
1. Area and co-area formula

1.1. Hausdorff measure. In this section we will recall the definition of the Hausdorff

measure and we will state some of its basic properties. A more detailed discussion is

postponed to Section ??.

Let ωs = πs/2/Γ(1 + s
2
), s ≥ 0. If s = n is a positive integer, then ωn is volume of the

unit ball in Rn. Let X be a metric space. For ε > 0 and E ⊂ X we define1

Hs
ε(E) = inf

ωs

2s

∞∑
i=1

(diamAi)
s

where the infimum is taken over all possible coverings

E ⊂
∞⋃
i=1

Ai with diamAi ≤ ε.

Since the function ε 7→ Hs
ε(E) is nonincreasing, the limit

Hs(E) = lim
ε→0
Hs

ε(E)

exists. Hs is called the Hausdorff measure. It is easy to see that if s = 0, H0 is the counting

measure.

The Hausdorff content Hs
∞(E) is defined as the infimum of

∑∞
i=1 r

s
i over all coverings

E ⊂
∞⋃
i=1

B(xi, ri)

of E by balls of radii ri. It is an easy exercise to show that Hs(E) = 0 if and only if

Hs
∞(E) = 0. Often it is easier to use the Hausdorff content to show that the Hausdorff

measure of a set is zero, because one does not have to worry about the diameters of the

sets in the covering. The Hausdorff content is an outer measure, but very few sets are

actually measurable, and it is not countably additive on Borel sets. This is why Hs
∞ is

called content, but not measure.

Theorem 1.1. Hs is a metric outer measure i.e. Hs(E ∪ F ) = Hs(E) +Hs(F ) whenever

E and F are arbitrary sets with dist (E,F ) > 0. Hence all Borel sets are Hs measurable.

It is an easy exercise to prove that Hs is an outer measure. The fact that it is a metric

outer measure follows from the observation that if ε < dist (E,F )/2, we can assume that

1If B ⊂ Rn is a ball, then ωn

2n (diamB)n = |B|. This explains the choice of the coefficient ωs/2
s in the

definition of the Hausdorff measure.
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sets of diameter less than ε that cover E are disjoint from the sets of diameter less than

ε that cover F . We leave details as an exercise. Finally measurability of Borel sets is a

general property of metric outer measures.

The next result is very important and difficult. We will prove it in Section ??

Theorem 1.2. Hn on Rn coincides with the outer Lebesgue measure Ln. Hence a set is

Hn measurable if and only if it is Lebesgue measurable and both measures are equal on the

class of measurable sets.

This result generalizes to the case of the Lebesgue measure on submanifolds of Rn. We

will discuss it in the Subsection 1.3.

In what follows we will often use the Hausdorff measure notation to denote the Lebesgue

measure.

Proposition 1.3. If f : X ⊃ E → Y is a Lipschitz mapping between metric spaces, then

Hs(f(E)) ≤ LsHs(E). In particular if Hs(E) = 0, then Hs(f(E)) = 0.

This is very easy. Indeed if A ⊂ E, then f(A) has diameter less than or equal to LdiamA,

where L is the Lipschitz constant of f . This observation and the definition of the Hausdorff

measure easily yields the result.

In particular, if f : Rn ⊃ E → Rm is a Lipschitz mapping and |E| = 0, then Hn(f(E)) =

0. We will prove a stronger result which is known as the Sard theorem. A more general

version of the Sard theorem will be discussed in Section ??.

Theorem 1.4 (Sard). Let f : Rn ⊃ E → Rm be Lipschitz continuous and let

Crit (f) = {x ∈ E : rank apDf(x) < n},

then Hn(f(Crit (f))) = 0.

In the proof we will need the so called 5r-covering lemma. It is also called a Vitali type

covering lemma. Here and in what follows by σB we denote a ball concentric with the ball

B and σ times the radius.

Theorem 1.5 (5r-covering lemma). Let B be a family of balls in a metric space such that

sup{diamB : B ∈ B} < ∞. Then there is a subfamily of pairwise disjoint balls B′ ⊂ B
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such that ⋃
B∈B

B ⊂
⋃
B∈B′

5B .

If the metric space is separable, then the family B′ is countable and we can arrange it as a

sequence B′ = {Bi}∞i=1, so ⋃
B∈B

B ⊂
∞⋃
i=1

5Bi .

Remark 1.6. Here B can be either a family of open balls or closed balls. In both cases

the proof is the same.

Proof. Let sup{diamB : B ∈ B} = R <∞. Divide the family B according to the diameter

of the balls

Fj = {B ∈ B :
R

2j
< diamB ≤ R

2j−1
} .

Clearly B =
⋃∞

j=1Fj. Define B1 ⊂ F1 to be the maximal family of pairwise disjoint balls.

Suppose the families B1, . . . ,Bj−1 are already defined. Then we define Bj to be the maximal

family of pairwise disjoint balls in

Fj ∩ {B : B ∩B′ = ∅ for all B′ ∈
j−1⋃
i=1

Bi} .

Next we define B′ =
⋃∞

j=1 Bj. Observe that every ball B ∈ Fj intersects with a ball in⋃j
i=1 Bj. Suppose that B ∩B1 6= ∅, B1 ∈

⋃j
i=1 Bi. Then

diamB ≤ R

2j−1
= 2 · R

2j
≤ 2 diamB1

and hence B ⊂ 5B1. The proof is complete. �

Proof of the Sard theorem. Using the McShane extension (Theorem ??) we can assume

that f is defined on all of Rn and replace the approximate derivative by the classical one.

Indeed, the set of points in E where the approximate derivative exists, but the extension

to Rn is not differentiable at these points has measure zero and this set is mapped onto a

set of Hn measure zero.

Let Z be the set of points in Rn such that Df(x) exists and rankDf(x) < n. We need

to show that Hn(f(Z)) = 0. By splitting Z into bounded pieces we may assume that Z is

contained in the interior of the unit cube Q.2 For L > ε > 0 and x ∈ Z there is rx > 0

2Indeed, if each bounded piece of Z is mapped into a set of Hn measure zero, then Z is mapped into a

set of measure zero.
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such that B(x, rx) ⊂ Q and

|f(y)− f(x)−Df(x)(y − x)| < εrx if y ∈ B(x, 5rx).

Hence

dist (f(y),Wx) ≤ εrx for y ∈ B(x, 5rx),

where Wx = f(x) + Df(x)(Rn) is an affine space through f(x). Clearly dimWx ≤ n − 1.

Thus

(1.1) f(B(x, 5rx)) ⊂ B(f(x), 5Lrx) ∩ {z : dist (z,Wx) ≤ εrx}.

Since dimWx = k ≤ n− 1 we have that

Hn
∞(f(B(x, 5rx)) ≤ CεLn−1rnx ,

where the constant C depends on n only. Indeed, the k dimensional ball B(f(x), 5Lrx)∩Wx

can be covered by

C

(
Lrx
εrx

)k

≤ C

(
L

ε

)n−1

balls of radius εrx. Then balls with radii3 2εrx and the same centers cover the right hand

side of (1.1). Thus

Hn
∞(f(B(x, 5rx)) ≤ C

(
L

ε

)n−1

(4εrx)n = C ′εrnxL
n−1.

From the covering Z ⊂
⋃

x∈Z B(x, rx) we can select a family of pairwise disjoint balls

B(xi, rxi
), i = 1, 2, . . . such that Z ⊂

⋃
iB(xi, 5rxi

). We have

Hn
∞(f(Z)) ≤

∞∑
i=1

Hn
∞(f(B(xi, 5rxi

)) ≤ CεLn−1

∞∑
i=1

rnxi
≤ C ′εLn−1,

because the balls B(xi, rxi
) are disjoint and contained in the unit cube; hence the sum

of their volumes is less than one. Since ε can be arbitrarily small we conclude that

Hn
∞(f(Z)) = 0 and thus Hn(f(Z)) = 0. �

Exercise 1.7. Show that if

• Hs(E) <∞, then Ht(E) = 0 for all t > s ≥ 0;

• Hs(E) > 0, then Ht(E) =∞ for all 0 ≤ t < s.

3and hence diameter 4εrx
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Definition 1.8. The Hausdorff dimension is defined as follows. If Hs(E) > 0 for all s ≥ 0,

then dimH(E) =∞. Otherwise we define

dimH(E) = inf{s ≥ 0 : Hs(E) = 0}.

It follows from the exercise that there is s ∈ [0,∞] such that Ht(E) = 0 for t > s and

Ht(E) = ∞ for 0 < t < s. Hausdorff dimension of E equals s. It also easily follows from

Proposition 1.3 that Lipschitz mappings do not increase the Hausdorff dimension.

1.2. Countably rectifiable sets.

Definition 1.9. We say that a metric space X is countably n-rectifiable if there is a family

of Lipschitz mappings fi : Rn ⊃ Ei → X defined on measurable sets such that

Hn

(
X \

∞⋃
i=1

f(Ei)

)
= 0.

In particular we can talk about sets X ⊂ Rm that are countably n-rectifiable.

Clearly any Borel subset of a countably n-rectifiable set is countably n-rectifiable.

In other words X is countably n-rectifiable if it can be covered by countably many

Lipschitz images of subsets of Rn up to a set of Hn measure zero. Since Lipschitz mappings

map sets of finite Hn measure onto sets of finite Hn measure, the Hn measure on X is

σ-finite and hence dimH X ≤ n. We do not require the mappings fi to be one-to-one and

one can imagine that X can be very complicated. However as we will see, if X is a subset

of Rm its structure is relatively simple.

Theorem 1.10. A Borel set E ⊂ Rm is countably n-rectifiable, m ≥ n, if and only if there

is a sequence of n-dimensional C1-submanifolds {Mi}∞i=1 of Rm such that

(1.2) Hn

(
E \

∞⋃
i=1

Mi

)
= 0.

Proof. Clearly the condition (1.2) is sufficient for the countable n-rectifiability and we need

to prove its necessity. Each mapping fi : Ei → Rm can be approximated by C1-mappings

in the sense of Theorem ??(d). Using a sequence of such C1 maps we can approximate fi

up to a set of measure zero. Since sets of measure zero are mapped by Lipschitz maps to
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sets of measure zero, we can simply assume that the mappings fi : Rn → Rm are C1 and

Hn

(
E \

∞⋃
i=1

fi(Rn)

)
= 0.

A neighborhood of any point in Rn where rankDfi = n is mapped to a C1-submanifold of

Rm and the remaining set of points where rankDfi < n in mapped to a set of Hn measure

zero by Theorem 1.4. �

Definition 1.11. We say that a measurable mappings f : Rn ⊃ Ω → Rn, has the Lusin

property N if for any measurable set A ⊂ Ω we have

|A| = 0 ⇒ |f(A)| = 0.

More generally we say that a measurable mapping f : Rn ⊃ A→ X to a metric space has

the Lusin property N if for any measurable set E ⊂ A we have

|A| = 0 ⇒ Hn(f(E)) = 0.

Exercise 1.12. Prove that a measurable mapping f : Rn ⊃ Ω → Rn maps Lebesgue

measurable sets onto Lebesgue measurable sets if and only if it has the Lusin property N.

For example Lipschitz mappings have the Lusin property, Proposition 1.3.

Theorem 1.13. Let f : Rn ⊃ E → Rm be an a.e. approximately differentiable mapping

with the Lusin property N, and let

Crit (f) = {x ∈ E : rank apDf(x) < n},

then Hn(f(Crit (f))) = 0.

Indeed, this result is a direct consequence of Lemma ??, the Sard theorem, and the

Lusin property of f . A similar argument yields

Proposition 1.14. X ⊂ Rm, m ≥ n is countably n-rectifiable if and only if there are a.e.

approximately differentiable mappings fi : Rn ⊃ Ei → Rm with the Lusin property N such

that

Hn

(
X \

∞⋃
i=1

f(Ei)

)
= 0.

Proposition 1.15. E ⊂ Rm, m ≥ n is countably n-rectifiable if and only if there is a

locally Lipschitz map f : Rn → Rm such that Hn(E \ f(Rn)) = 0.
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Indeed, we can assume in the definition of a countably n-rectifiable set that the sets Ei

are contained in a unit cube. We can place such sets in disjoint unit cubes in Rn that are

separated by a positive distance. On each cube we apply the McShane extension to the

mapping f : Ei → Rm. Then we glue the mappings to form a locally Lipschitz mapping

f : Rn → Rm by multiplying the extension of fi by a cut-off function4 that equals 1 on

the unit cube that contains Ei. Note that the result is not true for countably rectifiable

subsets of metric spaces, because in such a general setting the McShane theorem is not

available.

1.3. The area formula. Recall the classical change of variable s formula.

Theorem 1.16. Let Φ : Ω → Rn be a C1 diffeomorphism between domains Ω ⊂ Rn and

Φ(Ω) ⊂ Rn. If f : Ω→ [0,∞] is a nonnegative measurable function or if f |JΦ| ∈ L1(Ω) is

integrable, then ∫
Φ(Ω)

f(Φ−1(y)) dy =

∫
Ω

f(x)|JΦ(x)| dx,

where JΦ(x) = detDΦ(x) is the Jacobian of the diffeomorphism Φ.

In the case in which the function f is defined on Φ(Ω) we have∫
Φ(Ω)

f(y) dy =

∫
Ω

(f ◦ Φ)(x)|JΦ(x)| dx,

where we assume that f ≥ 0 or that f ∈ L1(Ω). Theorem 1.16 generalizes to the case

of integration over an n-dimensional submanifold M of Rm, m ≥ n. A neighborhood

of any point in M can be represented as the image of a parametrization. Recall that a

parametrization of M is a one-to-one mapping

Φ : Rn ⊃ Ω→ Rm, Φ(Ω) ⊂M

of class C1 such that rankDg(x) = n for all x ∈ Ω.

Observe that det(DΦ)TDΦ is the Gramm determinant of vectors ∂Φ/∂xi and

hence
√

det(DΦ)TDΦ(x) is the n-dimensional volume of the parallelepiped with edges

∂Φ(x)/∂xi. Thus it is natural to define

|JΦ(x)| =
√

det(DΦ)TDΦ(x),

even if m > n. Note that this definition is consistent with the standard definition of the

absolute value of the Jacobian when m = n.

4We multiply each component of the function fi by a cut-off function.
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In the case when m = n and Φ is a diffeomerphism, the change of variables formula

implies that the Lebesgue measure |E| of a set E ⊂ Φ(Ω) equals

|E| =
∫

Φ−1(E)

|JΦ(x)| dx.

If Φ : Rn ⊃ Ω→M ⊂ Rm is a parametrization, we define the Lebesgue measure (surface

measure) σ(E) of a set E ⊂ Φ(Ω) by the formula (1.3), i.e.

(1.3) σ(E) =

∫
Φ−1(E)

|JΦ(x)| dx.

If E ⊂M is not necessarily contained in the image of a single parametrization, we divide

it into small pieces that are contained in the images of parametrizations and we add

the measures. One only needs to observe that the measure of a set does not depend on

the choice of a parametrization. Indeed, suppose that E ⊂ Φ1(Ω1) ∩ Φ2(Ω2). By taking

smaller domains we can assume that Φ1(Ω1) = Φ2(Ω2). Then Φ−1
1 ◦ Φ2 : Ω2 → Ω1 is a

diffeomorphism and the change of variables formula easily implies that∫
Φ−1

1 (E)

|JΦ1(x)| dx =

∫
Φ−1

2 (E)

|JΦ2(x)| dx.

Note that the formula (1.3) can be written as∫
Φ(Ω)

f(y) dσ(y) =

∫
Ω

(f ◦ Φ)(x)|JΦ(x)| dx,

where f is the characteristic function of the set E. Since measurable functions can be

approximated by simple functions which are linear combinations of characteristic functions,

standard limiting procedure yields

Theorem 1.17. Let Φ : Rn ⊃ Ω → M ⊂ Rm, m ≥ n be a parametrization of an n

dimensional submanifold M ⊂ Rm. If f : Φ(Ω) → [0,∞] is a nonnegative measurable

function or if f ∈ L1(Φ(Ω)) is integrable, then∫
Φ(Ω)

f(y) dσ(y) =

∫
Ω

(f ◦ Φ)(x)|JΦ(x)| dx.

For f ≥ 0 on Ω and for f |JΦ| ∈ L1(Ω) the change of variables formula takes the form

(1.4)

∫
Φ(Ω)

(f ◦ Φ−1)(y) dσ(y) =

∫
Ω

f(x)|JΦ(x)| dx.

According to Theorem 1.2 the Lebesgue measure in Rn coincides with the Hausdorff mea-

sure Hn. One can prove that the surface measure onM also coincides with the Hausdorff

measure Hn defined either with respect to the Euclidean metric of Rm restricted to M or

with respect to the natural Riemannian metric onM. We will not prove this fact, but this
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result should not be surprising; M is locally very well approximated by tangent spaces

and this approximation allows one to deduce the result from Theorem 1.2. In particular in

both theorems Theorem 1.16 and 1.17 we can replace dy and dσ(y) by dHn(y).

The purpose of this section is to prove a far reaching generalization the change of vari-

ables formula.

If Φ : Rn ⊃ E → Rm, m ≥ n is approximately differentiable a.e., then we can formally

define the Jacobian of Φ at almost every point of E by

|JΦ(x)| =
√

det(DΦ)TDΦ(x)

Theorem 1.18 (Area formula). Let Φ : Rn ⊃ E → Rm, m ≥ n be approximately differ-

entiable a.e. Then we can redefine it on a set of measure zero in such a way that the new

mapping satisfies the Lusin property N. If Φ is approximately differentiable a.e., satisfies

the Lusin property N and f : E → [0,∞] is measurable or f |JΦ| ∈ L1(E), then

(1.5)

∫
E

f(x)|JΦ(x)| dx =

∫
Φ(E)

 ∑
x∈Φ−1(y)

f(x)

 dHm(y).

Here we do not assume that the mapping Φ is one-to-one and this is why we have the

sum on the right hand side, just to compensate the fact that the point y is the image of

every point x in the set Φ−1(y). Note that since H0 is the counting measure formula (1.5)

can be rewritten as∫
E

f(x)|JΦ(x)| dHn(x) =

∫
Φ(E)

(∫
Φ−1(y)

f(x) dH0(x)

)
dHm(y) .

The reason why we want to write it this way will be apparent when we will discuss the

co-area formula.

Proof. Lemma ?? shows that away from a set Z of measure zero Φ has the Lusin property

since it consists of Lipschitz pieces. Now if we modify Φ on the set Z and send the set

to a single point, a new mapping Φ̃ will have the Lusin property and it will be equal to

Φ almost everywhere. This proves the first part of the theorem. Assume now that Φ has

the Lusin property. Note that if we remove from E a subset of measure zero both sides

of (1.5) will not change its value. It is obvious for the left hand side, but regarding the

right hand side it follows from the Lusin property of Φ. We can also remove the subset of

E where JΦ = 0. According to Theorem 1.13, Φ maps this set onto a set of measure zero

and hence both sides of (1.5) will not change its value after such a removal. This combined
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with Theorem ?? allows us to assume that there are disjoint subsets Ei ⊂ E such that⋃
iEi = E and C1 mappings Φi : Rn → Rm such that Φi = Φ on Ei, DΦi = apDΦ

on Ei, rankDΦi = n on Ei. Dividing the sets into small pieces, if necessary, we can also

assume that Φi is one-to-one in an open set containing Ei, i.e. it is a parametrization of

an n-dimensional submanifold of Rm on that open set. According to the classical change

of variables formula (1.4) we have5∫
Ei

f(x)|JΦi
(x)| dx =

∫
Φi(Ei)

f(Φ−1
i (y)) dHn(y)

which yields∫
E

f(x)|JΦ(x)| dx =
∞∑
i=1

∫
Ei

f(x)|JΦi
(x)| dx =

∞∑
i=1

∫
Φi(Ei)

f(Φ−1
i (y)) dHn(y)

=

∫
Φ(E)

 ∑
x∈Φ−1(y)

f(x)

 dHn(y).

Indeed, if f ≥ 0 we can change the order of integration ans summation by the monotone

convergence theorem. In the case of f ∈ L1 we consider separately the positive and negative

parts of f . �

Remark 1.19. It is necessary to require that Φ has the Lusin property. Indeed, if Φ maps

a set of measure zero onto a set of positive measure, and f = 1, then the left hand side of

the formula in Theorem 1.18 equals zero, but the right hand side is positive.

If f is a measurable function on Rm, and Φ : E → Rm is approximately differentiable

a.e. and has the Lusin property N, then Theorem 1.18 applies to the function f ◦Φ which

is defined on E. Note that f ◦Φ is constant on the set Φ−1(y) and hence the area formula

takes the form ∫
E

(f ◦ Φ)(x)|JΦ(x)| dx =

∫
Φ(E)

f(y)NΦ(y, E) dHn(y),

where

NΦ(y, E) = #(Φ−1(y) ∩ E)

is the cardinality of the set Φ−1(y)∩E. The function NΦ(·, E) is called the Banach indicatrix

of Φ. This formula is true under the assumption that f ≥ 0 or under the integrability

assumption of (f ◦ Φ)|JΦ|. More precisely if (f ◦ Φ)(x)|JΦ(x)| is integrable on E or if

5We replace f in (1.4) by fχEi .
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f(y)NΦ(y, E) is integrable on Φ(E), then the other function is integrable too and the

formula is true.

Remark 1.20. Suppose that Φ : Q → Q is a homeomorphism of the unit cube Q =

[0, 1]n that is identity on the boundary of the cube. Assume also that Φ is approximately

differentiable a.e. and has the Lusin property. In this case the change of variables formula

shows that
∫
Q
|JΦ| = 1. Since Φ is an orientation preserving homeomorphism, is it true

that JΦ ≥ 0 a.e.? Surprisingly, one can find such a homeomorphism with the property that

JΦ = −1 a.e. or that it is positive on a subset of a cube and negative on another subset and

it is reasonable to conjecture that the only real constrain for a construction of a mapping

Φ with prescribed Jacobian is the condition that integral of |JΦ| over the cube equals one.

The area formula generalizes to the case of mappings between Riemannian manifolds.

Submanifolds of Euclidean spaces are examples of Riemannian manifolds.

Theorem 1.21. The statement of Theorem 1.18 remains true if we replace Rn and Rm

by n-dimensional and m-dimansional Riemannian manifolds respectively.

1.4. The co-area formula. The area formula is a generalization of the change of variable

formula to the case of mappings from Rn to Rm, where m ≥ n. Surprisingly, it is also

possible to generalize to change of variables formula to the case when m ≤ n; this is so

called the co-area formula. First we need to generalize the Jacobian to the case of mappings

Φ : Rn → Rm, m ≤ n. Suppose that Φ is differentiable at x ∈ Rn. If m < n, then

(1.6)
√

det(DΦ)T (DΦ)(x) = 0

because this is a formula for the n-dimensional volume of a parallelepiped which in our

situation has the dimension≤ m < n. That means (1.6) is not a good notion of the Jacobian

whenm < n. Assume that rank of DΦ(x) is maximal, i.e. rankDΦ(x) = m ≤ n. If B is a

ball in the tangent space TxRn centered at the origin, then DΦ(x)(B) is a non-degenerate

m-dimensional ellipsoid in TΦ(x)Rm. The kernel kerDΦ(x) is an n−m dimensional linear

subspace of TxRn and DΦ(x) is a composition of two mappings; first we take the orthogonal

projection of TxRn onto the m-dimensional space (kerDΦ(x))⊥ and then we compose it

with the linear isomorphism of m-dimensional spaces

(1.7) DΦ(x)|(kerDΦ(x))⊥ : (kerDΦ(x))⊥ → TΦ(x)Rm.

Now we define |JΦ(x)| as the absolute value of the Jacobain of the mapping (1.7), i.e. |JΦ(x)|
is factor by which the linear mapping (1.7) changes volume. Geometrically speaking the
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ellipsoid DΦ(x)(B) is the image of the m-dimensional ball B ∩ (kerDΦ(x))⊥ and hence

|JΦ(x)| = Hm(DΦ(x)(B))

Hm(B ∩ (kerDΦ(x))⊥)
.

If rankDΦ(x) < n we set |JΦ(x)| = 0. Although we defined the Jacobian in geometric

terms, there is a simple algebraic formula for |JΦ(x)| which follows from the polar decom-

position of the linear mapping DΦ(x).

|JΦ(x)| =
√

det(DΦ)(DΦ)T (x).

Note that this is not the same formula as (1.6). However, the two formulas give the same

value when m = n.

Exercise 1.22. Prove this formula using the polar decomposition of DΦ(x).

There is one more geometric interpretation of |JΦ(x)| when m ≤ n which easily follows

from our geometric definition. Namely |JΦ(x)| equals the supremum of m-dimensional

measures of all ellipsoids DΦ(x)(B), where the supremum is over all m-dimensional balls

B in TxRn of volume 1. This reminds us of the the geometric interpretation of the length of

the gradient of a real valued function as the maximal rate of of change of a function. The

function has maximal growth in the direction the gradient which is orthogonal to detDΦ.

In our case the maximal growth of the m-dimensional measure of m-dimensional balls in

TxRn is also in the direction orthogonal to kerDΦ(x), see (1.7). This is the right intuition.

If Φ : Rn → R, i.e. m = 1, one can easily see that

|JΦ(x)| =
√

det(DΦ)(DΦ)T (x) = |∇Φ(x)|.

Now we can state the co-area formula. We will actually state both area and co-area formula

in one theorem, because it will help to see similarities and differences between the two

formulas.

Theorem 1.23 (The area and the co-area formulas). Let Φ : Rn ⊃ E → Rm be a Lipschitz

mapping defined on a measurable set E ⊂ Rn. Let f ≥ 0 be a measurable function on E or

let f |JΦ| ∈ L1(E). Then

• (Area formula) If n ≤ m, then∫
E

f(x)|JΦ(x)| dHn(x) =

∫
Rm

(∫
Φ−1(y)

f(x) dH0(x)

)
dHm(y).
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• (Co-area formula) If n ≥ m, then∫
E

f(x)|JΦ(x)| dHn(x) =

∫
Rm

(∫
Φ−1(y)

f(x) dHn−m(x)

)
dHm(y).

We will not prove the co-area formula here, but we will show that it contains results like

integration in the spherical coordinates and the Fubini theorem as special cases!

Recall that if Φ : Rn → R, then |JΦ(x)| = |∇Φ(x)|. Taking Φ(x) = |x| we have |JΦ(x)| =
1 everywhere except at the origin. Since the image of Φ is [0,∞), the co-area formula reads

as ∫
Rn

f(x) dHn(x) =

∫ ∞
0

(∫
∂B(0,r)

f(x) dHn−1(x)

)
dr

which is the formula for the integration in the spherical coordinates.

Let now Φ : Rn → Rm, m < n be the projection on the first m coordinates

Φ(x1, . . . , xn) = (x1, . . . , xm). Then |JΦ(x)| = 1 and we have∫
Rn

f(x) dHn(x) =

∫
Rm

(∫
Rn−m

f(x1, . . . , xn) dHn−m(xm+1, . . . , xn)

)
dHm(x1, . . . , xm)

which is the Fubini theorem.

Let f : Rn → R be an arbitrary Lipschitz function. Taking Φ = f we have JΦ(x)| =

|∇f(x)|; taking the function f in the co-area formula to be equal6 1 we have∫
Rn

|∇f(x)| dx =

∫ ∞
−∞
Hn−1({f = t}) dx.

As an application of the co-area formula we will prove

Theorem 1.24. If Φ : Rn → Rm is Lipschitz continuous, then for a.e. y ∈ Rm, Φ−1(y) is

countably (n−m)-rectifiable.

Proof. If m > n, then Hm(f(Rn)) = 0, so Φ−1(y) = ∅ for a.e. y ∈ Rn and the empty set is

countably rectifiable. Thus we can assume that m ≤ n. Assume for a moment that Φ ∈ C1.

Then according to the implicit function theorem

Φ−1(y) ∩ {rankDΦ = m}

is a C1, (n −m)-dimensional submanifold of Rn and it follows from the co-area formula

that

Hn−m(Φ−1(y) ∩ {rankDΦ < m}) = 0 for Hm-a.e. y ∈ Rm.

6This might be slightly confusing since we have a double meaning of f .
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Thus for almost all y, Φ−1 is a manifold plus a set of measure zero. Hence it is countably

(n−m)-rectifiable. To prove the result in the case in which Φ is Lipschitz it suffices to use

Theorem ?? which reduces the problem to the C1-case. �

1.5. The Eilenberg inequality.

Definition 1.25. A metric space is said to be boundednly compact if bounded and closed

sets are compact.

An important step in the proof of the co-area formula is the following

Theorem 1.26 (Eilenberg inequality). Let Φ : X → Y be a Lipschitz mapping between

boundedly compact metric spaces. Let 0 ≤ m ≤ n be real numbers.7 Assume that E ⊂ X is

Hn-measurable with Hn(E) <∞. Then

(1) Φ−1(y) ∩ E is Hn−m-measurable for Hm-almost all y ∈ Y .

(2) y 7→ Hn−m(Φ−1(y) ∩ E) is Hm-measurable.

Moreover ∫
Y

Hn−m(Φ−1(y) ∩ E) dHm(y) ≤ (Lip (Φ))m
ωmωn−m

ωn

Hn(E).

Observe that the left hand side corresponds to the right hand side in the co-area formula

with f = 1. Observe also that |JΦ| can be estimated by Lip (Φ)m, and then the integral of

the Jacobian over E can be estimated from above by Lip (Φ)mHn(E). This shows a deep

connection between the co-area formula and the Eilenberg inequality. Since we used the

estimate from the above we only have an inequality and one cannot expect equality in

the Eilenberg inequality. What is remarkable is that the Eilenberg inequality is true in a

great generality of boundedly compact metric spaces where differentiable structure is not

available. We will prove Theorem 1.26 under the additional assumption that X = Rn and

Y = Rm.

The measurability of the function y 7→ Hn−m(Φ−1(y)∩E) is far from being obvious and

we will want to integrate this function before proving its measurablility. To do this we will

have to use the upper Lebesgue integral.

7Not necessarily integers.
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Definition 1.27. For a nonnegative function f : X → [0,∞] defined µ-a.e. on a measure

space (X,µ) the upper Lebesgue integral is defined as∫ ∗
f dµ = inf

{∫
φ dµ : 0 ≤ f ≤ φ and φ is µ-measurable

}
.

We do not assume measurability of f . Clearly if f is measurable the upper Lebesgue

ineqgral equals the Lebesgue integral.

An important property of the upper integral is that if
∫ ∗
f dµ = 0, then f = 0, µ-a.e.

and hence it is measurable. Indeed, there is a sequence 0 ≤ f ≤ φn such that
∫
φn dµ→ 0.

That means φn → 0 in L1(µ). Taking a subsequence we get φnk
→ 0, µ-a.e. which proves

that f = 0, µ-a.e.

Proof of Theorem 1.26 when X = Rn and Y = Rm. For ever positive integer k > 0 there

is a covering

E ⊂
∞⋃
i=1

Aik, Aik is closed, diamAik <
1

k

such that

(1.8)
ωn

2n

∞∑
i=1

(diamAik)n ≤ Hn(E) +
1

k
.

It follows directly from the definition of the Hausdorff measure that

(1.9) Hn−m(Φ−1(y) ∩ E) ≤ ωn−m

2n−m lim inf
k→∞

∞∑
i=1

diam (Φ−1(y) ∩ Aik)n−m.

For any set A ⊂ X we have

diam (Φ−1(y) ∩ A) = diam (Φ−1(y) ∩ A)χΦ(A)(y) ≤ (diamA)n−mχΦ(A)(y).

Hence (1.9) yields

Hn−m(Φ−1(y) ∩ E) ≤ ωn−m

2n−m lim inf
k→∞

∞∑
i=1

(diamAik)n−mχΦ(Aik)(y).

The function on the right hand side is measurable. Hence Fatou’s lemma yields∫ ∗
Rm

Hn−m(Φ−1(y) ∩ E) dHm(y) ≤ ωn−m

2n−m lim inf
k→∞

∫
Rm

∞∑
i=1

(diamAik)n−mχΦ(Aik)(y) dHm(y)

=
ωn−m

2n−m lim inf
k→∞

∞∑
i=1

(diamAik)n−mHm(Φ(Aik)).

If p ∈ Aik, then

Φ(Aik) ⊂ B(f(p),Lip (Φ) diamAik)
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and hence

Hm(Φ(Aik)) ≤ ωm

2m
(Lip (Φ))m(diamAik)m.

Thus ∫ ∗
Rm

Hn−m(Φ−1(y) ∩ E) dHm(y) ≤ ωn−m

2n−m
ωm

2m

2n

ωn

lim inf
k→∞

ωn

2n

∞∑
i=1

(diamAk)n

≤ (Lip (Φ))m
ωn−mωn

ωn

Hn(E),

by (1.8). It remains to prove the Hn−m-measurability of the sets Φ−1(y)∩E for Hm almost

all y ∈ Rm and the Hm-measurability of the function ϕ(y) = Hn−m(Φ−1(y) ∩ E). Note

that if Hn(E) = 0, then Hn−m(Φ−1(y)∩E) = 0 for Hm almost every y ∈ Rm by the upper

integral estimate. This observations shows that we can ignore subsets of E of Hn measure

zero. Thus we can assume that E is the union of an increasing sequence of compact sets

E
⋃∞

k=1 Ek, Ek ⊂ Ek+1. Note that the sets Φ−1(y)∩Ek are compact for every y and hence

Φ−1(y) ∩ E is Borel as the union of compact sets. Thus it suffices to prove that every

function y 7→ Hn−m(Φ−1(y) ∩ Ek) is Borel measurable, because then the function

ϕ(y) = Hn−m(Φ−1(y) ∩ E) = lim
k→∞
Hn−m(Φ−1(y) ∩ Ek)

will also be Borel. Hence we can assume that E is compact. It remains to prove that for

every t ∈ R the set

(1.10)
{
y ∈ Rm : Hn−m(Φ−1(y) ∩ E) ≤ t

}
is Borel. If t < 0, then the set is empty, so we can assume that t ≥ 0. Since the set in

(1.10) can be written as

(Rm \ Φ(E)) ∪
(
Φ(E) ∩

{
y ∈ Rm : Hn−m(Φ−1(y) ∩ E) ≤ t

})
and Rm \ Φ(E) is open, it remains to prove that the set

Φ(E) ∩
{
y ∈ Rm : Hn−m(Φ−1(y) ∩ E) ≤ t

}
is Borel. In the definition of the Hausdorff measure we may restrict to coverings by open

sets. However this family of sets is uncountable and we would like to have a countable

family of sets from which we would choose coverings. Let F be the family of all open

sets in Rn that are finite unions of balls with rational centers and radii. The family F is

countable and we claim that it can be used as the family of sets from which we choose

coverings provided we define the Hausdorff measure of a compact set K. Indeed, first we

cover the set K by open sets, K ⊂
⋃

i Ui Each open set is the union of a family of balls

with rational centers and radii. These balls form a covering of K and hence we can select
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a finite subcovering K ⊂
⋃N

j=1Bj. Now we replace each set Ui by U ′i which is the union

of all the balls Bj that are contained in Ui. We obtain a new covering K ⊂
⋃

i U
′
i . Clearly

U ′i ⊂ Ui and U ′i ∈ F .

Let Fi be the collection of all finite families {Ui1, . . . , Uik} ⊂ F such that

diamUij <
1

i
, j = 1, 2, . . . , and

ωn−m

2n−m

k∑
j=1

(diamUij)
n−m ≤ t+

1

i
.

Note that each of the sets Uij is the union of a finite family of balls. The family Fi is also

countable. Clearly we define this family to deal with the coverings of the set Φ−1(y) ∩ E
that satisfies Hn−m(Φ−1(y) ∩ E) ≤ t.

If U ⊂ Rn is open, then

Φ(E) ∩ {y : Φ−1(y) ∩ E ⊂ U} = Φ(E) \ Φ(E \ U)

is Borel, because both of the sets f(E) and f(E \ U) are compact. In particular the set

Vi =
⋃

{Ui1,...,Uik}∈Fi

(
Φ(E) \ Φ

(
E \

k⋃
j=1

Uij

))

is Borel as a countable union over the entire family Fi. We will prove that

(1.11) Φ(E) ∩ {y ∈ Rm : Hn−m(Φ−1(y) ∩ E) ≤ t} =
⋂

Vi.

Clearly the set on the right hand side is Borel.

If y ∈ E and Hn−m(Φ−1(y) ∩ E) ≤ t, then for any i we can find a covering

Φ−1(y) ∩ E ⊂ Ui1 ∪ . . . ∪ Uik, {Ui1, . . . , Uik} ∈ Fi.

Thus y 6∈ Φ(E \
⋃k

j=1 Uij) and hence y ∈ Vi. Since i can be chosen arbitrarily, y ∈
⋂∞

i=1 Vi.

On the other hand if y ∈
⋂∞

i=1 Vi then y ∈ Φ(E) and for all i, y ∈ Vi, i.e. there is

{Ui1, . . . , Uik} ∈ Fi such that y 6∈ Φ(E \
⋃k

i=1 Uik), i.e. Φ−1(y) ∩ E ⊂ Ui1 ∪ . . . ∪ Uik, so

Hn−m
1/i (Φ−1(y) ∩ E) ≤ t+

1

i
.

Taking the limit as i→∞ we obtain Hn−m(Φ−1(y) ∩ E) ≤ t. The proof is complete. �
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1.6. Integral geometric measure. We say that a metric space is purely Hm-unrectifiable

if for any Lipschitz mapping f : Rn ⊃ A → X we have Hm(f(A)) = 0. It easily follows

from the definition that E ⊂ Rn is purely Hm-unrectifiable if and only if for any countably

Hm rectifiable set F ⊂ Rn, Hm(E ∩ F ) = 0.

Theorem 1.28. If Hm(X) < ∞, then there is a Borel countably rectifiable set E ⊂ X

such that X \E is purely Hm-unrectifiable. Hence X has a decomposition into a rectifiable

and a nonrectifiable parts X = E ∪ (X \ E). This decomposition is unique up to sets of

Hm-measure zero.

Proof. Let M be the supremum of Hm(E) over all Hm-countably rectifiable Borel sets

E ⊂ X. Hence there are Borel countably Hm-rectifiable sets Ei ⊂ X such that Hm(Ei) >

M − 1/i. It is easily to see that E =
⋃

iEi satisfies the claim of the theorem. Uniqueness

is easy. �

Definition 1.29. Let E ⊂ Rn be a Borel set and let 1 ≤ m ≤ n be integers. If m < n,

the integral geometric measure Im of E is defined as

(1.12) Im(E) =
1

β(n,m)

∫
p∈O∗(n,m)

∫
y∈Im p

Np(y, E) dHm(y) dϑ∗n,m(p),

where O∗(n,m) is the space of orthogonal projections p from Rn onto m-dimensional

linear subspaces of Rn, Im p is the image of the projection and ϑ∗n,m is the Haar measure on

O∗(n,m) invariant under the action of O(n), normalized to have total mass 1. Moreover

Np(y, E) is the Banach indicatrix, i.e. Np(y, E) = #(p−1(y) ∩ E). The coefficient β(n,m)

will be defined later. If m = n we simply define Im(E) = Hm(E).

Thus roughly speaking Im(E) is defined as follows. We fix an m-dimensional subspace

of Rn and denote by p the orthogonal projection from Rn onto that subspace. Next we

compute the measure of the projection of the set E onto that subspace taking into account

the multiplicity function Np and then we average resulting measures over all possible

projections p ∈ O∗(n,m). Note that since the measure ϑ∗n,m is invariant under rotations

O(n), Im(E1) = Im(E2) if E1, E2 ⊂ Rn are isometric. We still need to define the coefficient

β(n,m). Let [0, 1]m ⊂ Rm ×Rn−m = Rn be the m-dimensional unit cube in Rn. We define

β(n,m) =

∫
p∈O∗(n,m)

∫
y∈Im p

Np(y, [0, 1]m) dHm(y) dϑ∗n,m(p).

Clearly β(n,m) is a positive constant and with its definition Im([0, 1]m) = 1. Note that

Im(Q) = Hm(Q) for any m-dimensional cube in Rn regardless how the cube is positioned
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in the space. This follows from the O(n) invariance of the measure ϑ∗n,m and from the fact

that both measures Im and Hm scale in the same way under homothetic transformations.

Hence Im(E) = Hm(E) if E is an m-dimensional polyhedron in Rn. Indeed, up to a set of

Hm-measure zero such a polyhedron is the union of countably many m-dimensional cubes

and if Hm(A) = 0, then Im(A) = 0. This observation can be generalized to arbitrary

countably Hm-dectifiable sets.

Theorem 1.30 (Federer). If E ⊂ Rn is countably Hm-rectifiable, m ≤ n, then Im(E) =

Hm(E).

Proof. We can assume that m < n, because In = Hn by the definition. It suffices to assume

that E is a subset of an m-dimensional C1-submanifold Mm ⊂ Rn. Indeed, the general

case will follow from Theorem 1.10 and the fact that Hm(A) = 0 implies that Im(A) = 0.

Let p′ be the restriction of p ∈ O∗(n,m) to Mm. the area formula yields

(1.13)

∫
E

|Jp′(x)| dHm(x) =

∫
Im p

Np(y, E) dHm(y).

Let L be an m-dimensional affine subspace of Rn. Let p′′ be the restriction of p to L

and let |Jp′′ | be the Jacobian of the orthogonal projection p′′ of L onto Im p. Clearly

|Jp(x)| = |Jp′′ |,where L = TxMm is regarded as an affine subspace of Rn. Observe that∫
p∈O∗(n,m)

|Jp′′| dϑ∗n,m(p) = C(n,m)

is a constant that depends on n and m only. Indeed, the measure ϑ∗n,m is invariant under

rotations O(n) and hence we can rotate L without changing the value of the integral, so

that L is parallel to Rm × {0} ⊂ Rn. Hence (1.13) yields∫
p∈O∗(n,m)

∫
y∈Im p

Np(y, E) dHm(y) dϑ∗n,m(p) = C(n,m)Hm(E).

Taking E = [0, 1]m we see that C(n,m) = β(n,m). �

The next result is a celebrated structure theorem of Besicovitch-Federer which we state

without proof.

Theorem 1.31 (Structure theorem). If E ⊂ Rn, Hm(E) < ∞, m < n is purely Hm-

unrectifiable, then Im(E) = 0.

Thus any set E ⊂ Rn with Hm(E) < ∞ can be decomposed into a rectifiable part

on which Hm = Im and a non-rectifiable part on which Im = 0. This says a lot about
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the structure of E, which explains the name of the theorem. This result also implies that

Hm(E) ≥ Im(E) for any Borel set E ⊂ Rn.

One can construct Cantor type sets with Hm(E) > 0, but Im(E) = 0. Clearly E must

be purely Hm-unrectifiable. However, the integral geometric measure can be used to detect

the Hausdorff dimension of a set:

Theorem 1.32 (Mattila). If dimH E > m, then Im(E) =∞. Hence Im(E) <∞ implies

that dimH E ≤ m.

The proof requires quite a lot of harmonic analysis and potential theory and we will not

present it here.

Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pitts-

burgh, PA 15260, USA, hajlasz@pitt.edu


