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Chapter 1
Weilerstrass’s Theorem

1 Approximation by Polynomials

n
A basic property of a polynomidP(x) = > a,X is that its value for 1

a givenx can be calculated (e.g. by a moachine) in a finite number of
steps. A central problem of mathematical analysis is thecqupation

to more general functions by polynomials an the estimatfdrow small

the discrepancy can be made. A discussion of this probleralche
included in any University course of analysis. Not only dre tesults
important, but their proofs admirably illustrate a numbémpowerful
methods.

This account will be confined to the leading theorems, stiatéukir
fundamental rather than their most general forms. Therenaimy ex-
cellent systematic presentations in the literature, tatvtiis may serve
as an introduction.

Variables and functions will be real. We say thd) is C(a, b)
meaning thatf(x) is continuous fora < x < b.p(x) or g(x) always
denotes a polynomiap,(X) is a polynomial of degree at mast In this
course, the goodness (or badness!) of the fit of a particalgnpmial
p(x) to the functionf (x) will always be measured by

sup| f(x) — p(x)l,
where the sup. is taken ovar< x < h.

1



2 1. Weierstrass'’s Theorem

There are other useful ways of defining a ‘distance’ betwigd)
andp(x), e.g.

b
fa (%) - p(¥)2dx

but we shall not deal with them here.

The interval &, b) will commonly be taken to be (@) or (-1,1) as
may be convenient in particular context; there will be nslotgener-
ality. Our enquiry is restricted to finite intervals. The roense will
always be supposed greater than 0. The Halmos sypibalenotes the
end of a proof.

Theorem 1(Weierstrass 1885)If f(X) is C(a, b), then, givere, we can
find p(x) such that
suplf(X) — p(X)| < e.
This is the fundamental theorem of the subject. An alteraatiate-
ment of it is that a continuous function is the sum of a unifgrronver-
gent series of polynomials. For lekx), pn,(X),--- (M <ny <---) be

. . 1 :
polynomials corresponding tq 56 ,&/2". ... Then the series

Pry (X) + {Pn, (X) = Py (O} + -+
converges uniformly to(k).

We shall give three proofs of Weierstrass's theorem. The dind
simplest is that of Lebesgue (1898). It is based on a polyabap-
proximation to the particular functiopx| in (-1, 1). We shall study this
function closely in Chaptdi |, and shall learn a lot from it.

Lemma. There is a sequence of polynomials converging uniformiiy to
for-1<x<1

Proof. If u=1- x2. then|x| = /(1 — u), and 0< u < 1 corresponds to
1>|x>0. i

V(1 — u) has a binomial expansion in which the termuihis —c,u"

where
~135...(2n-3)

‘=226 2n

(n>2)



1. Approximation by Polynomials 3

We can prove that this series, which certainly convergegifer 1,
also converges fan = 1. This follows either from Gauss'’s test applied

to 3 1
Cn
=1+ —+0(=
Cril - 2n - (nz)
or by proving (on the lines of the Lemma following TheorEm Ratt
A
Cn ~

m.

By Abel’s limit theorem, the series faf(1—u) converges uniformly
for0 < u< 1, i.e.|xis uniform limit of a sequence of polynomials for
-1<x<1.

Corollary. Let

g(x) =0forx<0
g(x) =0for0< x<k

Then ¢X) is the limit of a uniformly convergent sequence of polyno-
mials in—k < x < k.

Proof. Changing the variable by a facthy we may suppose th#tis 1.
Then

. 609 = 5(x+ ).

Proof of theorem 1.Giveng, we can find a functiom(x) whose graph

is a polygon with vertices aB(Yp), (X1, Y1), ..., (X, Vi), ..., (b, yn) such
that

1) = 1(X)] < %s.

Now I(X) is the sum of constant multiples of functions of the type
g(x — x) defined in the Corollary, namely,

n-1
¥ = Yo+ ) Gig(x— x).
0

For the right hand side is linear in each, §.1), and thec; give the
right value ofl(X) at the vertices if

Y1 =Yo + Co(X1 — Xo)



4 1. Weierstrass'’s Theorem

i-1
Yi =Yo + Z c(Xi — X)
k=0

By the lemma and corollary, we can find a polynonpéX) such that
I(X) — p(X)| < %s, a<x<b

and thisgives [f(X)— p(X)| <&, a<x<h.

2 Singular Integrals and Landau’s Proof

Weierstrass’s own proof of Theordrh 1 rested on the limit as oo of
the ‘singular integral’

% [ } exp|-n(t - %2 f(t)dt
The essence of the argument is thatn i large, the exponential
‘kernel’ is small except in a small interval round= x, and so the inte-
gral is nearly equal td(x). This integral is not, however, a polynomial
in X and, to complete the proof, Weierstrass had to approxinoatieet
exponential by the sum of a finite number of terms of its sedesatu-
ral step, taken, by Landau and by de la Vallee Poussin, waartosgth
a singular integral which is a polynomial ¥a An appropriate kernel to
replace Weierstrass’s exponential factor is

{1-t-x%?%"

which (for largen) falls away rapidly from the value 1 asnoves away
form x.We need a theorem about the convergence of singular ifdegra
and this is best stated for a general kefdgt — x).

Theorem 2. Let

J, = j:l Kn(udu

1

Ln(6) = I Z Kn(Udu (0<6<1)
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Suppose that
() Kn(u)>0
(ii) for each fixeds, Ln(6)/Jn — 1, as n— co.

Suppose that (k) is C(0,1) and0 < a < b < 1. Then, as n— o,

1
In(X) = \me—xﬁmm-en@
0

n
uniformly for a< x < b.

Proof. In 15(X), we shall split up the integral over,(D)

o w3

where 0< x—6 < X+6 < 1. Consider first the integral ovex{ 8, X+96).
Giveng, we can, by the continuity of(x), find § = 6(¢) such that

1f(t) - f(X)| <eifa<x<b|t—X <.
(]

Suppose further that < min(a, 1 — b). Then the middle term on the
R.H. S. of (1)

0

=7 Kn(u)f(x + u)du

(5)

S
f(x) + Ia Kn(u){ f(x+u) — f(x)}du

The first term in the last line tends f¢x), from (i) of the hypothe- 6
sis. The second term is, bi),(numerically less thaalL(6)/Jn, that is,
less thare.

Now return to equation (1) and consider the first term on thel R.
S. LetM = sup|f(X)|in (0, 1).

1 X—0 M =
|—f Kn(t = x) f(t)dt| < —f Kn(u)du
\]n Jn —X
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Ln(9)

— 0 asn — oo.

A similar estimate holds for the third term of (1).

All the inequalities in the above argument are independert and,
collecting the results, we have proved thgtx) — f(x) uniformly for
as<x<h.

If, in Theorem 2, we take, following Landau

Kn(U) = (1 - )",

then 1,(x) is a polynomial inx of degree B. We have, therefore, a
second proof of Theoref 1 as soon as we have proved, as weltl® in t
following Lemma, that thik,(u) satisfies the conditions of Theoré&in 2.

Lemma. In Theoren®, K,,(u) may be taken to bl — u?)".
Proof.

1 1
= f (1- ) du=2 f " 0sirt™ gdg
-1

= 2Son41, say.

24...2n
35...(2n+1)
From the inequalities

S2n+1 =

Son > Sont1 > Sonso,

it is easily proved that

T T
Jq~ +/—andJ —_—
" \/; n>Vn+l

L) _ Zfél(l— u?)du

Then

1

Jn Jn
on (N+1
<2(1-6°)"y/—— — 0asn — oo.
T




3. Bernstein Polynomials 7

3 Bernstein Polynomials

We shall give a third proof of Theorelh 1. It has the advantdgeno
bodying a definite construction for the approximating poliynals.

Definition. Write I m(X) = (3)X™(1 — X)™™,0 < m < n. Then" Bern-
stein polynomials off (x) in (0, 1) is defined to be
n

Bn() = Bn(f;) = ), F(M/Mlnm(X).

m=0

Bn(X) has degrea (at most).

Theorem 3. Let f(x) be 0, 1). Then, as n— oo, By(X) — f(X) uni-
formly.

Note.We can see what underlies thik,m(X) has a maximum ax =
m/n. So the terms oBy(X) for which m/n is near tox are those which
contribute most. Itis, in fact, the analogue for a finite sufrthe 'singu-
lar integral’ notion. Then two schemes, for sum and integrallld be
combined into one by using a Steltjes integral.

Lemmas onlpm(X).
The sums on the R.H.S. being taken for valuesnafuch that O< 8

m<n,
1= lnm(X)
nX= " Mhm(X)
nX(1-%) = > (x=m)nm().
Proof. With a view to diferentiating with regard tg, we write
(& + (1-%)" = ) (e™-x™T

Pute¥ = x and we have the first result. flérentiate with regard tpand
pute’ = x and we have second. fdérentiating again gives

nx+ n(n — 1)x* = Z Ml m(X)

Multiply the three equations in turn by*x?, —2x, 1 and add. This gives
the third result in the lemma. O
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Proof of theorem 2.Giveneg, there iss such thatf(x;) — f(x2)| < giif
[X1 — Xo| < 8. Now,

n

f(X) — Bn(X) = Z {f() — f(m/n)}nm(X).

m=0

Divide the sumn$n the R.H.S. into partg; taken over those values
of mfor which|x - ﬁ' < §,and), therest. Theh) ;| < &1 lhm(X) <

n
eX lnm(X) =&. If Missupf(x)|in0<x<1,
0

1> 1<2M > Tam(Y)
2 2

(Nx— m)?
<2M ; n2—52|n,m(x)
< 2Mnx(1 — X)/n??, from the Lemma
< M/2ns?
Solf(X) = Ba(X)| < |11+ 25| < e+ M/2ns2. Choosen > M/2e62
and the R.H.S< 2e.
Remarks on Bernstein polynomials.

(1) They have applications to the theory of probability, nemnprob-
lems and the summation of series. See Lorentz, Bernsteymgol
mials, (Toronto 1953).

(2) In questions of polynomial approximation, it is a disadtage that
the Bernstein polynomial of a polynomiah(x) is not, in general,

pn(X), e.g.
5 1
for x°, B2(X) is Ex(l + X)

for x(1 — x), Bo(X) is :—2Lx(1 - X).
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For most of the useful systems of polynomials, the approtiona
within the system to a givempy(X) is pn(X), e.g. with Legendre
polynomials,

1 2
2 g —_
X = 3Po(x) + 3P2(x).
Notes on Chapter |

Notes at the end of a chapter may include exercises (witls fidmt 10
solutions), extensions of the theorem and suggestionauftirdr read-

ing.

1. In the Lemma of§1, prove that the polynomial consisting of the

terms up tox?" in the expansion ofy/{1 - (1 - x2)} approximates
to |x| in (=1, 1) with a greatest error which A/ y/n.

2. Let f(x) = % —|x- %| in (0,1). (This is an adaptation dk| to
the interval (01)). As in 1, investigate the order of magnitude of
the error atx = % given by @) the Landau singular integrab)(the
Bernstein, approximations tix).

3. TheorentIl can be extended to a function of two (or moreplbes,
sayf(x,y) for0< x<1,0<y<1 Suggesta method of proof.

4. If f/(X) is continuous, then

d%(Bn(f; X) — f’(X) uniformly.

A similar result for the Landau integral.

5. Readers who like to place theorems on analysis in an abste&
ting will be interested in Stone’s extension of Theolfdm le Beath.
Magazine 21 (1948) 167 and 237, or Lorentz, 9, or Rudin, Hies
of Mathematical Analysis (New York 1953), 134.
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1. Weierstrass'’s Theorem

Hintsfor1l — 4

. All the ¢, are positiven > 2). Error is greatest whem= 1, i.e.,

x=0,andis) c.
n+1
© A o dX
This ~ —~A| —— ~A/+/n
n%ll’\/r f” X/X Al

. A/ +/n. For (b), approximate to factorials by Stirling’s formula.

. Could use

b b= =% {1-u-y?)" £t udtdu
(fia-eya’

or (with some labour extend Bernstein’s, as in P. L. Butzen&
dian Journal of Mathematics, 5(1953), 107, or Lorentz, 51.

. Lorentz, 26.

For Landau, withK,(u) = (1 — u?)" in TheoreniR,

d t 1 oK, 16K,
I fo Kn(t — x) f(t)dt = fo ™ f(t)dt = — fo 3 f(t)dt

and integrate by parts.



Chapter 2

The Polynomial of Best
Approximation Chebyshev
Polynomials

4 The Lagrange Polynomial

We are givem + 1 values of¥,

andn + 1 constantgg, ¢y, .. ., Cn.

Write [T(X) = (X — Xo) - - - (X = Xn).

The polynomialp(x) of degree at most which takes the valueg
at x; is, by the partial- fraction rule fop(x)/ [1(X),

4 1 G
L0025 oo

If the ¢ are the values ax; of a function f(x), we call p(x) the
Lagrange polynomial of (x) at thex;. Here we follow the usual termi-
nology, although Waring (1779) used the polynomial befoagrange
(1795) and indeed it is clear that the formula was known to fdaw

Suppose that the values, . . ., Xn are fixed. The following lemmas
follow from the definition of the Lagrange polynomial.

11

12
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12 2. The Polynomial of Best Approximation...

Lemma 1. Given an aggregate of polynomials (&) of degree at most
n, wherea runs through an index-set I, such that

[P (X)) <A ainl;i=0,...,n
Then, ifa,, is the codficient of X" in p,(X),
[@q.r| < AB,
whereB is independent of.

Proof. Write p,(x) for ¢;. We have & depending only onthg. 0O

Lemma 2. (For brevity of expression, we translate de la Vallee Paussi
Leogns, 74). If, at = 1 given points, two polynomials of degree at most
n take 'infinitely close’ values, their corresponding giméents are in-
finitely close.

Proof. Giveneg, we have two polynomials say,(X), g.(X) which dif-
fer by at moste for each of the values, ..., x,. By Lemmall, their
corresponding cdgcients difer by at mosBe. m|

5 Best Approximation

Let P, be the set of polynomialp(x) of degree less than or equalro
Then
PO C P]_ C P2 o

Define, for any particulap in Pp,
d(p, f) = sup|f(X) — p(x)| fora< x<h.

Letd = d, = dy(f) = infd(p, f) for all pin P,. Thend > 0.
Our first aim is to prove that there existgan P, for which the inf. is
attained, i.e., that, giveh(x) of C(a, b), there is gpolynomial of degree
n of best approximatior.ater we shall prove uniqueness.

If fis given,

do>d1>d>...,
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and Theorerfll1 asserts that lin= 0.

The existence of a polynomial of best approximation was know
to Chebyshev (or Tschebysdfe(1821 - 1894) who was one of the
founders of the subject. The necessary proof was supplieBdogl
(1905).

Theorem 4. There is a polynomial (x) in P, for which 14
supl f(x) = p(x)| = d(= dn).

Proof. All our polynomials beingP,, we do not need the fiix n to
denote degree, and thefBxes inpy, po, ... will be used to specify par-
ticular polynomials oP,,. As here, we shall commonly omit the variable
x form a polynomialp(x) or a functionf (). O

By definition ofd, there is a polynomiap, with
1
d < d(pm, f)<d+ﬁ
Forallmanda < x < b,
Ipm(X¥)| < d+ 1+ sup/f(x)| =A.

By 84, LemmdL, the + 1 codficients of powers®, x, ..., x" in the
pm(X) all lie in a bounded region af + 1 space. This set of points in
n+ 1 space has at least one limit point, defining a polynom{a) for
which

d(f, p) < d(f, pm) + d(pm. P)
<d+ 1 +e
m

wheree —» 0 asm — oo through a sub-sequence for which there is
convergence of the céiicients to their limits.
Therefored(f, p) = d.

Theorem 5. If f(x) is C(a,b) and [x) satisfies Theorefd 4 there are
n+ 2 values (or more) at which

f() = p(x) = =d,

with alternating sign.
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Proof. gX) = f(X) — p(X) is continuous. Divided, b) into sub-intervals 15
such thatg(x) does not take the value 0 in any (closed) sub-interval in
which it takes the valued. Denote by, o, ..., | (humbered from left

to right) those of the sub-intervals in whigfix) takes the value-d or

—d. Defineey, ey, ...,emto be+1 or—1 according as the value i or

—d. We have to prove that there are at least are at keast changes of
sign in the sequence efs. Suppose there are fewer. We shall obtain a
contradiction by constructing a polynomial of better apjimmation than

p(x). O

If all the &’ shave the same sign, say add a small constant {a(x).
This gives a polynomial of better approximation.

Generally, suppose that there &rehanges of sign in the sequence
of ¢’s, wherek < n. Let g, ¢,1 be diferent. Ther; andli,; cannot
abut (sinceg(x) does not vanish in either), so we can choose a value of
x; lying between them. We have thkvalues ofx; call them

X1, X2, « « o5 Xk

Defineh(x) = e1(x1— X)(x2— X) - - - (xx — X).h(X) has the same sign as
g(x) in each of sub-intervals We shall prove that, iy is small enough,
the polynomial ofP,

p(X) + 17h(x)

has better approximation ti(x) thanp(x) has.
In those intervals of the original subdivision which are let

suplg(X)| = d’ (say) < d.
Choose; to makelph(x)| < d — d’(a < x < b), now,
If —p—nhl=1g-nhl.

In thel’s, this is less thaul, sinceg, h have the same sign.
And, in the sub-intervals other th#s,

Ig—nhl <|gl +Iphl <d +(d-d) = d.

Sop + gh approximates better tbthan p does.
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Theorem 6. The polynomial (x) of Theoreni¥ is unique.
Proof. Suppose that two polynomials q satisfy Theorenil4. Let =

%(p+q). Thenf-r = %(f —p)+%(f—q). Therefore satisfies Theorem

4, and so, by Theoreh 5,
f—r==d

for n + 2 values ofx. O

Butf —r=donlyif f — p=f-q=d. Therefore there ane+ 2
values ofx for which p(x) andq(x), polynomials of degree at most
are equal. Thereforp(X) = q(x).

In future we can (by Theoref 6) describs the best Pthat poly-
nomial p(x) in Py, for which

suplf(X) — p(¥)| = d,

whered = inf d(f,q) for all q(x) in P,. The numberd (or d, if it is
necessary to make therexplicit) may be calledhe best approximation

Theorem 7. Suppose f is @& b) and g is in R. Let there be n+ 2
values of x at which f g takes values alternating in sign

dls _d2a d3a R (_1)n+1dn+2-
Then the best approximation d satisfies 17
d > mind,

Proof. Suppose thatl < di(i = 1,...,n+ 2) and letp be the besP;.
Thenp-q= (f —q) - (f — p) takes alternate signs at the- 2 values in
the hypothesis. Therefoe— g (which is inP,) has at leash + 1 zeros.
This is a contradiction. O

Corollary. Let g be in B and let
sup|/f —q =d.

Suppose thaf — g takes the valuesd’ alternately fom + 2 values
of x. Thend’ = d andq s the besP,.

Proof. By theoren{bd > d’. Butd < d’, sinced is the best approxima-
tion. O
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6 Chebyshev polynomials

TheorenT# guarantees the existence of the Bgdor a givenf. Itis
only in special cases that the explicit calculation of thidypomial is
practicable. Theorefd 7 and its corollary can often be tutnedse.
Easy exercises:

. 1 . 1
For x2 in (0, 1), the besPy is > the besPy is x + g

, . 1
For x* in (-1, 1), the besPsz is X? + 5
Consider now the general problem.

A. Among all py(x) with codficient of X" equal to 1, find that which de-

viates least from 0 in«1,1) in other words, that for which
suplpn(X)| = dis least.

This problem can be stated in the equivalent form.
B. Find the best approximation i,_; to X" in (-1, 1).

From Theoren7 (Corollary) we wish to findog(x) which takes the
values+d alternately ah+ 1 points (why non+2 points?). Enlightened
guessing soon leads to the answer

pn(X) = d cosnd wherex = cosb.

It is worth while to give Chebyshev’s own proof of this, whidbes
not depend on guesswork.

Theorem 8. Among all p(x) with cogficient of X equal tol, the poly-
nomial
2-"1 cosnd where x= cost

deviates least frord in (-1, 1).

Proof. let p(x) = x"+- - - be the required polynomial, ard= sup|p(X)|.
i

By Theorenib, there ame+ 1 values ofx (at least) whergp(x) = +d.
These may be end-points or interior points ef.(1). At such a point
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which is an interior point,p(x) has a maximum or minimum and so
p’(X) = 0. Sincep’(x) has degrea — 1, then + 1 values must be,+1
andn — 1 others, says, X, ..., Xn_1.

The two polynomials of degreen2

d? — p? and (1- x%)p’2

have the same zeros, hamely-1 and each oky, X, .. ., Xn_1 doubly.
Comparing the cd@icients ofx?" we have

n*(d® - p) = (1- x)p”.
Solving this diferential equation fop we find, puttingx = cosg,
p = dcosfd + C)
Sincep(x) is a polynomialC = 0. But

cosnd = 21 cod' 6 + lower powers of cos,
and so =™

The polynomials revealed by Theor&€in 8 are named after Cheloys9
and (following the alternative spelling of his name) we defin

Th(X) = cosh arc cos).
The early members of the sequence are
To(X) = 1, T1(X) = X To(x) = 26%% -1
Ta(X) =4 -3x,  Ta(x) =8x*-8x°+ 1.

Their mode of definition is restricted te-{, 1) and it is in that inter-
val that their utility mainly lies. But many of their propi$ hold for all
values ofx. Some useful results are collected in Theofém 9; the proofs
can easily be supplied.

Theorem 9. (1) y = Tr(X) satisfies the dferential equation

(1- X3y’ —xy +nPy=0.
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(2) Ta(x) is the cogicient of t' in the expansion of the generating func-

tion
1-1tx

1—2tx +t2

(3) the recurrence relation

Tn(X) = 2XTn-1(X) — Tn-2(X) (n>2).
(4) an explicit formula for the cggcients

Ta(X) = Z(—l)k%( (n ; k) on-2k-1,n-2k

summed fof < k < [g]

(5) orthogonality with the weight-functioty /(1 — x2)

LT () Tm(X) dym {O(m;t n)
ir(m=n)
2

(6) for|x > 1,

21,09 = (x4 OE— D+ x+ V@D

Note

The calculation of polynomials of best approximation is ragtice
troublesome. See de la Vallee Poussin, ChayteFor a method of cal-
culation by a convergent sequence, see Polya, Comptes RErdris)
157 (1913), 840.



Chapter 3
Approximations to |X|

7

We now take up the central problem of polynomial approxiomati 21
namely

Given a functionf(x), how high is the degree of the polynomial
necessary to approach it with an assigned accuracy?

The answer may well depend on structural propertie§(gf. For
instance, we may guess (rightly) that we can predict a lovegrek if
f(X) is assumed to be filerentiable instead of only continuous. The
best theorems on these matter lie fairly deep. We shall gugfir some
heuristic motion of finding from particular cases what trafipears to
be and then deciding how to try to establish it.

A useful function to study with care ig| in (—1,1). This function
was the basis of Lebesgue’s proof of Theofém 1.

From Exercises 1, 2 at the end of Chaptethe deviation fromx|
of a polynomial of degrea of any of the three types used in proving
TheorenflL is of order/1yn.

Let us clarify our mode of speech. If, for sorp&) in Py,

[£(%) — P(X)] = O{e(n)}

we will say that the approximation ig@(n)}. If, moreover, there is no
p(x) in P, for which

[£(%) — P(X)] = O{e(n)}

19
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we will say that the approximation ectually 0{¢(n)}.

Study of the proofs of Theorel 1 might lead us to conjectua¢ th
the best approximation ip, to x| is actually 0(Z+/n).

We proceed to show that, in fact, it is actually 0L This will be
proved, following Bernstein, Lecons Ch.l, by elementahp(igh rather
lengthy) algebra.

To approximation tdx| in (—1, 1) is the same thing as to approximate
to xin (0, 1) by polynomials whose exponents are all even, and this is
what we shall do.

If dop, is the best approximation toin (0, 1) by

ag+a X + -+ agxe"
we shall prove that

> dop > ! !
n+1” "7 41+ v2) 2n-1

Bernstein went further and proved thdit, ~ C/n, whereC is a
constant which he evaluated a8 + 0.004.

The theorems of this Chapter will not be used later in the smur
and any one who wishes may note above inequalitiesifpand pass
on to Chapter IV.

8 Oscillating polynomials
Definition. If 0 < ag < a1--- < ap andA; = 0 (all i), we say that
P(X) = AgX™® + ApX*t + - + Apx®n

is anoscillating polynomialin (0, 1) if sup|p(X)| is attained fom + 1
values ofxin 0 < x < 1. We shall suppose the& sintegers.
lllustrations.

Q) oi=2i+1 To1(X) satisfies

(2) ai =i Ton(VX).
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Lemma 1. The polynomial {x) in the definition has at most n positive
zeros. If it has n the cggcients alternate in sign.

From Descrates’ rule fo signs.

Lemma 2. The cogicients of an oscillating polynomial alternate in
sign.

Proof. (1) Letag = 0 (andAg # 0). There are at most— 1 changes of
sign in the cofficients ofp’(x). Thereforep’(x) has at mosh — 1
positive zeros. The + 1 values ofx at which supp(x)| is attained
must ben — 1 zeros ofp’(x) andx = 0,x = 1. Sop’(x) hasn —
1 zeros, say, Xo, ..., Xn-1 lying inside (Q1) and its cofficients
Aq,..., Ay 1 alternate in sign.

p(x) has no maxima or minima other than these 1. Therefore

P(0), p(x), . .., P(Xn-1), P(1)

alternate in sign. Therefong(x) hasn zeros. Thereforédy, Ay, .. .,
A, alternate in sign

(2) Letag > 0. Thenp(0) = 0. So supp(x)| is attained an points
inside (Q 1) which are roots ofy (X) = 0. Therefore the cdicients
alternate in sign.

m]

Corollary. p(x) takes the values sup|p(x)| with + and — sign alter-
nately.

Theorem 10. p(x) = Z A X% is an oscillating polynomial irf0, 1).q(x)

is another polynom|aE Bix* with the same exponents. One gioeent
of p is the same as the corresponding one of q (spy=/B;j), where
aj> 0. Then

suplql > sup|pl.
Proof. If not, p — g takes alternate signs (may be 0) for the 1 values 24

of x for which p takes its numerically greatest value. Therefpre q
has at leash zeros in 0< x < 1. But, sinceA; = B;j it has onlyn terms,
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and so at most— 1 changes of sign in its céiecients and so (by Lemma
[) at mostn — 1 positive zeros. This is a contradiction. m|

Converse of Theorem 10 p(x) andq(x) are two polynomials with the
same exponents and one flugent the sameA; = Bj, wherea; > 0).
If

suplpl < supiq|
for every suchy, thenpis an oscillating polynomial.

Proof. We gives the gist of the proof, without setting out all theailet
in full. 1t uses a 'deformation’ argument like that of theor. m|

Suppose thap(x) is not an oscillating polynomial. Thep(x) takes
the valuestM, whereM = sup|p(X)|, ath points, say(k = 1,...,h),
whereh < n+ 1. We can construct a polynomiglx) = Y, Cix* with
Cj = O andr(x) = p(x). (Then + 1 codficientsC; have to satisfy at
mostn + 1 equations; the determinant can be proye).

We can takes and intervals round they, outside which|p(x)| <
M — ¢ and inside each of whicp(x) andr(x) have the same sign.

Choosel to maked|r(X)] < eforO0< x < 1.
Then supp — Ar| < sup|pl.

But p — Ar satisfies the conditions for@ giving a contradiction.
Apply theorenID, takingy(x) to be a constant multiple of one of
the oscillating polynomial3,,(+/X) andTon,1(X). We obtain

Corollary 1. Ifg(X) = ap + a1 X + - - - a, X" and M = sup|q(xX)| in (0, 1),
then
lail < Mt (1 = 0,1,...,n),

where t is the cogicient of X in Ton(v/X).

Corollary 2. If g(x) = agx + a1 x° + ---a,x*™*1 and M = sup|q(x)| in
(0,1), then
lal < MItil(i = 0,...,n)

where tis the cogicient of ¥ *1 in Ton1(X).
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Theorem 11. To a given set of exponents there corresponds an oscillat-
ing polynomial in(0, 1), which is unique except for a constant factor.

Proof. Let ag, a1,...,an be the given exponents in ascending order.
Suppose that the cfiiwient of X% is given to beK. O

We need to prove that among all the polynomials with the given
exponents

q(X) = BOXa/0 + o+ Bk_lxakfl + kX ..+ ana/n’

there is a uniqug(x) for which sup|q(x)| attains its lower bound.

0<x<1

Clearly sugq(x)| is a continuous function of thevariables By - - - ,
Bk-1, Bk+1, - - - » Bn). Its lower bound is greater than O by Coroll&iy 1 of
TheorenID. Itis less than or equalkgas is seen by taking tH& sto
be small. Again by Corollarf1, we need only consider valueB;dor
which

Bil<Kt] (=01,....k-1k+1,...,n),

wheret; is the codicient of x in Tz, (VX).

TheB; lie in a bounded closed region nkpace, and so they have at
least one set of values for which sgfx)| attains its lower bound. This
proves the existence of an oscillating polynomial. Unicegsnfollows
from TheorentI0.

Theorem 12. If

p(x) = X"°+A1xgi+---+Anxg:
and  X) = X+ B+ .- 4+ Bpédn

are both oscillating polynomials if0, 1) where
O<ap<Pr<ai<f2<--+<fn<an,

then  suplp(X)| > supla(x)|.
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Proof. By Lemma2, the cdéicients fo ofp(x) alternate in sign and so
do those ofy(x).

q(¥) — p(x) = Bt — Apx®t + BoxP2 — . — AXY"
hasn variation of sign, and so the equation

a0 - p(x) =0
has at mosh positive roots. m|

Suppose the theorem false and

suplp(¥)| < suplg(X)I-

Thenq(X) — p(X) has the sign of(x) (it may be 0) for the values
Xn(k = 1,...,n+ 1) at which|g(x)| takes its maximum value. Therefore
q(x) — p(x) vanishes fon valuesé, . . ., & such that

X <& <X <8< <én £ Xngt

Moreover, there ara + 1x's and onlyné’s so at least ong, sayx;
must satisfy&i_1 < X < & (giving meaning t&g, &ns1).

We shall now compute the sign gfx) by two different methods
and obtain contradictory results.

Firstly, in (0,&1), g(X) — p(x) has the sign of its dominant terByx’,
which is negative. By following the changes of sign alonggbguence,
d(x) — p(x) has sign £1)' in (§i-1,&). At X, d(x) — p(x) and alsog(x)
have the sign<{1)'.

Secondly, for small values of, q(x) had the sign of its first term,
which is positive. Thereforg(x;) > 0. Soq(x2) < 0, and generally,
q(x) has the sign{1)+*.

This is a contradiction.

The same arguments can be used to prove

Theorem 12 (Extension)lf

p(X) = AOXQO 4o+ Ai_lxa/i—l + x4 Ai+1x(1/i+1 +oeeF Anxafn
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A(X) = BoX® + - + Bt + XM 4 Byt 4 - 4 By

are both oscillating polynomials if0, 1), where

O0<ap<Bo<-<aj1<Pfi-1<M<PBi1 <1 <pBn<an,
then

suplp(X)! > suplg(x)I-
9 Approximation to |x|
Theorem 13. If
P(X) = X+ agx® + ax* + - - + anx"

is an oscillating polynomial ir0, 1), then

> sup|p(x)| > (n>1).

1
n+1 2(1+ V2)(2n - 1)

Note.If n = 1, the second inequality is to be replaced by equality. Tise

oscillating polynomial is< — (:—L + i) X2

2 2 '
Proof. Taken > 1. By Theoreni 12, sup(x)| is less than the supremum
of the oscillating polynomial

X+bS + -

with exponents 13,5, ...2n + 1. But that polynomial is{1)"Ton.1(X)/
(2n+ 1). This gives the first inequality of the theorem. O

By Theorem§&T12 arild 110, the oscillating polynomial byx® + - - - +
bn-1X?""1 has smaller maximum modulus than the polynomiat, x*+
.-+ ¢ x?" with exponents 14,6, ..., 2n. But the former polynomial is
(-1)" 1 Ton-1(X)/(2n — 1), with maximum modules/{2n — 1). We shall
now construct a polynomial of the latter form (with no termxf).

With the notation of the hypothesis fpfx), write sup p(x)] = m.
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Then, ifu > 0,

‘X+a x \? . xzn<m
1+u HN1i+p an1+y -

Therefore

IX(L+ ) + @@ + aox* + -+ & < m(L + p)?
ie., 1P(X) + (X + Xt + -+ - + M| < m(1 + p)?.

Therefore

(X + CoxX* + - + cn )| < m{(l +u)? + 1}
and so IX+ CoX* + -+ + X sm{(l+,u)2+l} Ju
This is true for all positive values qf, and so we can replace the
right-hand side by its minimum, which ist¥1 + V2).

As we said, the maximum modulus of a polynomial with expogent
1,4,6,...,2nis greater than A2n — 1) and therefore

o1 1
2(1+ V2) 2n-1

We have now all the material for the final result announcedhat t
end of &7.

Theorem 14. If dy, is the best approximation to x {i@, 1) by
ag+aX + -+ anx,
1 b > 1 1
n+1 2 41+ V2) 2n-1

Proof. & is the maximum modulus of the oscillating polynomial

then

Ao+ X+ A + AoxXt + -+ A",

Let p(x) andm have the same meanings as in Theoteéim 13. O
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By TheorenID,  don <m.
Write g(X) — Ag = X+ ApX + - - - + Agx®",
So, by Theorerfi 10,

supla(X) — Aol

is greater than the maximum modulusgk), the oscillating polynomial
with exponents 12,4, ...,2n and codficient of x equal to 1; that is to
say, is greater tham.

But supld(X) — Aol < dan + |Aol < 2dzn.

Therefore 2on > m.

The inequalities of Theorei 13 fon give the started inequalities
for dop.

Notes

1. Example. Find the polynomial iR, for which the coéficient of XX 30
is 1 and which deviates least from 0.

2. The definition on page 22 of an oscillating polynomial canel-
tended to a system

Aopo + - -+ + Angn(X),

if the ¢’ s satisfy certain conditions. See Bernstein, Lecons, 1 or As-
chieser, 67

Hint

1. If k, nare both even or both odd, considgi(x), otherwiseTn( v/X).






Chapter 4
Trigonometric Polynomials

10 Trigonometric polynomials. Modulus of Conti-
nuity

The central problem of approximation, namely the degredefooly- 31
nomial required an assigned closeness to a given functieldsymore
easily to trigonometric than to algebraic treatment. Tnigrmetric series
and in particular Fourier series have been in the fore-fabrinalysis
for something like a century, and knowledge about them has beail-
able for any problem of approximation.

A trigonometric polynomials is

t(x) = %ao + (a2 cosx+ by sinx) + - - - + (an cosnx+ b, sinnx). This
can be writterty(X) if an # 0 orby # 0 and we wish to display therder
of the polynomial. We can denote By the set of all polynomials which
are sums of multiples of cdscand sirkxfor << k < n. (There will be
no confusion with the Chebyshev polynomidigx) of €8).

The functiont(x) is periodic with period 2 (and, in general, with no
smaller period). We say thd{x) is C(2n) if it is continuous with period
2n.

The problem of approximating to @(2r) function by a trigono-
metric polynomial is essentially the same as that of appmating to
a C(a, b) function by an algebraic polynomials. In the first places th
analogue of Theorem 1 holds.

29
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Theorem 15(Weierstrass) If f(x) is C(2r) then, giveneg, there is {X)
such that
[f(X) —t(x)| <& (all x)

This will emerge as a by-product of theorEn 18, and we shaé gi
an independent proof here. You should, however, read Notésat the
end of this chapter.

In statements about periodic functions, valueg dittering by mul-
tiple of 27 will be regarded as the same.

Lemma 1. The equation{(X) = 0 has at mosgn roots.

. 1 :
(Prove by expressing in term of t%n( or of expix).

Corollary 1. Two t,s which take the same valueszat + 1 points are
identical.

Corollary 2. If two t,s have2n common zeros one is a consult multiple
of the order

The reader should verify that there is an analogue of thedragy
polynomial of &}, namely
The polynomial inT, which takes the values atxi(i = 0,1,...,2n)
is
1 Ci
P(¥) Y ————
( )Z 2sin%X P’(x)

where P(X) = l_[ sin X_ZXI.

We shall take for granted the trigonometric analogues ofofdra
4 — 7 (pages 14- 17) about best approximation. Briefly, for a given
f(X) in C(2r), there is unique(x) of best approximation i, which
is characterized by(x) — t(x) taking its greatest numerical value, with
alternating sign, for alt leasin2+ 2 values ofx. Proofs can be found in
the book of de la Vallee Poussin or Natanson.
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[llustrations:

1) If f(X) = th_1(X) + (a, cosnx+ by sinnx). thent,_1(X) gives the
best approximation i1 to f(x).

Proof. f-t,_; takes the values +/(a2 + b3) alternately at & points.
O

2) An interesting example is Weiertrass’s noftelientiable function 33
f(x) = Z a' cosb'x
r=0

where O< a < 1,bis an odd integer andb > 1. We shall prove that
the best approximation ifi, to f(X) is

k
t(x) = Z a’ cosb'x, whereb¥ < n < b,
r=0

Proof. f(x) —t(x) = X, & cosh'x. m]

This takes its greatest valug a atx = 0. Cosb¥*1x takes the
k+1

values=1 alternately at integral multiples af/b**1, of which there are
2b¥1 in a period.

Sinceb is an odd integer, cd$ x for r > k+ 1 takes the same values
at those points as cto§x.

Now 201 > 2n+ 2 and sof (x) — t(x) takes its numerically greatest
value for at least2+ 2 values ok.

Corollary. The approximation given by thigx) is A/n®, wherea =
log(1/a)/ logb.

Proof. The approximation is
ak+l b—a/(k+l) 1 1
1-a 1-a 1-a nv
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Modulus of continuityLet f(x) beC(a, b) and define
w(8) = sup|f(x2) — f(x1)| for [xo — xq| < 6.

Thenw(6) is continuous, increases asncreases, and tends to 0 as
¢ tends to 0. We shall find that the rapidity with whigli1/n) tends to
0 asn — oo gives the clue to the approximation f¢x) attainable inP,
or Tp.

If f(x)is C(2r), the same definition ab(6) holds. Observe that now
the greatest value ©{0) is w(r)

Properties ofu(6) are collected in the following theorem.

Theorem 16. (1) If nis an integer,

w(nd) < Nw(s).
) Ifk > 0, w(ks) < (K+ L)w(s).

(3) If w(s) = for somes > O, then f(X) is a constant.

Pmm.u)fu+nm-um:ffwfu+kh+hy-ux+km}

k=0
Forh < 6, the R.H.S. is numerically at mosi(5).
(2) If kis not an integer, let be the integer next greater. Then

w(kd) < w(nd) < nw(d) < (K+ Dw(9).

(3) f(x)is constant in any interval less thatand so everywhere.
i

Lipschitz condition. Def. (i) satisfies the Lipschitz condition of
ordera(briefly, is Lip. @) in a given interval, if for every,, xy in it,

[T(x2) — f(x1)l < Alxo — xq|%.

It follows thatw(s) < As“.
In this, 0 < « < 1. If @« > 1, f(X) can only be a constant,be a
constant, because then

w(8) < nw(s/n) < As?/n* L.

Making n — oo, we havew(s) = 0.
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11 Fourier and Fejer Sums

We collect for reference in Theordml17 some well-known faBt®ofs 35
can be found in any text-book of analysis which includes gtdraon
Fourier Series.

Theorem 17. (1) The sum

1 . .
S, = an + rZ:;(af COSrX + by sinrx)

for the Fourier Series of () is equal to

n sin(n+ 3)t
Ef {f(X+t)+ f(X—t)} (—]_Z)dt
7 Jo 2sinst

(2) 1f(X) — Sn(X)| < M(Alogn + B), where M= sup|f(x)| and A B are
constants.

(3) If On= (So+Sl--- +Sn_1)/n
is the Fejer(C1) sum of the Fourier series of(X), then

. -
anzif f(x+2t)(ﬂ"t) dt
nr Jo sint

1 . 1
St 2 (xR

The result (2), which cannot be improved, shows that, in ggne
the Fourier series of a function gives a poor approximatiothé sense
measured by sup(x) — Sn(x)|. As the R.H.S. of (2) tends to infinity
with n, (2) does not include Weierstrass’s Theoreth 15. The sense in
which the Fourier series does give the best approximatidimeisnean-
square sense (omitted here). It is known that the Fejer st (3)
behave more regularly than the Fourier su8psthis is due to the kernel
(sinnt/ sint)? in the integral for” being positive, whereas the kernel in
Sh takes both signs. The next theorem gives the approximatidiix)
afforded by £ (x).

(4)
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Theorem 18. If f(X) has modulus of continuity(s), then 36
[T(X) — on(X)] < Aw(l/n)logw(1/n)|.

Proof. We first puto,(X) into a form more convenient than that of The-
orem[IY(3). Sincd is periodic

sm2 nt (k+ Ly sin? nt
Iyt aTigpan= [ oSt

Then, from (3) and (4) of Theoremll7,

:_f F(x+ 2t)s'”2”t %Imf(x+2t)@dt

and so, by changing the variable fraro t/n,

f F(x+ E)S'—”ztdt

sint t
an—f:;IW{ (x —)—f( )}—dt

Therefore

If — o) < ;foow(Zt/ )Sl—nztdt

The integral on the R.H.S. is the sum of the integrals ovet)(0
(1, X) and (X, o). This gives

|f —onl < E{w(Z/n) + fx cu(2t/n)d—t + w(r) ) d—zt}
<= {w(Z/n) + w(2/n) f ’ ﬂdt “’)(f)}

<2 {w(Z/n)(Z +logX) + ;")}

ChooseX = 1/w(2/n) and we have a result equivalent to that stated.
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Corollary 1. Theoreni b

Corollary 2. If w(8) < As?(0 < a < 1), then|f — o < &8, where
B = B(«) is independent of f.

Proof.
00 12
I — ol < Ef w@2t/m 22t
T Jo t
27IA ™ sinft
< t* dt
n®  Jo t2
The estimates in Chapter Il would lead us to suspect thatieifcan
find at(x) which approximates té(x) more closely thao,(x) does, we
may get rid of the log(1/n) on the R.H.S. of Theorem118. It is easy to

see how to try to do this. The logarithm arises from integg term
in 1/t. The Fejer sum is

Fr(x,n) = Jif f(x+ %)(%N)Zrdt
r —00

forr = 1andJ; = #. If r > 2, there will be no term in /t. We shall
achieve our purpose by takimg= 2. m|

Lemmal. (1) b= }o—oo (%)4 dt=Z.

(2) Fa(x,n)isin Top_1.
Proof. (1)

Vs

Jz:fsin“tz (t+:Lﬂ)4dt

0

1 ., (1
== t—[— | dt
6fs'” dtZ(sinZt)

0

—:—Lfsin“t(i—i)dt—z—n
60 sinft  sinft 3
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(2) Reversing the steps by whiéh (x, n) was obtained in the first part
of the proof of Theorem 18. we have

Fo(x,n) = ff(x+ 2t) sin’* ntjtz( iizt)dt
(1 6 4
38 Then siff nt— (—) sin® nt(— - —) O
de2 \ sir? sinft  sinft

sinnt | .
Now ot is the sum of multiples of cdst wherek < n— 1. Hence

d2
SII’] nt—

dt? (sm2

Moreover, the expression is even and has periabk takes only even
values, 21 say, whered 2n — 1. Finally,

) is the sum of multiples of cokt wherek < 4n — 2.

T 21
f f(X+ 2n) cos 21dt = % f f(u) cosl(u— x)du
0 0
andF,(x, n)is in Ton_1.

Theorem 19. |f(X) — F2(x n)| < 3w(1/n).

Proof. Fa(x,n) — f(X) = — f {f(x+—)—f( )}(S'”t) o

Now | f(x + %) - f(l < w ( It l) < (2t + 1)w(1/n) from Theorem
I8 (2). Therefore

1£(X) = Fa(x0)] < w(1/n)> f @2t + 1)(3”") dt = Aw(1/n),

6 oosmt

whereA=1+ A ——dt. But

f sin® tdtf |Sm3t|dt— f Sm3tdt—1
o 0 o sirft

(again by use of TheoremlI17(4)).
So A<l+ 6 < 3.
T
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Theorem 20. If f(X) is C(27) and f(X) is continuous with modulus of
continuity w1 (), then

[f(X) — Fa(x,n)| < %wl(l/n) where A< 5/2.

) i 4
Proof. Fa(x,n) — f(X) = 2_371 f{f (x+ %) + f (x- %) - 2f(X)} (%nt) dt.
0

The modulus of the term withif} is 39

AR

2 1
= Zwi =] @22+t
nwl(n)( )
O
Therefore
A (1
19~ Falxl < o 1),
where
o0 i 4 © 4
A= §f(2t2+t) SN0 g = §sin2tdt+§fsm Lt < §(f+1)<§
T t T T t3 n\2 2
0 0

Theoren2D can be extended to higher derivativest (Xj has an
r-th derivative with modulus of continuity, (), the approximation at-
tainable inT,, is a constant multiple afi~"w,(1/n).

Notes on Chapter IV 40
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1. Use the singular integral (de la Vallee Poussin)

g

1 i1
T cod E(t—x)f(t)dt,

-

whereJ, is the value of the integral whef(t) = 1, to give a direct
proof of Theorenfi 1l5.

2. Assuming Theorein 15 proved, deduce Thedrem 1 from it.
3. Deduce Theorefll5 from Theoré&in 1 as follows:

(a) Prove that, iff (X) is C(0, n), it can be approximated uniformly
by at(x) containing cosines only.

(b) By applying @) to the even functions
29(x) = f(X) + f(—X)
2h(x) = {f(x) - f(—x)} sinx,

deduce thaf (X) is uniformly approximately by &Xx).

4. With the notation of lllustration (2), Corollary, paf€l 3frove that
Weierstrass’s functior}, @ cosb’x satisfies a Lipschitz condition of
ordera.

Hints

1 Follow Theoreni2. Detail is in Natanson, 10.

2 Approximate to cokxand sinkx by a finite number of terms of their
expansions in powers of

3 (a) Puty = cosx.

(b) g(x),h(xX) are uniformly approximately in-{r, 7). So isg(x)
Sir? x + h(x)si’ x. So is f(x)cos x, and hencef (x)(sin’ x +
cog x).
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4 Givenh, choosen so thatb™h < 1 < b™1h.

f(x+h) - f(x—h) = -2 a sinb’hsinb'x
1

n o)
-2
1 n+1
>[sed -1

n+1 n+1

ab"-1 - 2ba+!
ab-1 ab-1

>

But amtl = pa(l) < he,

Hence [f(x+h) - f(x-h)| < AR,

With more trouble (Aschieser and Krein, 167) this can be pdov
best possible.

n
< ZhZ a'b’ = 2abh
1






Chapter 5
Inequalities, etc.

12 Bernstein’s and Markoff’s Inequalities

1

Theorem 21(Bernstein) If t(x) = >

t'(X)| < nsuplt(x)I.

a, + X1 (ax coskx + by sinkX) then 42

Proof. Suppose, on the contrary, that
suplt’(x)| = nl,
where | > sup|t(x)|. O

t’(X), being continuous, attains its bounds and so, for sariéa) =
+nl and we will suppose that

t'(c) = nl.
Sincenl is a maximum value af (x),

t”’(c) = 0.
Define S(X) = I'sinn(x — c) — t(X).
Thenr(x) = S’(X) = nlcosn(x — ¢) — t'(X).

S(X) and r(x) both have ordern.
Consider the points

Up = C+7/2n, U = Ug + kr/n(1 < k < 2n).

41
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Then

S(Ug) =1-1t(u) >0
S(Ul) =1- t(Ul) <0

S(Uuzn) =1 -1t(uzn) >0

Each of the Rintervals (1o, U1), (Uz, U2), . . ., (Uzn_1, U2pn) then contains a
zero ofS(x).say

S(yi) =0,
whereu; < Vi < Ui;1,(0 < i < 2n-1). Clearly
Yon-1 < Yo + 27.
Write Yon = Yo + 27.
Then S(y2n) = S(Yo) = 0.

By Rolle’s Theorem, there is a zepp of r(x) inside each interval
(Vi, Yi+1) where 0<i < 2n - 1. Clearly

Xon-1 < Xo + 2.

Now r(c) =nl-t'(c) = 0.

Since the polynomial(x) of ordern has at most2zeros, it follows
that, for somek,

c=X< (mod 2r).

But r'(c) = -t”(c) = 0.

Thereforec(and sox) is a double zero (at least) ofX).

Therefore thex(0 < i < 2n — 1) provide at leasti2+ 1 zeros of
r(x). This is only possible if(X) = 0, and saS(x) is a constant. But
S(up) > 0 andS(u;) < 0 and we have a contradiction

Corollary 1. t(X) = sinnx shows that the result is the best possible.

Corollary 2. The algebraic equivalent is- If (g) has degree n and
Ip(¥)| < M in (-1, 1), then

P (X)) < nM+/(1 - x2).
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Proof. Put

t(0) = p(cosbH)
t'(0) = —p’(cosh) sin(@).

The bound foip’(X)| given in Corollanf® fails at the end-pointsl. A 44
better result, due to Mark® is

1P (X)] < M7,
as will be proved in Theorem 2. o
Lemmal. Let
(2k - )m
Xk = COS————— k=12...,n
K o ( , )

be the zeros of the Chebyschev polynomigk)l If q(x) is in Py-1, then
1 _ Tn(X)
= -1 k-1 1-— 2 X n_
a() n2¥ R L O Ry
Proof. Both sides are ifP,_; and so it is sfficient to show that they

agree for then valuesxx. As X — X,

Th(X n .
n(X) — T/ (X) = ———=sin(h arc cosx)

X% J2-)

_ n(_l)k—l
VaA-x9)

Also, for x = Xk, every term on the R.H.S. except the k-th vanishes.

Lemma 2. Suppose that(y) is in P,_; and|g(X)| < ;(—1 <

x < 1).

Then|g(X)| < n(-1<x<1).
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Proof. With the notation of LemmBl 1, i x; = Xy < X < Xq,

V(1 -x) > {/(1-x2) = sin X 1.

"on=n
Therefore Lemma@l2 is true for, < X < x. If xg < x < 1 (or
-1 < X< X,) Lemmd gives

Al < 113 2,

45  since all thex — xi are positive (or all negative). Now

To() = 2" | [(x= %),

T _ 1
and so o9 _Zx—xk'
i
1
Therefore  |g(X)| < —|T’(x)|
But, if X = cosf, T/(X) = nsmne , Which gives
ITH)I < %,
Theorem 22(Markoff). If p(x) is in Py, then
P <rPsuplp(x)]  -1<x<1
Proof. If sup|p(X)| = M, take in Lemmal2,
/(X
g9 = 2
n
i

Corollary. p(X) = Tn(X) shows that the result is the best possible.
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13 Structural Properties Depend on the closeness of
the approximation

TheorenZll can be used to prove theorems of a type converdeeto T
orems 18-20. Theorem 3, which is complementary to Theg@m 1
Corollary[2, will sufice to show the method.

Theorem 23. Let f(X) be 2r). Suppose that, for all n, the best ap-
proximation in T, to f(X) is less than An®, where0 < @ < 1. Then {X)
is Lip.a.

Proof. Letty(X) satisfy
A
1) -t < .

Define Up(X) = t1(X)
an(¥tn(X) —tn-1(x) (N2 1)

m|
Then f(x) is the sum of the uniformly convergent serigs.ln(x). 46
0

. 1
Choosey with0 < § < > andm such that

om-1 < 1 <2m
5

Supposéx —y| < §. We have

m-1 ) o
1F09 = FOI < > 1un(X) = tn®)l + > T3+ D a3
0 m m

We shall find upper bounds for the terms on the R.H.S.

lUn(X)| < [tzn(X) = £OYI + [T (X) = ton-1(X)|
A A AlL+29)
< — 4+ = .
ALY 2(n-1)y 2na
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Therefore
= w1 AL+ 1
Zlun(X)l < A(1+ 2 )Z ZE = Wz—mﬂ
m m

This gives

m-1

00~ )1 < ) 1un(3) ~ Un(y) + 5

(o]

Theoren 2l applied ton(X) gives
UL (X)] < 2" suplun(X)] < A(L + 2%)2"3),
By the mean-value theorem,
[un(X) = Un)I < 1UR(ElIX — Y1 < AL+ 2%)270-) 5
Therefore

m-1 B
1F(X) — f(y)l < A(l + 29)6 Z on(l-a) , =
(o]

2ma

. 1
PuttingC = A(1 + 2%) and usmgz—m < 6, we have

m-1

w(8) < Co ) 2= 1 Bo".
(o]
47 Ifnow a < 1,
m-1 _ _
Z on(l-a) _ 2m) -1 < 2md—) )
ole_1 T le_1

o

2 ,
Use now 2' < 5 and we find
1-a
2l — 1
See Notes 1-4 at the end of the Chapter.

w(6) < ( C+ B)é“
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14 Divergence of the Lagrange Sequence

There is a sense in which the Lagrange polynomial of deqi&g
ted to a functionf (X) atn + 1 points equally spaced through an interval
follows the function closely. It is natural to expect that,ibcreasingn,
the approximation would improve and we might, for instarfoed an-
other proof of Theorerd 1 on these lines. Such expectatianfaksified.
Unless heavy restrictions are laid difx), the sequence of Lagrange
polynomials diverges except for certain special values of
We shall construct an example of this phenomenon.

Lemma. Let p(x) be the Lagrange polynomial which takes the value
at the2m values of x

k/m (-m<k<mk=#2)
and takes the valug/m when x= 2/m. Then, if mis oddp(%)| — 00
as m— oo,
Proof. The polynomialp(x), of degree &, is

1 (x+ 1)(x+ L) ox(x— 1/m)(x - 3/m)... (x— 1)
m/m+1)@/m+ L) 2/m2/m-1/m)(2/m-3/m)...(2/m- 1)

This gives for|p(%)| 48

13m(Bm-2)...mm-2)(m-16)...1.1.3....m
m 2M(m+ 1)(m+1)...2112...  (m-2)

O

This can be estimated by forming it into factorials and ushtigb-
ing’s theorem. More simply, we can prove that it tendsotby grouping
the factors as follows:

1 m-1
'p(é)' = 3mr Dmr 9m-4" °C




49

48 5. Inequalities, etc.

354...m
24...(m-1)
_(Mm+2)(m+4)...(2m+ 1)
~ (m+1)(m+3)...2m

C- 2m+ 3\ (3m+5 3m
U m+1)\m+3) "\2m-2})°
HereA > 1,B > 1, and the factors df decrease from left to right,

the last being greater thai® SoC > (3/2)™1.

Note.x = = has been taken for ease of calculation. The conclusion holds
for other values ok.

where A=

Theorem 24 (Borel). There is {x) in C(-1,1) whose nth Lagrange
polynomial does not converge t@xj as n— oo.

Proof. Define a continuous curv@, which coincides with Ox outside
the interval (3¥1,37X) and has maximum3&! at the midpoint of that
interval. For example we can defig by

y =3 sin{(3 x - 1)r/2}.
O

We shall use th€ to construct a curv&.Py s(x) will denote the
Lagrange polynomial which takes the same valueS #ar the values
x = 1/3%, where—3¥ < 1 (integer)< 3.

1 ,
We shall construcs so thatPy s (5) does not converge to the point

1 . . .
onS wherex = > Observe first thalPy ¢, , is the Lagrange polynomial

in the Lemma withm = 3X. From the Lemma, given A, therelig such
that

1 .
IPkcis (E)l >2Aifk—1> hy.
There are two possibilities:

) . 1
(@) With hy fixed, Pxc,, (E) does not tend to 0 ds— oo. ThenS can
be taken to b&yy; or
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(b) there exists such that

1 1
[Pk.cry (5)' < EAfor allk > rq.

Chooséen, > maxfhy, rq).
DefineDy to be the sine-curves Bp; andCy_1(k — 1 > hy), and,
for the rest, the x-axis in<1, 1).

. . . . 1.
D, is a continuous curve; its ordinate for= > is 0, and

PKDz,k = PKChl +Pres-
From above, sinck— 1 > hy,

1

1
|Pk,D2,k (E)l > 2A — EA

Again, there are two possibilities:

. . 1
(@) Withh; fixed Py p,, (5) does not tend to 0 ds— . ThenS can

be taken to b®,p,; or

(b) there exists, such that
1 1
IPK,DZkhz (E)l <7 Aforall k> rs.

Chooséh; > max(y, o). 50

Define D3k to be the sine-curves i8n,, Ch, andCy_1(k — 1 > hg)
and, for the rest, the -axis ir-{, 1). After nrepetitions, there are two
possibilities:

(@) There is &y, for which thek th Lagrange polynomial does not

tend to 0 atx = %; and this serves fd8; or

(b) there is an infinite sequen&k,p,, for which

1 1 1 A
|Phn+1,Dn,hn (§)| > 2A — EA— ZA— . — F > A
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Asn — oo, Dpp, defines a continuous cun& whose ordinate for

1. .
X = > is 0. Its Lagrange polynomial takes values greater tAdor

1 . .
X = > when its degree iby, hy, ..., hy, .. ..
Notes

1. Weierstrass’s functiopy a" cosb' xillustrates Theoreiin18 (Corol-
lary[@) and Theoref23. See Chapter IV, note 4.

2. If @ = 1, the best that can be proved in Theof€érh 23 isdi{a) <
Aslog(1/6). The latter part of the argument can be adapted for
this purpose (Natanson, 91).

The functiony.7” 5 satisfiesd, < oy but is not in Lip.1 (Natan-
son, 93).

3. A condition which is necessary andistient ofd, < A/nis that
[f(x+ h) —2f(x) + f(x—h)| < Bh.

(Zymund, Duke Mathematical Journal, 12(1945)47 or Natanso
96).

4. (Extension of TheoreriR3). If, fof(x), dy < A/nP*® (p =
integer 0 < o < 1), thenf(x) has a pth derivative (P(x) in Lip
.

5. For further ‘negative results’ like Theordml 24, see Nsbar) 369
—388. For example, the Lagrange polynomial taking the wadifie
|X atn equally spaced points inr-(, 1) converges t¢x| ash — oo
for no value ofx expect 0+1.



Chapter 6

Approximation in Terms of
Differences

15

This is the only chapter in the course, of which the resuksrat clas- 52
sical. The point of view here might lead to a re-orientatiowdrds
algebraic rather than trigonometric polynomials.

In Theoren 2D (and its known extensions) the approximatitaira
able inP, or T, to a diferentiable functiorf (X) is expressed in terms of
its first higher derivative. We shall now give simple exanspiich lead
us to suppose that boundsdifferencesof f(x) rather than derivatives
may be more directly related to the closeness of the appatiom

Example 1.1f f(x) attains its greatest value gt and its least ax;, then
the best approximation iRg is

1
5 (10x) + T0e))
1 1
and & =5 {f(x) -~ T(x)} = 5 SuplAT]
This depends solely on the firstfid@rence off (x); the derivative of
f(X)- if it exists-has no bearing on it.

Now raise the degree by one.

51
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Example 2.If f(X)is C(0, 1), there is a linear functiop(x) for which
[f(X) — p(X)| < sup|f(x+ 2h) — 2f(x + h) + f(X),
the sup being taken over all h such that
O0<x<x+2h<l

Proof. Definep(x) to be equal tdf(x) atx = 0 andx = 1 Write

9(¥) = £(X) = p(x).

Then|g(X)| attains its maximumiM, for 0 < x < 1 atxy, say.
1
IfO<x < > takex = 0,h = x;. Then

l9(x + 2h) = 2g(x + h) + g(x)| = [9(2%1) — 29(x1) + 9(0) > M.
1
If > <Xy <ltakex=2x;-1,h=1-x. Then

lg(x + 2h) — 2g(x + h) + g(X)| = 19(1) — 29(x1) + 9(1 — Xa)| > M.

But the second dlierence ofy(x) and f(x) are equal.

By a longer argument it is possible to prove the correspancisult
for P, and the third dierence.

The general result was conjectured in 1949 by H. Burkill.

Theorem 25. There is a number Kdepending only on n such that given
f(x) in C(a, b), there is a polynomial (x) in P,_1 for which

[T(X) — p(X)| < Ky suplAn(f)l

(where the supremum is taken for all sets ef hpoints %..., X+ nhin
(a b))
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The theorem looks innocent, but attempts at it failed untilithey
it in 1955. He took for higp(x) the Lagrange polynomial for the points
of division of (g, b) into n — 1 equal parts. His work does not yield an
estimate oK, for generaln; in view of Theorem 24, we should hardly
expect good value df,.

Whitney's elegant arguments are too long for reproductiere hand
the reader is referred to his paper in journal de Mathemesi@6(1957),
67-95.

It is worth observing, however, that instead of the usaldiffer-
ence with equal increments, we can take a more genérdifference
depending of the values df(xX) atn + 1 arbitrary points. The dliculty
then disappears and the polynomial of best approximationbeaused
instead of the Lagrange polynomial.

16 Definition and Properties of then Difference

If
@(u) = (U—ho)(u—hy)---(u-hy),

the n" divided diference off (x) for the values specified is commonly
defined by
- f(h)

Dn = Dn(f;ho,....hy) = .
n n( 0} n) ;‘p,(hl)

In what follows it will be convenient to suppose that

ho >hy >--->hy

To define am™ differenceA,, as distinct from a divided fierence,
we naturally take
An = Han

whereH,, is homogeneous of degreen theh’s.
The most suitable definition ¢f,, appears to be

Hn = 2n/Tn,
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n
where Tn = Tn(ho, g, ..., ) = Z I’ (M)
iz0

In the special case of equal increments wWigh- h, = nh, this gives
Hn = n'h", which is right.

As a further check on the appropriateness ofldgirwe observe that
if a function is numerically less tha#, its n'" differenceA,, is numeri-
cally less than 2A.

In working with D, Ay, etc., we shall specify the function and the
values of the variables only so far as is necessary for glarit

We are now in a position to restate and prove Thedreélm 25,dakin
An(f) to be the diferenceH,,Dy(f) just defined.

Theorem 28. Theoreni2b is true with K= 27" and A,(f) as just de-
fined and the supremum taken over all valuesf h, hy in (a, b).

Proof. Given f(X), takep(x) to be its polynomial of best approximation
of degree at mogt — 1. Thenf(x) — p(x) takes its greatest numerical
value atn + 1 points, with signs alternately and—. Thesen + 1 points
we takes a$., ..., hn. O

Since the™" difference of a polynomial of degree-1 is 0, we have

. _ 5 () - p(hy)
An(fiho, ..., hn) = Hng; o
So [Anl = Heg > I’ (i)™ = 27d,

by definition ofH,,.
Therefore, for alk in (-1, 1),

1f(X) — p(x)| < d < 27" sup|An(f)I.
This proves Theorem 25

Alternatively we can prove Theorem 25tarting from the upper
bound of|A,| instead of from the polynomial of best approximation.
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Suppose, then, that sig,| = L and that the bound is assumed
for the valuesh,, hy, ..., h, of the independent variable. Define points
(hi,y;) fori =0,1,..., by taking
L

, — Y _ (1)K
yi = f(h) - (-1) on°

wherekisi ori+ 1 according adn(f, h, ..., hy) is positive or negative.

Constructa p(x) of P,_; through then points §,y;) fori =0,1,...,
n— 1. Write

9(x) = f(x) - p(x).
SinceAn(p) = 0, |An(g)] = |An(T)| attains its upper bound fd, hy,
..,hn.  From the definition ofA,, the value ofg(h,) which makes

|An(g,ho, hy, ..., hy)| = Lis (-1)¥L/2", wherek is n or n + 1 accord-
ing asAn(f, he, ..., hy) is positive or negative.

We prove thatg(x)| < 27"L for all x. Suppose thay| takes values
greater thari /2", sayg(h') > L/2" for a valueh| betweerh_; andhj,;
whereg(h;) = 27"L. Then, from the definition of,,

Dn(97 hOa I ERE] hi—19 h|’a hi+19 L) hn)
> 2_nLTn(h0, ey hi_l, hl” hi+1, ceey hn)

and so, by definition od,

An(9,ho, ... hizg, W hisa, . hg) > L
which is a contradiction. We have therefore

1f(x) = PO = 19| < 27" suplAn(f)I,

which is Theorem 25 57
For the next result let us call the+ 1 values

T T
-1,-cos—,...,cos—,1
n n

at which the Chebyshev polynomial cog{rc cosx) assumes the values
+1 the Chebyshev points of the intervall( 1).
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Theorem 26. Suppose that >> hy > hy >--- > h, > -1. Then
Ta(ho, ..., hy) > 2"1
and the sigr= holds if and only if the hare the Chebyshev points.

Proof. The polynomialq,(x) of degreen which takes the value-(l) at
hi(i=0,...,n)is

n (<D
an(X) = ¢(X) ; m

Thengn(X) = anx" + - - - + @y, Where

n
1
= :T h,...,h .
an 20 o’ ()] n(ho n)

Write th(X) = 2-™a, cosf arc cosx).

Thengn(X) — th(X) has degrea — 1 at most.

If a, < 2"1, then|ty(X)| < 1 andgn(X) — tn(X) has the sign ofj,(X)
for then + 1 valuesh,, ..., h;. If a, = 2"1 the same is true on the
understanding thajn(X) — ta(X) may vanish for any of these values. So
the polynomialgn(X) — tn(X), of degree at most — 1, hasn zeros. This
is a contradiction ik, < 2"1, and is only possible faa, = 2"~ when
dn(X) = ta(X). This proves the theorem.

Corollary. Forl>hg>--->hy>-1LH,<2
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APPENDIX

Approximation by
Polynomials in the Complex
Domain

1 Runge’s Theorem

The problem considered till now was the approximation ofv@gicon- 59
tinuous function on a finite closed interval by polynomialsireal vari-
able. Even for functions of two variables, we considereq ¢im¢ prob-
lem of approximation by polynomials in two independent neaiables

X, y. in what follows, we shall consider the approximation of adiion

in a domain in the plane (open connected set) by polynomiathe
complex variable = x+ iy (which are analytic functions of the variable
2).

Let pn(2) be a sequence of polynomials and suppose@h@athich
we assume is not empty) is the largest open set in whi¢t) converges,
uniformly on every compact subs€T his is the type of approximation
we shall consider; the problem of approximation on closdd sere
difficult). By Weierstrass’s theorem the limit of the sequepg) is an
analytic function inG. There is moreover, a purely topological restric-
tion onG, viz., every connected componddiof G is simply connected:
for, if Cis a sample closed curve containedimandB is its interior, then

59
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(maximum modulus principle)

sup [pn(2) — Pm(2)| = suplpn(2) - Pm(d — as h,m — oo
zeBUC zeC
so that the sequeng®(2) converges uniformly oBUC. HenceBUC ¢
G and sinceD is a connected component a@d- D, B c D.
The main theorem, which is the analogue of Weierstrass'soapp
imation theorem Th.1, p.2) and which includes a converse of the re-
marks made above, runs as follows.

Theorem A (Runge).Let D be a domain in the plane and f an analytic
function in D. Then f can be approximated, uniformly on ey pact
subset of D, by rational functions whose poles lie outsidelflD is
simply connected, f may be approximated by polynomials.

We begin by funding a sequence of open regi@asn = 1,2,3,...
bounded by polygons such thaj, is relatively compact 5.1, whose
limitis D. We may takés,, as a subsequence of the sequeBgewhere

B is defined to be the interior of the union of those squa%(gss

k+1 1 [+1 . m S
< Lm,—m <y< Lm,k,l integersK|, |I| < 22", which lie in D.
The boundary of5, can be split into a finite number of simple closed
polygonsC, k can be joined by a simple are which does not ni&eto

a point on the boundary @. If C, = | Cyk is the boundary 06, we
K

f(2 = %ftff—t)zdt,zeGn.
Cn

By the definition of the integral, we may approximdig) uniformly
in Gn_1 by finite sums of the form

fn(2 = % Z ft) (trr1—t)

tr—2z

have

wheret, are certain points of,. Hence ife, | 0, we can find a se-
quence of rational functionR, such thatR, has poles at most o8,
and

) 11(2) - Ra(? < &nin Gp_1.
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The main idea in the proof of the theorem is contained in the ne1
step, which we state as a separate lemma.

Lemma. Let C be a simple are joining the pointg and z and K a
compact set not meeting C. Then, any rational function winrgg
possible pole is atzcan be approximated, uniformly on K, by rational
functions which no poles expect possiblyat z

Proof of the lemma. Lete > 0 be given and @ be the distance
betweerC andK. We find pointsa, ..., a, onC,ay = Zy,a, = z; such
that|ax,1 — ax| < d. Let R(2) be the given rational function. There are
two polynomialsp andq so that

R - @+ ;2 |

. 1 . :
and we have only to approximal ﬁ = f(2). Sincef(2) is ana-
lytic in |z—a;| > d and is finite ato, the Laurent expansion d¢{z) about
a; contains no positive powers of a; and converges uniformly on ev-

ery compact subset ¢f — a;| > d. A suitable partial sum then gives us

. . 1 .
a polynomialp; with ‘f(z) - pl( )‘ <2 forzek. Repeating
Z—- a1 u+1
this process, we find successively, polynomgjsj = 1,. .., u with

‘ (L - ! <2 forzek
Pi z-a Pt z-aj)| p+l '
Then clearly
1
’f(Z)—p# H <8,Z€K

and the lemma follows.

Proof of Theorem.Let D be any domain and analytic inD. Let G,
be the sequence of regions exhaustihglescribed above. There is @2
rational functionr, with poles at most o, 1 such that

1
‘f(z) - rn(z)’ < o onGy.
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Every point of the boundary dBn,1 can be joined be an arc not
meetingG,, to the boundary oD, so that, by the lemma, there is a

<1
2n

onGp and|f(2 — Ra(2)| < 1 on Gy. The first part of Runge’s theorem

is proved. IfD is simply connected, then every connected component
of the complement is unbounded (unl€$s the whole plane in which
case the theorem is trivial). Hence every point of the boondéG, 1
can be joined to a poir# (|z;] > 2r) by an arc which does not me@t,,
r being such tha6, is contained in the circlig < r.

Now it follows as above that there is a rational functiRy(z) with
all its poles lying injZ > 2r, with

rational functionR,, with poles outside® such tha*Rn(z) —rn(2

1
‘f(z) -Ry(2)| < 7 onGy.

If we expandRn(2) in a Taylor series about= 0 (which converges
uniformly for |z < r), then a suitable partial sum,(2) satisfies

1
R(2) — pr(@)| < 5 oG

1
so that ‘f(z) - pn(z)‘ <= onGy.

This complete the proof of Runge’s theorem
The same argument proves the following theorem

THEOREM A 1 Let D be any plane domain. From each connected
component of the complement of D, choose a pginthen any analytic
function in D can be approximated uniformly on every compgatin D

by rational functions which have poles at most at the poipts z

Runge’s theorem is of importance in the theory of functiods
an instance of its applicability we prove the following end®n to an
arbitrary of Mittag-Ldfler's theorem

THEOREM. Let D be a plane domain and & = 1,2, ... sequence of
points in D having no limit point in D. Letjve polynomials (without
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constant term). Then there is a meromorphic function f in bvpoles

1 ). .
at most at the asuch that {2) — p, (z 3 ) is analytic at g.

%

Proof. We can construct a sequen@g,n = 1,2,... of regions so that
Gn is relatively compact i, 1, |, Gn = D and so that any point of the
boundary ofG,, can be joined to a point not i@ by an arc not meeting

Gh. Let
CCEDWACE

a,eGp

the sum being over those (finitely maray)which lie inG,. Sincef,,o—
far1 is analytic inGp,1, we can find a rational functioR,,; with no
poles inD such that

1 .
< > for zin Gy.

fn+2(z) - fn+l(z) - Rn+1(z)

Since the poles of thB,,1 lie outsideD and the series
D (o = fa = Ry)
n=ny+1

converges uniformly i, , it follows easily that we may take 64

1@ = 122 + ) (frn1(d — (@) — Re(@).
n=2

2 Interpolation

For functionsf of a real variable, ifp, is the (Lagrange) polynomigl
of degreen which agrees withf atn + 1 equally spaces points on an
interval, the sequencg, in general diverges as— oo. The behaviour
for functions of a complex variable is more satisfactory. piceed to
prove two of the main theorems.
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Let C be a simple closed rectifiable curve ah@) a function an-
alytic inside and orC. Letts,...,ty,1 ben+ 1 points insideC (not
necessarily distinct). Then the polynomial(2) of degreen such that
pa(t) = f(t),i = 1,...,n+ 1 (multiplicity being taken into account if
some of the; coincide) is easily seen to be given by
1 (Z_tl)"'(z_tml) f(t)

f(Z)—pn(Z)=ﬁC t—t) (t—ty1) L—2

Ouir first theorem is as follows. It is also due to Runge.

THEOREM B. Let f(2) be analytic for|7 < RR > 1 and p,(2) the
polynomial of degree n withpyfz) = f(z),i = 0,1,...,n, where thez
are the(n + 1) roots of unity.
Then
pn(2) - f(2 ash— o

uniformly for|z < o < R.

65  Proof. LetC be the circldZ = p’,p" > p,p > 1. Then, forZ < p,

+1 _
f(z)—pn<z)=%fzn 17O g

ctl_1t—z

so that
1 2% -11(@)
f(2) - = — _
112 - P2l = | f e
1+pn+1

i o M= ERTED

— 0 asn — oo sincep’ > p,p’ > 1.

O

The next theorem is due to Fejer and is considerably dedpmmi
tains TheorenB.

Let C be a simple closed curve and suppose (@} maps the exte-
rior of C one-one conformally ont| > 1 in such a way that the points
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at infinity correspond. Then, as is well knowm(2) is one-one continu-
ous onC. Let ai(”), i=0,1,...,nbe then + 1 points ofC corresponding
to the g+ 1) roots of unity in the w-plane. Then we have

THEOREMC. Let f(2) be a function analytic inside and on Cang(p
the polynomial of degree n which equal&)fat the pointSQi(C). Then
pn(2 — f(2), uniformly inside and on C.

We begin with a lemma.

n
im [ ]|z o
n—oo

i=0

uniformly on any compact set exterior tq £ > 0 being a constant 66
(depending on €

Lemma.

1
(n+1)

= Aw(2)|.

Proof of the lemma. Letz = z(w) be the inverse ofv = w(2) and let

Wo, . . ., Wy be the @1 + 1) roots of unity. We prove first that
1

z(w) zw) | ™D _

W—W

1. lim ]‘[

N—o0j_0o

The logarithm of the term on the left is

2. lim 75 21 log A2 gy

n+l

2w) ‘: 1 flog

and the limit is uniform fow in a compact set iftw| > 1.

Now ZW —20) . analytic function of for || > 1 and fixedw,

including{ = 0, ¢ = w. Hence the integral in (2) is equal to

’ zw) - (é)‘ log A, say

lim lo
{—o0 g
(we have only to make the substitutignh— 1/¢ and use the Poison
integral).
From (1), it follows that

HIZ(W)—z(wi)|<n+n _ ililz(W)—z(Wi)unTll)

Iw — wy; |1/ (n+1) B nﬂo W+l — 1)1/(n+1)
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n
lim ] Iz(w) — Z(w;) D
N—coi_0o
= = A
W

and the lemma follows on substituting= w(z).

Proof of Theorem. Let Cg(R > 1) denote the image undefw) of the
circle|w| = R; we can choos® > 1 such thaff is analytic inside and on
Cgr. Letl<r; <ry < R;and put

7n(2) = ﬁ(z - o).

We have

1 m@ o
t2) - (@ = ﬁcf St

If zisonC;, andt onC;,,

1
lim (@)™ _ (by the lemma)
n—oo ﬂn(t) ro
1
so that lim [ sup|f(2 - pn(z)|]n+1 <Doq
n—oo 2eC f2

"

Consequentlyf (2) — pn(2) — o uniformly forzonC,,.
The theorem follows at once from the maximal modulus prilecip

3 Best Approximation

In this section we shall consider the problem of best appnakbn.

Let K be a compact set containing infinitely many points dfz) a
continuougfunction onK. Our aim is to prove the existence and unique-
ness of a polynomiab,(2) of degreen such that

(. pr) = sup|F(2) - pn<z)\
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is least. in general, of course, this minimultf, p,) does not tend to
zero an — oo.
Existence of a polynomial of best approximation

Let P, be the family of all polynomials of degree n, and letf(2)
be a continuous function on the compactiset et

d(f) =d = inf d(f, p) = inf (suplf(@) — p(2)).
pePp pPePn 2K

Then we have the
THEOREM D. There exists a g P, with d(f, p) = d.

Proof. Any polynomial p € P, takes values 0 or 1 & points at most.

HenceP, is a quasi-normal family of order, (theorem of Montel, see
[1] p. 67) i.e., given a sequengw, of polynomials inP,, there is a

subsequence,, andn pointsz such thatp,, converges, uniformly on
every compact set not containing theeither to a finite limit function

or to co. In the first case it is clear tha, converges uniformly on any
compact set (which may contain some of #je O

There is a sequeng#g” of polynomials ofP,, so thatd(f, p) — d.

Then, clearly, ifz € K, |p™(2)| < d + 1 + sup|f ()| for largev (we may 69
LeK

suppose that holds for al). Let p® be a subsequence converging out-
siden pointsz, uniformly on compact sets. Sinéecontains infinitely
many points there are points kKifnot equal to any;, and it these points

2 |p™(2)| is bounded. Hence the limit outsideis finite and conse-
quently, p®® converges uniformly on any compact set. From Cauchy’s
inequality, it follows then that the corresponding dtigents of px)
converge, so th&ll(t_) Eonp(yk)(z) = p(2) € P,.. Then we have

d < d(f, p) < d(f, p*) + d(p®, p) - d

so thatd(f, p) = d.

[If K contains a circléz— a| < r,r > 0, the existence of a sequence
p®) converging uniformly on any compact set follows at oncenabe
case Chll,Th4, p.14) if we use the Cauchy inequalities.]
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Uniqueness of the polynomial of best approximation

We shall deduce the uniqueness fro the following theorerm tee
case of a real variable.

Let p € P, satisfyd(f, p) = d(f). Then|f(2) — p(2)| attains its
maximum at atleast + 2 distinct points oK.

(The proof is similar in principle to the proof dth.5, p.14).

Proof. Suppose that(2)—p(2) = g(2) attains its maximum modulus it
points fn < n+ 1)z, ..., z, of K. Then, we can construct a polynomial
d(2) of degreen such thaiy(z) = g(z). Givene > 0, we can finds > 0
so that if

101 — {2 < 6,19(41) — 9(£2)] < &,1a(41) — a({2)l < &
O

Let K! be the set obtained froid by removing the points of the
(open) disc$z— z| < 6. Then

suplg(2)| = d* < d = suplg(2)!.

zeK1 zeK
Let 1 > 5 > o be stfficiently small. Consideg(2) — nq(2); then for
12— 7] < 6,19(2) - 9(z)| < &, InA(2) - na(z)| < ne, so thatg(z) - na(?)| =
n(9(z) - 9(2) + n9(2) - 9(2) + n(a(2 — a(z))! (sinceq(z) = 9(z)) <
ne+ne+(l-nd<dif2e <d
If we choose; so small that

suplg(? - na(2)l <d

zeK1
we have sum(2 — nq(2)| < d
zeK

andd(f, p + nq) < d, contradicting the definition ad.

THEOREM E. The polynomial of degreg n of best approximation is
unique.

Proof. Letd(f, p) =d =d(f,q); letr(2) = :—ZL(p(z) +q(2). m]
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Then
1 1
1@ - @I = 5(f@ - p) + 5(1(@) - a@)I < d

Letz,...,Z,2 be points at whichf(z) — r(z)| = d. Then, unless 71

. 1
f(@) - p@) = f(z) - a(@) = wi with \wi| = d, 5|f(z) - p(z) + (2) -
q(z)| < d. Hence,p(2) andq(2) take the same value at thet+ 2 points
z and since they are polynomials of degre@(2) = q(2).
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