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27. SOBOLEV INEQUALITIES

27.1. Morrey’s Inequality.

Notation 27.1. Let S?! be the sphere of radius one centered at zero inside R¢.
For aset I' € S%!, 2 € R%, and r € (0, 00), let

Iy, ={z+sw:weTl such that 0 < s <r}.

SoI'y, =x+1, where I'y . is a cone based on I', see Figure 49 below.

FIGURE 49. The cone I'g ;.

Notation 27.2. If I' C S9! is a measurable set let |I'| = o(T') be the surface
“area” of I'.

Notation 27.3. If Q ¢ R? is a measurable set and f : R? — C is a measurable

function let .
fa = z)[f(x)dx = m/{;f(x)da:

By Theorem 8.35,

= T = ' d-1 x w) do(w
(27.1) fwdy= [ fle+y)dy / dtt F/ f(@ + tw) do(w)

Fz)r FO,T

and letting f = 1 in this equation implies
(27.2) m(Ty,,) = |T|r/d.

Lemma 27.4. Let I' C S%! be a measurable set such that |T| > 0. For u €
Cl(fﬂl,'f)7

1 Vu
(27.3) F][ fu(y) — u(z)|dy < T / % dy.
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Proof. Write y = = + sw with w € S¢~1, then by the fundamental theorem of
calculus,

u(z + sw) —u(z) = /05 Vu(z + tw) - wdt

and therefore,

/|ux+sw)—u( J|do(w) / /\Vux—i—tw)\da( )t

— / =1t Mda(oj)
0

r |z +tw—az|*!

T gy [ 190)
= _— < _—_—
| psm s [ g

x,s x,r

Wherein the second equality we have used Eq. (27.1). Multiplying this inequality
by s~! and integrating on s € [0, r] gives

|VU m(Fz T) |Vu(y)|
_ < - .
/ fuly) = w(@)ldy < / B y|d1 o ) oyt ¥

x,r

which proves Eq. (27.3). m

Corollary 27.5. Suppose d < p < oo, I' € Bga-1 such that IT| >0, r € (0,00) and
u € CY(Ty,). Then

(27.4) lu(x)| < C(IT],r,d, p) [lullwrer,.,)

1 e fpo NP\
C(|F|7Ta dap) = m—l/pmax (T, <pTd> . ’I"l d/P.

Proof. Forye T, ,,

where

()] < fu(y)] + |uly) — u(z)]
and hence using Eq. (27.3) and Holder’s inequality,

1 IW( )|
<

1

1
(27.5) \1||Lp(rm,r) + m”vuﬂmm,r)||W\|Lq(rw)

1
< m(Tar) HUHLP(FL,)

where ¢ = % as before. Now

1 o o
||| e 1HLq(Fw) / dt ! 1/(td 1) ! do(w)

|F\/dt tdl |F\/dttp1

and since
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we find
—1

1 p—1 pod 1/q p—1 = 1_d
(27.6) Hwﬂm(ro,T)Z <mF|TP1) = mm .
Combining Egs. (27.5), Eq. (27.6) along with the identity,

1 1 —1/p

27.7 — 1 = r,)Y9=(|0|r?/d
( ) m(Fz,r) | HLq(FM) m(Fm,r)m( ) (| |7 /) )
shows

1-1/p
—-1/p 1 p— 1 _
u(@)] < lullpocr, ) (IT17¢/d) " + il IVullpe(r, . (p— ¥ |T|) il

1 d-1/p b1 S
= |F|—1/p l|u||Lp(Fz,r) . +1IVul o (e, (p——d> P1=d/p.

1 d—l/p p— 1 1-1/p d
L pel=d/
< REG max ( — (p — d) llullwrer,,) T P,

Corollary 27.6. For d € N and p € (d, 0] there are constants « = ag and § = 4
such that if u € C*(RY) then for all x,y € R4,

ya

p—1 T _d

(27.8)  [uly) - u(x)| < 2507 (p—d) IVulleo e ey - o =910
where T := |z —y|.

Proof. Let r:= |z —y|, V := B,(r)N By(r) and ', A C S9! be chosen so that
x4+ 1T = 0B,(r) N By(r) and y + rA = 0B, (r) N By(r), i.e.

1 1
= - (0Bz(r)N By(r) —z) and A = - (0By(r) N By(r) —y) = —T.
Also let W =T, . N Ay ,, see Figure 50 below. By a scaling,
e DAyl TaaNAy
‘Fx,r| |Fz7l|

is a constant only depending on d, i.e. we have |I'; .| = |A, | = 5|W|. Integrating
the inequality

5(1 : S (0, ].)

lu(z) — u(y)] < Ju(z) —u(z)] + [u(z) — uly)|
over z € W gives

() — u(y)] < ][ () — u(z)|dz + ][ ju(z) — uy)|dz
w w

- Irfr| /'“(x)‘“(Z>|dz+/\U(Z)—u(y)ldz

g
Sl / ) =+ / u(2) — u(y)ldz
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F1cURE 50. The geometry of two intersecting balls of radius r :=
|z —y|. Here W =T, , N Ay, and V = B(z,r) N B(y, 7).

Hence by Lemma 27.4, Holder’s inequality and translation and rotation invariance
of Lebesgue measure,

B [Vu(2)] [Vu(2)]
— < = At VA B d
lu(z) —u(y)| < T w1 + / Lyt
lz,r Ay r
B 1 1
< m HVUHLP(Fz,r)H |$ _ ,|d—1 |‘Lq(1‘zm) + HVUHLP(A%T)H ‘yi_ ,|d—1 ||Lq(Ay,7‘)

(27.9)

28 1
< T ||VU||LP(V)Hw”mm,m

where ¢ = ;iLl is the conjugate exponent to p. Combining Eqs. (27.9) and (27.6)
gives Eq. (27.8) with a:=[T|7!. m

Theorem 27.7 (Morrey’s Inequality). If d < p < oo, u € WHP(R?), then there
exists a unique version u* of u (i.e. u* = u a.e.) such that u* is continuous.
Moreover u* € CO’I_%(Rd) and

(27.10) ”u*HCO,l—% < CHu”Wl,p(Rd)

(R4)
where C' = C(p,d) is a universal constant. Moreover, the estimates in Eqs. (27.8),
(27.4) and (27.8) still hold when w is replaced by u*.

Proof. For p < oo and u € C}(R?), Corollaries 27.5 and 27.6 imply
|u(y) — u(@)|

lull peray < Cllullwrgey and —
|z —y[

< Ol Vul Lr(re
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which implies [u]; 4 < C||Vul|zrray < Cllullw1,prsyand hence
P

2r11) il s ) < Ol
Now suppose u € WHP(R?), choose (using Exercise 21.2) u,, € C}(R?) such that
Uy — U In Wl’p(Rd). Then by Eq. (27.11), |lu, — um”C(J,l—d — 0as m,n — oo

P (R)
and therefore there exists u* € C’O’l*%(Rd) such that u, — u* in C’O’l*%(Rd).
Clearly u* = u a.e. and Eq. (27.10) holds.

If p=o0and u € WhH™ (Rd) , then by Proposition 21.29 there is a version u*
of u which is Lipschitz continuous. Now in both cases, p < oo and p = oo, the
SeqUENCE Uy, = U * My, = U* % 1)y, € C° (Rd) and u,, — u* uniformly on compact
subsets of R%. Using Eq. (27.3) with u replaced by wu,, along with a (by now)
standard limiting argument shows that Eq. (27.3) still holds with u replaced by
u*. The proofs of Egs. (27.4) and (27.8) only relied on Eq. (27.3) and hence go
through without change. Similarly the argument in the first paragraph only relied
on Egs. (27.4) and (27.8) and hence Eq. (27.10) is also valid for p=o0c. m

Corollary 27.8 (Morrey’s Inequality). Suppose Q C, R? such that Q is compact
Cl-manifold with boundary and d < p < oo. Then for u € W1P(Q), there erists a
unique version u* of u such that u* € C’O’l*%(Rd) and we further have

(27.12) 1wl oa-a o, < Cllulwrr@),

()
where C = C(p,d, Q).

Proof. Let U be a precompact open subset of R? and E : WhP(Q) — W1P(R?)
be an extension operator as in Theorem 25.35. For u € WP (Q) with d < p < o0,
Theorem 27.7 implies there is a version U* € coOl- (RY) of Eu. Letting u* := U*|q,
we have and moreover,

1wl o2 o S NUTM on-2

oy < < ClBulwismn < C lullysy

(R

|

The following example shows that L>°(RY) ¢ WL4(R9), i.e. WH4(R?) contains
unbounded elements. Therefore Theorem 27.7 and Corollary 27.8 are not valid for
p = d. It turns out that for p = d, W¢ (Rd) embeds into BMO(R?) — the space
of functions with “bounded mean oscillation.”

Example 27.9. Let u(z) = ¢ (z) loglog (1 + ‘—31”) where 1) € C2°(RY) is chosen so

that ¢ (x) = 1 for |x| < 1. Then u ¢ L>*(RY) while u € WH4(R9). Let us check
this claim. Using Theorem 8.35, one easily shows u € LP(R%). A short computation
shows, for |z| < 1, that
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where & = x/ |z| and so again by Theorem 8.35,
d

/|Vu(ac)|ddx2/ 21 ! dx
J lzj<1 \ 122 + || log (l+i)

|]

d
! 2
> Sd’l/ — | M=
_J( )0 (r]og(1+%)> T T xX0

27.2. Rademacher’s Theorem.

Theorem 27.10. Suppose that u € Wlif(Q) for some d < p < oo. Then u is
differentiable almost everywhere and w-0;u = O;u a.e. on ).

Proof. We clearly may assume that p < co. For v € VVllof(Q) and z,y € {2 such
that B(z,r) N B(y,r) C  where r := |z — y|, the estimate in Corollary 27.6, gives

_d
0(y) = v(x)| < C|Vull LoBernBue) - |t —y| (75
_d
(27.13) = CHVUHLP(B(x,r)nB(y,r)) -T(l P).

Let u now denote the unique continuous version of u € VVlloé7 (©). The by the
Lebesgue differentiation Theorem 16.12, there exists an exceptional set E C €2 such
that m(E) = 0 and

1@{101 |[Vu(y) — Vu(x)|Pdy = 0 for x € Q\ E.
B(z,r)

Fix a point = € Q\ E and let v(y) := u(y) — u(z) — Vu(z) - (y — =) and notice that
Vu(y) = Vu(y) — Vu(z). Applying Eq. (27.13) to v then implies

[u(y) — u(x) — Vu(z) - (y — )|
< C||Vu(-) = V(@) Le(B(z,r)nBy.r)) (175)

1/p
u(y) — Vu(x)P ~r(1_i>
sc(/B(I)T)W (4) - V()| dy>

ol

1/p
= Co (5971) /7yl ][ Vu(y) ~ Vu(@)Pdy | -r(17%)
B(z,r)
1/p
—ca (st )| [ Vut) - Va@pdy | eyl
B(z,r)

which shows u is differentiable at « and Vu(z) = w-Vu(z). m

Theorem 27.11 (Rademacher’s Theorem). Let u be locally Lipschitz continuous
on Q Co, R%. Then w is differentiable almost everywhere and w-0;u = O;u a.e. on

Q.

Proof. By Proposition 21.29 8" u exists weakly and is in d;u € L=(R?) for
i =1,2,...,d. The result now follows from Theorem 27.10. =
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27.3. Gagliardo-Nirenberg-Sobolev Inequality. In this section our goal is to
prove an inequality of the form:
(27.14) |ulla < C||Vul| Lo gay for u € CL(R?).
For A > 0, let ux(z) = u(Az). Then

luslle, /|u (\z) |qu—/ lu(y)

and hence ||uy| e = A=%9||u||za. Moreover, Vuy(z) = A(Vu)(Az) and thus
IVurllze = M(Va)alle = AAV7([Vu| o
If (27.14) is to hold for all u € C}(R?) then we must have
A"Vl e = |lur]|e < Cl|Vuxl L (ray = CA=P|| V| for all A > 0
which is only possible if
(27.15) 1-d/p+d/q=0, ie. 1/p=1/d+1/q.

Notation 27.12. For p € [1,d], let p* d” with the convention that p* = oo if
p = d. That is p* = g where g solves Eq (27 15)

Theorem 27.13. Letp=1 so 1* = d;fl, then

d i

(27.16) el = el o H(/ Drula dx) < d | Vul,

for all u € WH(RY).

Proof. Since there exists u,, € C1(R?) such that u,, — u in W1(R9), a simple
limiting argument shows that it suffices to prove Eq. (27.16) for u € C}(R?). To help
the reader understand the proof, let us give the proof for d < 3 first and with the
constant d~'/2 being replaced by 1. After that the general induction argument will
be given. (The adventurous reader may skip directly to the paragraph containing
Eq. (27.17.)

(d =1, p* = 00) By the fundamental theorem of calculus,

)l = | [ ";u'@)dy\ <[ Wl [ W

Therefore ||u||p~ < ||u||z1, proving the d = 1 case.
(d = 2, p* = 2) Applying the same argument as above to y; — u(y;,x2) and
Y2 — u(zlva)n

(e, 22)| < / 01 u(yn, 22)| dys < / Vu(yr, 22)| dys and

lu(z1, z2)| S/ |02u(1,y2)| dy2 S/ |Vu(z1,y2)| dyo

— 00

and therefore

oo

(e, 22) 2 < / 101 u(yn, 22)|dys - / 101, )| dy.

— 00
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Integrating this equation relative to x; and zo gives

fulle = [ W@ < ([~ ot de ) ([ ool as
< ([ vuto dw)2

which proves the d = 2 case.
(d = 37 p* = 3/2) Let xl = (y17$27$3)7 $2 = (3517927933)7 and LL'3 = <$173327y3)~
Then as above,

()] < / Ou(a)|dys for i = 1,2,3

and hence

2) Zf[l(/wwu )

Integrating this equation on x; gives,

/R|u(m)|%dx1§</_ Ovu(e |dy1) /H(/ Oyl )|dyi)%dx1

1 3 1

. </OO |81u(x)|d$1> I (/o; |8iu(xi)|d$1dyi> }

=2

o

wherein the second equality we have used the Holder’s inequality with p = ¢ = 2.
Integrating this result on x2 and using Holder’s inequality gives

1

[ ) fdrdo < </R |82u(x)|dx1dx2>% /Rdxg </_O; 81u(x)dac1>% (/R |83u(x3)|dx1dy3>§
< ( /R 2 |62u(x)|dx1dx2)% ( /R 2 |81u(9c)|d9c1d9c2>% ( /R 3 a3u(x)dx)%

One more integration of z3 and application of Hoélder’s inequality, implies

R3 2dx<H</ |9;u(z |da¢> (/ \Vu(x d:c)

proving the d = 3 case. A
For general d (p* = %), as above let 2* = (z1,...,%i—1,Y, Ti+1--.,Tq). Then

u(w)| < ( /- |aiu<wi>|dyz-)
and

(27.17) H(/ |0;u(zx )|dyi>d_11.

Integrating this equation relative to z; and making use of Holder’s inequality in
the form

(27.18)

d
Hfl < [Lfillazs
=2 =2
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1

(see Corollary 9.3) we find

[wean = ( [oeran) ™ [ an [T (f e

1

< (/R Glu(m)dm) o H </R |aiu(xi)|dx1dyi> _

= (/R alu(x)cz:z;1>ﬁ <_/Rz |62u(x)|d;z;1d;z;2)ﬁ f[d (/RQ |3iu(:ci)|dx1dyi)ﬁ

Integrating this equation on z5 and using Eq. (27.18) once again implies

T T
|u(:r)|%d:r1d:r2 < </ |32u(:c)dx1dx2> /d:rg (/ 31u(x)dz1)
R2 R2 R R
d , T
X H </ |8iu(x’)|dx1dyi>
i=3 \/R?
= i
< (/ |62u(x)dx1dx2) (/ |01u(x)|dx1dx2>
R2

FE
X H (/ |O;u(x |dm1dac2dyl)

Continuing this way inductively, one shows
1

k =1
|u(m)\d_fldac1dx2 coodxy < H (/ |0;u(z)|dz1dxs . . . dxk)
. k

1

RE
d—1
X H (/ |Oiu(z )|dm1da:2 dxkdka)
i=k+1
and in particular when k = d,
I =
(27.19) ()77 da H (/ \Osu(x)|dwr das .d:cd>

gf[( [ IVu(e )|dm> i </ V(e |da:> -

This estimate may now be improved on by using Young’s inequality (see Exercise

3 ZZ L ad. Indeed by Eq. (27.19) and Young’s inequality,

d
27.1) in the form [] a; <
i=1

ey <TT( [ 100 _éé(/waiuwdx)

i=1

/Rd i z)|dr < /]R Vd |Vu(z)| de

&I)—*
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wherein the last inequality we have used Holder’s inequality for sums,
1/2

d d 2,y
Z|ai|§<21> (Zmﬁ) =Vd|al.

The next theorem generalizes Theorem 27.13 to an inequality of the form in Eq.
(27.14).

Theorem 27.14. If p € [1,d) then,

(27.20) lw|| por < d™ Uﬂ%HVuHLP for all u € WHP(RY).

Proof. As usual since C}(R?) is dense in W7 (R?) it suffices to prove Eq.
(27.20) for u € CL(RY). For u € CH(R?) and s > 1, |ul® € CHR?) and V |ul® =
slul*~tsgn(u)Vu. Applying Eq. (27.16) with u replaced by |u|® and then using
Holder’s inequality gives

_1 _1 _
lul* - < d™2 |V [ul’lly, = sd ™2 [[Jul* = V2

(27.21) IVullze - llal* | za
\/_
where ¢ = . We will now choose s so that s1* = (s — 1)q, i.e.
q 1 1
STy -1 1-1L
ST A ()
p(d—1) _pd-1)  ,d-1

- =p
p(d=1)—d(p-1) d-p d
For this choice of s, s1* = p* = (s — 1)q and Eq. (27.21) becomes

. 1/1* s , 1/q
(27.22) [ y | dm} 7_ IVull e - {/ |ul dm] .
Since
1 1 d-1 p—-1 pd-1)—dp-1)
1 E T4 p dp
_d—-p 1
~opd  p¥

Eq. (27.22) implies Eq. (27.20). m

Corollary 27.15. Suppose Q C R? is bounded open set with C*-boundary, then
for allp € [1,d) and 1 < q < p* there exists C = C(2,p,q) such that

[ullaco) < Cllullwie@)-

Proof. Let U be a precompact open subset of R? such that Q@ € U and E :
Wbt (Q) — whe (Rd) be an extension operator as in Theorem 25.35. Then for
u€ CHQ)NWLP(Q),

lull o= ) < CllEU| Lo (rey < CIV(EW)| L ray < Cllullwire @),
ie.

(27.23) [ull o= (@) < Cllullwrre)
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Since C'(Q) is dense in WP(Q), Eq. (27.23) holds for all u € W1P(). Finally for
all 1 < ¢ < p*,

[ullLac) < llullpe @) - L) = lullL- (A€2)" < CASQ) " [[ullwre @

1,01 _ 1
where;—l—p—*— ;- =
27.4. Sobolev Embedding Theorems Summary. Let us summarize what we
have proved up to this point in the following theorem.
Theorem 27.16. Let p € [1,00] and u € W'? (R?). Then
(1) Morrey’s Inequality. If p > d, then WP — Co'=% and
1471 14 gy < o
(2) When p = d there is an L — like space called BMO (which is not defined
in these notes) such that W? — BMO.
(3) GNS Inequality. If 1 <p <d, then WP — LP"
d—1)
o < d71/2p( \v4
Jullre < a 22Tl

where p* = dd—_’; or equivalently p% =

ISl

1
P
Our next goal is write out the embedding theorems for W*P(Q) for general k
and p.
Notation 27.17. Given a number s > 0, let
_ s if né¢Ny
S+7) s46 if ne Ny

where § > 0 is some arbitrarily small number. When s = k + o with £ € Ny and
0 < a < 1 we will write C*() simply as C*(£2). Warning, although C*1(Q) C
CkT1(Q) it is not true that C*1(Q) = C*+1(Q).
Theorem 27.18 (Sobolev Embedding Theorems). Suppose @ = R? or Q C R is
bounded open set with C*-boundary, p € [1,0), k,l € N with | < k.
(1) If p < d/l then WF» (Q) — Wk=L4(Q) provided q := d‘i—’;l, i.e. q solves
1 1 1
—=-——=>0
g p d
and there is a constant C < oo such that
ullwr-rag0y < Cllullwrsy for allu € WP ().
(2) If p > d/k, then WP (Q) — C*= (/P (Q) and there is a constant C < co
such that
Hu||ck7(d/p)+(9) < CHu”Wk,p(Q) for allu € wkp (Q).
Proof. 1. (p<d/l) If u € WKP(Q), then 0%y € WP (Q) for all || < k —

1. Hence by Corollary 27.15, 0%u € LP () for all |a] < k — 1 and therefore
WEP (Q) < WF=1P" (Q) and there exists a constant C; such that

(27.24) [ulli-1.00 () < Cllullyprn (o) for all u e Wk (Q).
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Define p; inductively by, p; := p* and p; := p*_,. Since &+ = —L— — L it is easily
J J J—1 p; ~ pji-1 d
checked that L+ =1 — L > 0 since p < d/I. Hence using Eq. (27.24) repeatedly we
DL p d

learn that the following inclusion maps are all bounded:
WHhP(Q) s WHFLPL(Q) s WHF2P2 (Q) ... WFHPL ().

This proves the first item of the theorem. The following lemmas will be used in the
proof of item 2. m

Lemma 27.19. Suppose j € N andp > d and j > d/p (i.e. 7> 1ifp > d and
j>2ifp=d) then
WP (Q) — CI=(4/P)+ ()
and there is a constant C < co such that
(27.25) HUHCJ*(WPH(Q) <c ||uHWj,p(Q) :

Proof. By the usual methods, it suffices to show that the estimate in Eq. (27.25)
holds for all u € C* (1) .

Forp>dand |o| <j—1,

||8au\|co,1,d/p(m <c Haau”WLP(Q) <cC ||UHWj,p(Q)
and hence
HUHCJ'*d/P(Q) = Hu”ijl»lfd/P(Q) < CHU”Wj,p(Q)

which is Eq. (27.25).

When p = d (so now j > 2), choose ¢q € (1,d) be close to d so that j > d/q and
¢ =L > d. Then

Wi (Q) e W (Q) s WIT14 (Q) e CI72174/07 ().
Since d/q* | 0 as ¢ T d, we conclude that W74 () < CI=2 (Q) for any « € (0, 1)
which we summarizes by writing
Wi (Q) — CI=(d/D (Q).

]

Proof. Continuation of the proof of Theorem 27.18. Item 2., (p > d/k).
If p > d, the result follows from Lemma 27.19. So nos suppose that d > p > d/k

and choose the largest [ such that 1 <[ < k and d/l > p and let ¢ = d‘i—’;l, ie. ¢
solves ¢ > d and

1 1 | d d
—=—-—=or—-=--1
g p d q p
Then
W (Q) s Whba () - ck-=@/0s () = ¢* D4 () = ¢ ()i (@)

as desired. m
Remark 27.20 (Rule of thumb.). Assign the “degrees of regularity” k — (d/p), to
the space W¥*P? and k + o to the space C*<. If
X, Y € {WhP ke Ng,pe[l,oo]}u{CH*:keNy, acl01]}
with deg,e,(X) > deg,,(Y), then X — Y.

Example 27.21. (1) Whp s Whbaiff | — & >k — ¢ — 4iff £ > 4 — ¢ iff
1 > 1 4

q=p d
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(2) Wk C CO iff k — (é)+ > a.

P
27.5. Compactness Theorems.

Lemma 27.22. Suppose K, : X — Y are compact operators and |K —
Kunllpx,yy — 0 as n — oo then K is compact.

Proof. Let {z,}52, C X be given such that ||z,| < 1. By Cantor’s diagonal-
ization scheme we may choose {z},} C {x,} such that y,, := lim K.z, € Y exists

n—oo

for all m. Hence
| Ka), — Kap|| = [| K (z;, — 2p)|| < || K (27, — )]
SNE = Kl 25, — 2]l + [ Ko (25, — 27)]
<|NE = Kl + [ Ko (27, — 27) ||

and therefore,

limsup | Kz, — Kzj|| < ||K — K| — 0 as m — oo.

l,n—o0

Lemma 27.23. Let n € C*(R?), C,f = nx f, @ C R? be a bounded open set
with C*-boundary, V be an open precompact subset of R? such that Q C U and
E: WhY(Q) — WLYR?) be an extension operator as in Theorem 25.35. Then to
every bounded sequence {uy,}o.; C WH(Q) there has a subsequence {ul,} - | such
that Cy Eul, is uniformly convergent to a function in C, (Rd) .

Proof. Let u,, := Et, and C' := sup |[un|[y1.1(gay which is finite by assumption.
So {u,}o2, € WHH(R?) is a bounded sequence such that supp(u,) C U C U CC R?

for all n. Since 7 is compactly supported there exists a precompact open set V' such
that U C V and v, :=nxu, € C*(V) C C° (R?) for all n. Since,

[onllzee < Il unllr < lnllze lunllzr < Clinlz~and
[Dvnllzee = [0 Dun||pe < nllzee [Dunllz < Cllnllze,

it follows by the Arzela-Ascoli theorem that {v,},., has a uniformly convergent
subsequence. ®

Lemma 27.24. Let 1 € C(B(0,1),[0,00)) such that [pandm = 1, ny,(x) =
m"n(mz) and Kpu = (Cy, Eu)|q. Then for all p € [1,d) and q € [1,p*),

im | Ko — il pwrr (), Lo(e)) =0
where i : WHP(Q) — L9(Q) is the inclusion map.

Proof. For u € CL(U) let vy, := nym * u — u, then

[ imata =)~ ey

[om ()] < [7m * u(e) —u(z)| =

[0 [ute = 2) - ute)] @y

1 1 Y
E/Rd dy Iyln(y)/o dt [Vu(a — 1)

IN
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and so by Minikowski’s inequality for integrals,

1 1 Y
< — L+
[vml - < m/Rd dy Iy\n(y)/o dt HW( tm)‘
1 1
(27.26) < — (/ Iyn(y)dy> IVull e < — llullyrgay -
R4 m

LT

m

By the interpolation inequality in Corollary 9.23, Theorem 27.14 and Eq. (27.26)
with r =1,

N

A A
[omllza < llomlizs [[omll Lo

1 d- 1/2p(d )

1-X
o oy [ V0

I A

<Cm™ va”Wl A(RA) va||W1 P (RY)
<Cm™ H”m”wl 1(Rd) H”m”wl P (R4)
< Cp, UDM™ [0 1ty N 2
< C(p,|U))m - ”'Umel,p(Rd)
where A € (0,1) is determined by
1 A 1-A 1 1
IS WA
g 1 p
Now using Proposition 11.12,

”vaWLP(]Rd) = [ *u — U”Wl,p(Rd)
< I * UHWLP(Rd) + H“”WLP(Rd) <2 HUHWLP(]Rd) :

Putting this all together shows

[ Kmt = ullLago) < | Kmu — Eul|ga < C(p, |U[)ym ™ [ Eully.0ga)

< Clp, [U)m ™ [wllyre )
from which it follows that
1 Km — il Bowrr),00(0) < Cm™ — 0 as m — oo.
|

Theorem 27.25 (Rellich - Kondrachov Compactness Theorem). Suppose 2 C R¢
is a precompact open subset with C*-boundary, p € [1,d) and 1 < q < p* then
WLP(Q) is compactly embedded in LI(S2).

Proof. If {u,}.., is contained in the unit ball in WP (Q), then by Lemma
27.23 {Kmun} —, has a uniformly convergent subsequence and hence is convergent
in L9(£2). This shows K,, : Wh?(Q) — L4() is compact for every m. By Lemma
27.24, Ky, — i in the L (W7 (Q),L?(Q)) — norm and so by Lemma 27.22 i :
WP (Q) — L1(Q) is compact. m

Corollary 27.26. The inclusion of W*P(Q) into Wk=44(Q) is compact provided
lZland%>%—é=d—;ﬁ>0, i.e. q<d—d%
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Proof. Case (i) Suppose £ =1, ¢ € [1,p*) and {u,}>~, C W*P(Q) is bounded.

n=1
Then {0%uy, }oo, C WHP(Q) is bounded for all |a| < k—1 and therefore there exist
a subsequence {i,},-, C {un}, -, such that 9°%u, is convergent in L(£2) for all
|a| < k — 1. This shows that {@,} is W*~14(Q) — convergent and so proves this
case.
Case (ii) £ > 1. Let p be defined so that + =

1
P
wkr(Q) c Wh=HLP(Q) cc wh41(Q).
and therefore WP (Q) cc Wk=44(Q). m

— Z_Tl. Then

Example 27.27. It is necessary to assume that The inclusion of L2([0,1]) —
L*([0,1]) is continuous (in fact a contraction) but not compact. To see this, take
{1, }22; to be the Haar basis for L2. Then u,, — 0 weakly in both L? and L' so if
{un}.2, were to have a convergent subsequence the limit would have to be 0 € L.
On the other hand, since |u,| = 1, ||un||2 = [|Jun]l1 = 1 and any subsequential limit
would have to have norm one and in particular not be 0.

Lemma 27.28. Let Q be a precompact open set such that Q is a manifold with
C' — boundary. Then for all p € [1,00), WP(Q) is compactly embedded in LP(S2).
Moreover if p > d and 0 < 8 < 1 — %, then WLP(Q) is compactly embedded in
C%B(Q). In particular, WHP(Q) cC L>®(Q) for all d < p < co.

Proof. Case 1, p € [1,d). By Theorem 27.25, W1?(Q) cC L(Q) for all 1 <
q < p*. Since p* > p we may choose q¢ = p to learn W1P(Q) cC LP(Q).
Case 2, p € [d,00). For any pg € [1,d), we have
WLP(Q) s WhPo(Q) cC LPO(Q).
Since p§ = ETLZO T oo as po | d, we see that W1P(Q) cc LI(Q) for all ¢ < oo.
Moreover by Morrey’s inequality (Corollary 27.8) and Proposition26.13 we have
Whr(Q) — C’O’l*%(ﬂ) CC C%B(Q) which completes the proof. m

Remark 27.29. Similar proofs may be given to show W*? cc CF 59 forall § > 0
provided k — % >0 and k — £ —§ > 0.

Lemma 27.30 (Poinciré Lemma). Assume 1 < p < oo, Q is a precompact open
subset of RY such that Q is a manifold with C-boundary. Then exist C = C(£, p)
such that

(27.27) lu —uallr@) < Cl|VullLe(q) for all u € WhP(Q),
where ugq ::7[9 udm is the average of u on € as in Notation 27.5.

Proof. For sake of contradiction suppose there is no C < oo such that Eq.
(27.27) holds. Then there exists a sequence {u,}.., C W'P(Q) such that

lwn — (un)allLe @) > ||Vl 1y o) for all n.
Let
Un — (un)Q
lJun — (un)QHLP(Q)
Then u, € WHP(Q), (un)o =0, |[unllr@) =1 and 1 = [[un|[e) > nl| Vgl Lo
for all n. Therefore ||Vuy| 1r@) < < and in particular sup ||Juy |lw1.ro) < oo and
n

Uy 1=

hence by passing to a subsequence if necessary there exists u € LP () such that
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U, — u in LP(Q). Since Vu, — 0 in LP(Q), it follows that w, is convergent in
WP(Q) and hence u € W1P(Q) and Vu = lim, o Vu, = 0 in LP(Q). Since
Vu =0, u € WFP(Q) for all kK € N and hence u € C*® (2) and Vu = 0 implies
u is constant. Since up = 0 we must have u = 0 which is clearly impossible since
[ull e (@) = limp—oo [[tn [ Lr(@) = 1. =

Theorem 27.31 (Poincaré Lemma). Let Q) be a precompact open subset of R% and
p € [1,00]. Then

lullze <2 diam(Q)||Vul|Le for all u € WyP(Q).

Proof. Without loss of generality assume 2 = [~m,m]? and u € C°(£2). Then
by the fundamental theorem of calculus,

1 M
lu(z)| = |/ Ou(yr, o, ..., zq)dyr| < / |Oru(yr 22, ... zq)|dy
—-M —-M

and hence by Holder’s inequality,

M
(@) < (20! / Oyuly, @, .. 2a)Pdys.
—M
Integrating this equation over x implies,
lullt, < (20)@M)P~! / Oyu(z)Pda = (2M)P / Byula)Pda

and hence
lulloe < 2M||O1ullre < 2 diam(Q)||Vul|Le.

27.6. Fourier Transform Method. See L2 — Sobolev spaces for another proof of
the following theorem.

Theorem 27.32. Suppose s >t > 0, {u,}.— | is a bounded sequence (say by 1)
in H*(R?) such that K = Uysupp(u,) CC RY. Then there exist a subsequence
{vn}22, C {un}oo, which is convergent in H'(R?).

Proof. Since
|08 0, (8)| = 8?/ e Ty, (z)de / (—iz)e™ %y, (z)dx
R R

< Hx&”L?(K)HUJnHL2 < C(XHUHHHS(DW) < Cq

Uy, and all of it’s derivatives are uniformly bounded. By the Arzela-Ascoli theo-
rem and Cantor’s Diagonalization argument, there exists a subsequence {v, }52; C
{un},~ such that 0, and all of its derivatives converge uniformly on compact
subsets in £ —space. If 0(&) := lim, o0 Un(§), then by the dominated convergence
theorem,

/ (L+[EP)*[o(e)?de = lim (1+[€%)? 9 (€)?d€ < Timsup [[on | o gay < 1.
[€I<R e JIEI<R n—00

Since R is arbitrary this implies & € L2((1 4 |£[*)%d€) and [Jv]|gsra)y < 1. Set
gn = v — v, while v = F~ 9. Then {g,}r-, C H*(R?) and we wish to show
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gn — 0in HY(RY). Let du (€) = (1 + |¢]?)!d, then for any R < oo,

gl = / 19(6) — 3n(&) dpr (€)
- / 16(6) — 9n(6)Pdpn () + / 16(6) — 9n(E) Pdpr (€).
[EI<R

13pis

The first term goes to zero by the dominated convergence theorem, hence

lim sup [lgal|%e < limsup / 19() — 3 () Pdpae (€)
[¢I>R

n—oo n—oo

o o g (o LEIED
=timow [ 15— (€ e

) 1 P 2
<11mSUPW/SZR|g—gn(5) dps (€)

n—oo

< limsup

n—oo

1 s—t
S4(1+R2> —0as R— oo.

1 2
[ gn — gll 7

27.7. Other theorems along these lines. Another theorem of this form is de-
rived as follows. Let p > 0 be fixed and g € C. ((0,1),[0,1]) such that g(¢) =1 for
[t| < 1/2 and set 7(t) := g(t/p). Then for x € R? and w € T' we have

/Op % [T()u(z + tw)] dt = —u(x)

and then by integration by parts repeatedly we learn that

2

/82 u(z + tw)] tdt = /32 )(:E—I—tw)]d%
/ OB [r(t)u(x +tw)]d§:...
/8’” x+tw)}d%m!

tmfl
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Integrating this equation on w € I' then implies

0] u(z) = / / O [t + )] (Tflm—_ll)!dt
= ﬁ[ydw/{) tm =AM [ (t)u(x 4 tw)] 4Lt
[ G e

fnl;n)'[yd / tm dz< ) [g(m_k)(t) (0ku) (x—i-tw)} 41 dt
- B (M) | el oy - ) (Ohn) (0]

k=0
and hence

) = _1,2() "t o) () )]

and hence by the Holder’s inequality,

1/q 1/p
o <l 2 55 (7 )m[/%y_w(m—dmy] [/FLP\(%U)@)@Z,] .

From the same computation as in Eq. (25.4) we find

p g(m—d)+d
. 9(m—d) _ g(m—d),.d—1 _ P
y—x dy—af/r rdr=0c() ——mF—
/ | [ O
pm—d
=o)L 1)
=0 om —d D )

provided that pm —d > 0 (i.e. m > d/p) wherein we have used

D 3 _pm—d)+d(p—-1) pm—d
q(m d)—l—d—p—_l(m d)+d= = =T

This gives the estimate

11/4q p=1 p=1

m— o (T -1 p pm—d o(I -1 p m—
[ a0, S[ () (v q o :[ () (v q -
Tu.p |

pm —d pm —d

Thus we have obtained the estimate that

(o) < mcm@_) 5 :U%ZU] z pm—d/pz’”:<k) [T

k=0

Lo (Tayp)

27.8. Exercises.

Exercise 27.1. Let a; > 0 and p; € [1,00) for i = 1,2,...,d satisfy ZZ it =1,
then
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Hint: This may be proved by induction on d making use of Lemma 2.27. Alterna-
tively see Example 9.11, where this is already proved using Jensen’s inequality.
27.1. We may assume that a; > 0, in which case
d

d 1 P d 1 1

d i Pi )
| I a; = eXi=inai = gliziprine’ < g —elnait = E —ab.
i=1 i—1 Pi i

This was already done in Example 9.11. =



