) in (0.9). The statement of the
theorem follows by several applications of the inequalityj. O
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