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In this exposition we’ll cover an introduction to ergodic theory. Specif-
ically, the Birkhoff Mean Theorem. Ergodic theory is generally described
as the study of dynamical systems that have an invariant measure. This
reaches has relations to flows (such as the Poincaré’s Recurrence Theorem,
etc.).

Let’s begin by discussing what it means for a dynamical system to be
ergodic.

We’ll start by defining a probability space.

Definition 0.1. A probability space is a triple (X,F , µ), where:

• X is a set of possible outcomes

• F is a set of events, where each event is a set containing outcomes

• µ is an assignment of probabilities to each event in F .

Definition 0.2. Ergodicity
Let T : X → X be a measure-preserving transformation.
T is ergodic with respect to µ if ∀F ∈ F s.t. T−1(F ) = F either µ(F ) = 0

or µ(F ) = 1.

Here are some examples:

Example 0.3. If X is finite and has uniform measure, T : X → X is
ergodic IFF it’s a cycle.

Example 0.4. If T is ergodic, then so is T−1. Tn is not necessarily er-
godic for all n, as we can see from the previous example (this property total
ergodicity).
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Intuitively, we can think of T as a transformation w.r.t. time. Then, an
ergodic function describes a random process for which the time average of
one sequence equals the total average.

Now there is a natural analogy to measurable flows; I discussed flows in
my presentation earlier in the course.

Let T t be a measurable flow on a probability space (X,F , µ). An event
F ∈ F is invariant mod 0 under T t if ∀t ∈ R, X(T t(F )4F ) = 0 (4 means
symmetric difference) .

Now that we understand the definition of a probability space and of
Ergodicity, we can begin proving the Birkhoff Theorem. We will first prove
a lemma.

The best summary of the probability of an event is the frequency of its
occurrence over some large span of time. This is captured in ergodic theory
by the measure preserving map, T , from the probability space to itself. T
is the change from one outcome of a random series of events to the next.

So suppose we have some measurable function f . Then we define the
average of measures over time, the Cesáro average, which is defined as fol-
lows:

Definition 0.5. Cesáro Average

An(f, x) =
1

n

n−1∑
i=0

f(T i(x)).

Definition 0.6. σ-finite measure space
A measure µ defined on a σ-algebra Σ of subsets of a set X is called

finite if µ(X) ∈ R. It is σ-finite if X can be written as the countable union
of measurable sets with finite measure. A set in a measure space is of σ-
finite measure if it can be written as the countable union of sets with finite
measure.

Lemma 0.7. Maximal Ergodic Theorem
Let T be a measure-preserving transformation on the σ-finite measure

space (X,F , µ). Suppose f ∈ L1(µ).
Set En = {x|Aj(f, x) > 0 for some j ≤ n}.

Then ∫
En

fdµ ≥ 0.
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Proof. The trick here is to find a non-decreasing series of functions and
then redefine our integral in terms of differences in the series (so that we are
integrating over an entirely positive space).

Let Fn(x) = max(0,

j−1∑
i=0

f(T i(x)) : j ≤ n).

This will be our non-decreasing series.
This gives us Fn+1 = max(0, f +Fn ◦T ). But note that the second term

is always at least 0 over En+1, meaning we have

Fn+1 = f + Fn ◦ T =⇒ f = Fn+1 − Fn ◦ T

over En+1.
Now take the integral:∫

En+1

fdµ =

∫
En+1

(Fn+1 − Fn ◦ T )dµ.

But this is convenient since Fn+1 = 0 everywhere except En+1 and −Fn◦
T ≤ 0 everywhere, giving Fn+1 − Fn ◦ T ≤ 0 everywhere but En+1.

So we can change the boundaries on the integral to prove our theorem!∫
En+1

fdµ =

∫
En+1

(Fn+1 − FnT )dµ ≥
∫
X

(Fn+1 − FnT )dµ

=

∫
X

(Fn+1 − Fn)dµ ≥ 0.

So we’ve just shown that if the Cesáro average of an L1 function if
positive for a small enough time frame over a subset, then so is its integral.

Corollary 0.8. Set E∞ = ∪∞n=1En and∫
E∞

fdµ ≥ 0.

Theorem 0.9. Birkhoff Ergodic Theorem
Let G be a measure-preserving transformation on a σ-finite measure

space (X,F , µ), and f ∈ L1(µ).
There exists an f̄ with

An(f, x)→ f̄(x)
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almost everywhere.

Proof. This is the deep theorem which we’ve been aiming for.
First let’s consider some rational u, v. And let’s set Eu,v = {x|limAn(f, x) >

v > u > limAn(f, x) > 0}. Now we can say: if x 6∈ Eu,v for any u, v then
limn→∞An(f, x) exists.

So assuming v > 0, otherwise replace f by −f and −u > 0. Assume
µ(Eu,v) > 0. From its definition, T (x) ∈ Eu,v, then x is also. In other
words, T−1(Eu,v) ⊆ Eu,v, so we may, w.l.o.g. assume Eu,v is the entire
measure space.

So ∀x ∈ X = Eu,v, ∃n s.t.

1

n

n−1∑
i=0

(f(T i(x))− v) > 0

.
So, by the maximal ergodic lemma(!), we have∫

X
(f − vχa)dµ ≥ 0.

Meaning, ∫
X
fdµ ≥ vµ(A)

because X = E∞ from the first Corollary.

Now there are several interesting corollaries that result from Birkhoff’s
Theorem.

Corollary 0.10. Defining the map L(f) = f,for f ∈ L1(µ), ||L(f)||1 ≤
||f ||1 and so L(f) is a continuous projection from L1(µ) onto the subspace
of T -invariant L1-functions.

Proof. As ||An(g)||1 = ||g||1 for g ≥ 0, and since An(f) converges pointwise
to f , ∫

|L(f)|dµ ≤
∫
L(|f |)dµ ≤ lim

∫
An(|f |)dµ =

∫
|f |dµ.

and

||L(F )||1 ≤ ||f ||1.
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So we have:

L(f)(T (x) = limAn(f, T (x))

= lim
1

n

n∑
i=1

f(T i(x))

= lim(
n+ 1

n
An+1(f, x)− f(x)

n
)

= L(f)(x).

So L(f) is T -invariant. As ||L(f − g)||1 = ||L(f)−L(g)||1 ≤ ||f − g||1, L
is a continuous projection onto the T -invariant L1 functions.

Corollary 0.11. If (X,F , µ) has no T -invariant subsets of finite measure,
then L(f) ≡ 0,∀f ∈ L1(µ).

Proof. If X has no T -invariant sets of finite measure, the only T -invariant
L1 function is identically equal to 0.

Corollary 0.12. If µ(X) <∞, then ||An(f)− L(f)||1 → 0.

Proof. Define A = {f ∈ L1(µ) : ||An(f)− L(f)||1 → 0}.
As the operator L is a contraction in L1, A is L1-closed (if fi is Cauchy

so is L(fi)).
f <∞ =⇒ all An(f) have the same bound.
By the dominated convergence theorem, An(f) → L(f) in L1. L1(µ) is

the only closed subspace of L1(µ) that contains all bounded functions.

Last, we should understand why the Birkhoff Theorem is important in
Ergodic Theory.

This lies in the relationship to ergodic maps. In fact we can use the
theorem to directly characterize ergodic maps!

Corollary 0.13. Application of Birkhoff’s Theorem
If {Ai} is a countable collection of sets L1 dense in the collection of all

sets and

1

n

n−1∑
i=1

χAj (T
i(x))→ µ(Aj)

for all i and almost every x then T is ergodic.
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Proof. Pick A measure-invariant and Aj arbitrarily from our collection.

µ(A)µ(Ac
j) =

∫
A
µ(Ac

i )dµ

= lim
n→∞

( 1

n

n−1∑
i=0

∫
A
χAc

j
(T i(x))dµ

)
= lim

n→∞

1

n

n∑
i=0

∫
χT−i(A∩Ac

j)
(x)dµ

= µ(A ∩Ac
j)

.
Selecting Aj so µ(A4Aj)→ 0, µ(A)µ(Ac) = 0. So µ(A) ∈ {0, 1}.
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