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1. The plan

In §2 we introduce partitions of unity and apply them to construct linear extension
operators on spaces of continuous functions.
In §3 we introduce the Whitney cover of open sets in Rn and apply it to construct
linear extension operators for Lipschitz functions on closed subsets of Rn.
In §4 we prove Whitney’s characterization of the restrictions of jet of Ck functions
to closed subsets of Rn and construct linear extension operators for Ck jets on
closed subsets of Rn.
In §5 we prove Sard’s theorem and present Whitney’s proof that weaker smoothness
is not sufficient.

2. Partitions of unity

Definition 2.1. Let K be a Hausdorff space and let U be an open cover of K.
(i) A cover V of K is called a refinement of U if for every V ∈ V there is a U ∈ U
s.t. V ⊂ U .
(ii) The cover is said to be locally finite if every x ∈ K has a nbhd which intersects
only a finite number of the sets in U .
(iii) K is called paracompact if every open cover of K has a locally finite refinement.
(iv) A partition of unity, subordinated to an open cover U is a family of continuous
functions fα : K → [0, 1] s.t. {ψα > 0} is a locally finite refinement of U and s.t.∑

ψα(x) = 1 for every x ∈ K. (Note that this is a locally finite sum.)

Partitions of unity will serve to ”glue” local constructions to a global one. For
example, assume {ψα} is a partition of unity and for each α the function fα is
defined on some set containing {ψα > 0} and has a certain property P. Then the
function f =

∑
ψαfα is well defined on all of K and is a locally a finite convex

combination of the fα’s. For certain properties P (e.g., continuity, nonnegativity,
boundedness by a uniform constant) this suffices to ensure that also f has P.

Theorem 2.2. (i) A paracompact space is normal.
(ii) A compact Hausdorff space is paracompact.
(iii) A metric space is paracompact.
(iv) In a paracompact space any open cover admits a partition of unity subordinated
to it.

Proof. We shall not prove the easy part (i) (hint: prove first that it is regular), the
trivial part (ii), and the hard part (iii) (the original proof of Stone (1948) was quite
involved, but M. E. Rudin [6] gave a short, simple and ingenious proof).
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To prove (iv) we may assume that the given cover, U , is locally finite, and we
first find, by transfinite induction, for each U ∈ U an open set VU s.t. VU ⊂ U and
s.t. {VU} is still a cover of K.

To this end index the cover as {Uα}α<α0 and assume the Vα’s have been found
for all α < β. Replacing, for α < β, the Uα’s by the Vα’s the problem reduces to
finding a V ⊂ W ′ for some fixed W ′ in a cover W. But by (i) K is normal, hence
there are disjoint open sets separating the two closed and disjoint sets

K \W ′ and K \
⋃
{W : W ∈ W & W 6= W ′}

and if O is the open set containing K \W ′, take VW ′ to be the interior of K \O.
Now, by the normality of K and Tietze’s theorem, find for each U ∈ U a function

ϕU : K → [0, 1] s.t. f(x) ≡ 1 on VU and {fU > 0} ⊂ U . Then put

ψU =
ϕU∑
U ϕU

.

¤

As an application we discuss linear extension operators for continuous functions.
Tietze’s theorem allows, under certain circumstances, to extend functions from
a closed subset H of a topological space K to the whole space. Can we find
a continuous linear operator that does the extension simultaneously for all the
continuous functions on the subset? The answer is trivially yes if H is a retract of
K – if r : K → H is the retraction, then Tf(x) = f(r(x)) is such an operator.
But, of course, retracts are quite rare.

The following theorem gives conditions under which a linear extension operator
exists. Example 2.4 shows that this is not always possible.

Theorem 2.3 (Borsuk - Kakutani). Let K be a metric space and let H ⊂ K be
a closed subset. Then there is a linear extension operator T : CB(H) → CB(K)
satisfying ‖T‖ = 1 and T1 = 1 (so, in particular, Tf ≥ 0 whenever f ≥ 0).

Proof. Denote the metric by d. The balls Bz = B(z, dist(z,H)/2) for z /∈ H cover
K \H, and note that d(z, H) ≤ 2d(x,H) for every x ∈ Bz.

Let ψα be a partition of unity on K \ H subordinated to its cover {Bz} and
choose, for each α, a point zα s.t. {ψα 6= 0} ⊂ Bzα . Then choose yα ∈ H s.t.
d(zα, yα) < 2d(zα,H). It follows that if ψα(x) 6= 0 then

d(x, yα) ≤ d(x, zα) + d(zα, yα) <
1
2
d(zα,H) + 2d(zα,H) =

5d(zα,H)
2

≤ 5d(x,H).

Define the linear operator T by

Tf(x) =

{∑
ψα(x)f(yα) x 6∈ H

f(x) x ∈ H

for f ∈ CB(H). The local finiteness of {ψα 6= 0} implies that each x 6∈ H has a
nbhd W where the sum is actually a finite convex combination of values of f . Thus
‖Tf‖ ≤ ‖f‖ and T1 = 1. Also Tf is continuous separately on H and on K \H.

To show that Tf is actually continuous, fix y ∈ H and we need to estimate
f(y) − Tf(x) for x 6∈ H. Thus fix x and let Ax = {α : ψα(x) 6= 0}. The set Ax is
finite and Tf(x) =

∑
Ax

ψα(x)f(yα), and for α ∈ Ax

d(y, yα) ≤ d(y, x) + d(x, yα) ≤ d(x, y) + 5d(x,H) ≤ 6d(x, y).
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Fix now ε > 0 and choose δ s.t. t ∈ H and d(y, t) < δ imply that |f(t)−f(y)| < ε.
If x is such that d(y, x) < δ/6 then d(y, yα) < δ for every α ∈ Ax. Hence

|f(y)− Tf(x)| =
∣∣∣∣∣
∑

Ax

ψα(x)
(
f(y)− f(yα)

)
∣∣∣∣∣ ≤

∑

Ax

ψα(x)ε = ε.

¤

Example 2.4. The Borsuk - Kakutani theorem holds, more generally, when K is
paracompact and H is compact and metrizable. But continuous linear extension
operators do not necessarily exist otherwise. Before we give a concrete example, we
first show that if K is a compact Hausdorff space which contains a countable dense
sequence {xj} and H ⊂ K is a closed subset which contains an uncountable family of
disjoint open sets Ut, then there is no bounded linear extension T : C(H) → C(K).

Assume for contradiction that such an operator T exists.
Choose, for each t, a function 0 ≤ gt ∈ C(H) supported in Ut s.t. ‖gt‖ = 1.

It follows that ‖Tgt‖ ≥ 1 (because Tgt is an extension of gt). Thus each of the
uncountably many nonempty open sets Vt = {Tgt > 1/2} must contain one of the
xj ’s – and there are only countably many of them. Thus there is a point x ∈ K
which belongs to uncountably many sets Vt. Fix n > 2‖T‖ and choose t1, . . . , tn
s.t. x ∈ Vtj . Put g =

∑
j≤n gtj . As the gt’s are disjointly supported it follows that

‖g‖ = 1. But this leads to a contradiction because

‖T‖ ≥ ‖Tg‖ ≥
∑

j≤n

Tgtj (x) > n/2 > ‖T‖.

It remains to give an example of such K and H.
Let I = [0, 1]. Then K = II with the product topology is compact and separable.

Indeed, let P denote the (countable) set of finite partitions P = {Ij} of I by disjoint
intervals with rational endpoints. It then follows from the definition of the product
topology that the countable set

{
fP ;rj : f∣∣Ij

≡ rj ; rj ∈ Q ; P ∈ P
}

is dense in K. For the set H ⊂ K we take

H =
{

f ∈ K :
∑

t∈I

f(t) ≤ 1
}

=
⋂

t1,...,tn

{
f ∈ K :

n∑
1

f(ti) ≤ 1
}

.

As an intersection of closed sets H is closed, and the uncountably many open
sets Ut = {f ∈ H : f(t) > 1/2} for t ∈ I are, indeed, pairwise disjoint.

3. The Whitney cover

To extend continuous functions it was enough that the partition of unity was
locally finite. For other classes of functions, for example, to extend Lipschitz func-
tions to Lipschitz functions or for functions with a certain number of continuous
derivatives, this is not enough. In addition to conditions on the smoothness of the
ψ’s we shall need a uniform bound on the maximal number of intersecting sets in
the cover, as well as a bound on the distance of VU from U c. In this section we de-
scribe the Whitney covers of open subsets of Rn, which give such uniform bounds.
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Such covers will be applied to construct ”Whitney type” partitions of unity and
extensions.

By a cube in Rn we shall mean a closed cube with sides parallel to the axes.
Two cubes are said to be disjoint if their interiors are disjoint. The distance of a
cube Q from a set F is denoted by dist(Q,F ).

Theorem 3.1 (Whitney). Let F ⊂ Rn be closed. Then its complement F c = Rn\F
admits a cover Q = {Qk} by closed cubes with disjoint interiors s.t.
(i) diam(Q) ≤ dist(Q,F ) ≤ 4diam(Q) for every Q ∈ Q.
(ii) If Q1, Q2 ∈ Q touch, then diam(Q1) ≤ 4diam(Q2).
(iii) A cube Q ∈ Q touches at most N = N(n) = (12)n other cubes in Q.
(iv) Fix 0 < ε < 1/4 and let Q∗ be the collection of cubes Q∗ obtain by expanding
each Q ∈ Q by a factor of 1 + ε around its center. Then Q∗ is a cover of F c s.t.
each point in F c has a nbhd which intersects at most N cubes Q∗ ∈ Q∗.
Proof. Let M0 be the collection of all cubes with edges of length one and integer
vertices, and for k ∈ Z let Mk be 2−kM0. A cube in Mk has diameter 2−k

√
n.

The ”layers”

Ωk =
{

x ∈ Rn : 2
√

n2−k < d(x, F ) ≤ 2
√

n2−k+1
}

are disjoint from F and cover F c, and we define a collection Q0 of (not necessarily
disjoint) cubes by

Q0 =
⋃

k

{
Q ∈Mk : Q ∩ Ωk 6= ∅

}
.

We first check that every Q ∈ Q0 satisfies

diam(Q) ≤ dist(Q,F ) ≤ 4diam(Q).

Indeed, fix k and Q ∈Mk s.t. Q ∩ Ωk 6= ∅, and choose x ∈ Q ∩ Ωk. Then

diam(Q) = 2−k
√

n = 2
√

n2−k − diam(Q) < d(x, F )− diam(Q) ≤ dist(Q, F )

and
dist(Q,F ) ≤ d(x, F ) ≤ 2

√
n2−k+1 = 4diam(Q).

The cubes in Q0 are disjoint from F and cover F c, but they are not disjoint, so
we now pass to a subcollection Q ⊂ Q0 of disjoint cubes which still covers F c. The
point is that if Q1, Q2 ∈ ∪Mk are not disjoint, then one of them contains the other.
Moreover, every Q ∈ Q0 is contained in a (unique!) maximal Q′ ∈ Q0 because the
diameters of the cubes containing Q are bounded by d(Q,F ).

Thus define Q to be the set of these maximal cubes, and (i) is already proved.

Part (ii) follows from (i). Indeed, the fact the cubes touch and (i) imply that

diam(Q1) ≤ dist(Q1, F ) ≤ dist(Q2, F ) + diam(Q2) ≤ 5diam(Q2, F )

but the diameters are powers of 2, so necessarily diam(Q1) ≤ 4diam(Q2, F ).

To prove (iii) assume that Q ∈ Mk. By (ii) the touching cubes can only be in
Mk−1, Mk or Mk+1. But Q touches exactly 3n cubes in Mk (including Q itself),
and each cube in Mk is split into 4n sub-cubes in Mk+1, so the maximal numbers
of cubes that can touch Q is 3n4n = (12)n.

Finally, to prove (iv) we note that by (i) each Q∗ is contained in F c. Also Q∗

intersects Q′ iff Q touches Q′. Indeed, by (ii) the diameters of all the cubes touching
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Q are at least diam(Q)/4 so its expansion Q∗ is contained in their union (including
Q itself), and by (iii) there are at most N such cubes. And, of course, every x ∈ F c

is contained in some Q′ ∈ Q. As ε is strictly smaller than 1/4, this also holds for
points in some nbhd of x even when x ∈ ∂Q. ¤

The parameter ε < 1/4 will be fixed from here on. We shall not specify its value
nor shall we note the dependence on ε of constants that depend on it.

The Whitney cover will be applied in the next section to extend smooth functions
from closed subsets of Rn. We finish this section with a ”baby case” of such a
theorem.

Let X be a metric space and let f : X → R be a Lipschitz function. We denote its
Lipschitz constant sup f(x)−f(y)

d(x,y) by Lip(f) and consider the Banach space Lip(X)
of Lipschitz functions on X with the norm ‖f‖Lip = max{‖f‖∞, Lip(f)}.

Theorem 3.2. Let F ⊂ Rn be a closed set. Then there is a continuous linear
extension operator T : Lip(F ) → Lip(Rn). The norm of T depends only on n and
not on F .

Proof. In what follows the letter C will stand for a constant C > 0 which may
depend only on n, and which could have different values at different places. We
shall also write a ∼ b when they are equivalent up to a constant that may depend
only on n.

Thus, let Q = {Qk} be the Whitney cover of F c, and we summarize Theorem
3.1 by saying that d(x, F ) ∼ diam(Q∗) ∼ dist(Q∗, F ) for every x in any of the
N = N(n) cubes Q∗

k that intersect Q∗.
For each k let pk ∈ F be a closest point to Qk and let ϕk(x) = dist(x,Q∗

k).
These functions are 1-Lipschitz and ϕk(x) ≤ Cd(x, F ). We consider the partition
of unity on F c, subordinated to the cover Q∗, given by ψk(x) = ϕk∑

ϕj
and define

Tf(x) =

{∑
ψk(x)f(pk) x 6∈ F

f(x) x ∈ F.

As in Theorem 2.3 Tf is continuous and bounded on Rn by the same bound as
f , and we need to estimate its Lipschitz constant.

We first estimate the Lipschitz constants Lip(ψk). Put g =
∑

ϕj and note that
C1d(x, F ) ≤ g(x) ≤ C2d(x, F ). Indeed, if x ∈ Qk then the k’th term, namely ϕk(x)
is already bigger than εdiam(Qk)

(1+ε) ∼ d(x, F ). Also, ϕj(x) 6= 0 for at most N(n) terms
in the sum and each of them is bounded above by Cd(x, F ). Similarly Lip(ϕk) = 1
and Lip(g) ∼ 1.

Fix now x, y ∈ Qm, then

ψm(x)− ψm(y) =
ϕm(y)
g(y)

− ϕm(x)
g(x)

=
g(x)(ϕm(y)− ϕm(x)) + ϕm(x)(g(x)− g(y))

g(y)g(x)

≤ C
d(x, F )d(x, y) + d(x, F )d(x, y)

d(x, F )d(y, F )
∼ d(x, y)

d(Qm, F )
.
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Assume now that Lip(f) = 1 and write, using
∑

(ψk(y)− ψk(x)) = 1− 2 = 0

|Tf(y)− Tf(x)| =
∣∣∣
∑

(ψk(y)− ψk(x))f(pk)
∣∣∣

=
∣∣∣
∑

(ψk(y)− ψk(x))(f(pk)− f(pm))
∣∣∣

≤ C
∑ d(x, y)

d(Qm, F )
d(pk, pm) ≤ Cd(x, y)

because the sum has at most N nonzero terms and

d(pk, pm) ≤ dist(F,Qk) + diam(Qk) + diam(Qm) + dist(F, Qm)
∼ diam(Qm) ∼ diam(Qk)

for each of them.
We are now ready to finish the proof.
Fix x, y ∈ Rn and we consider two cases. The first is that the interval [x, y]

does not contain any point in F . In this case we can find successive points x =
z0, z1, . . . , zk = y in the interval s.t. each pair zm, zm+1 belongs to some cube Qm.
It follows that

|Tf(y)− Tf(x)| ≤
∑

|Tf(zm+1)− Tf(zm)| ≤ C
∑

d(zm, zm+1) = Cd(x, y).

If [x, y] contains points in F let p, q ∈ F be the points in the interval nearest to
x and y respectively. As

|Tf(y)− Tf(x)| ≤ |Tf(y)− Tf(q)|+ |Tf(q)− Tf(p)|+ |Tf(p)− Tf(x)|
* and

d(y, q) + d(q, p) + d(p, x) = d(y, x)

and since |Tf(q) − Tf(p)| = |f(q) − f(p)| ≤ d(p, q) it is enough to prove that
|Tf(y)− Tf(q)| ≤ Cd(y, q). But this follows from the first case and the continuity
of Tf : for each z ∈ (q, y) we already know that |Tf(y) − Tf(z)| ≤ Cd(y, z), and
we let z → q. ¤

4. Extensions of smooth functions

In this section we shall extend Ck functions on F to Ck functions on all of Rn.
We shall need, of course, a partition of unity with Ck functions and with estimates
on their derivatives – and this is simple and will be done in Lemma 4.1. The main
problem, however, is what do we mean by Ck functions on a general closed set
F ⊂ Rn. Whitney gave a good definition of this notion and we shall explain it and
then prove the extension theorem.

Lemma 4.1. Let F ⊂ Rn be closed and let Q be a Whitney cover for F c. Then
there is a C∞ partition of unity {ψk} subordinated by Q∗ s.t.

|Dαψk(x)| ≤ Cα

d|α|(x, F )

for every multi-index α and x ∈ F c.
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Proof. Let 0 ≤ h ≤ 1 be a C∞ function on R supported in [−ε, 1 + ε] s.t. h ≡ 1
on [0, 1]. Then ϕ(x) =

∏
h(xj) is a C∞ function on Rn supported in [−ε, 1 + ε]n,

and we put ϕk(x) = g((x− zk)/lk) where zk is the center and lk is the side length
of Q∗k. As the ϕ’s are obtained by rescaling a fixed function h and the scaling
factor lk is proportional to diam(Qk) ∼ d(x, F ) whenever x ∈ Q∗k, it is clear that
|Dαϕk(x)| ≤ Cα

d|α|(x,F )
.

We now define ψk = ϕk∑
ϕj

= ϕk

g and we prove the estimate for the derivatives of
the ψ’s. Indeed, writing ϕk = ψkg, the estimates hold for the ϕk’s and g (as a sum
of N ϕ’s). Differentiating the product, and then isolating the highest derivative of
ψk gives that

Dαψk(x) = Dαϕk(x)−
∑

β<α

aα,βDβψk(x)Dα−βg(x)

and the estimate now follows by induction on |α|. ¤

To have an idea how to define Ck functions on closed sets, we first reformulate
the condition that f is Ck on Rn. Let

P (x) = Py(x, f) = f(y) +
∑

1≤|α|≤k

Dαf(y)
α!

(x− y)α

be the k-degree Taylor polynomial of f around the point y, evaluated at x, and let
R(x) = f(x)− P (x) be the remainder.

A k-jet is a collection of functions (uα)|α|≤k. The k-jet of f ∈ Ck is the collection
(Dαf)|α|≤k of its derivatives.

Note that the (k − |α|) Taylor polynomial of Dαf is just DαP .

Proposition 4.2. A k-jet (fα) on Rn is the k-jet of a Ck function f = f0 iff for
every y ∈ Rn there is a k-degree polynomial Py s.t. for every compact set A and
for every |α| ≤ k

fα(x)−DαPy(x) = o(‖y − x‖k−|α|)
uniformly for y ∈ A.

Proof. We give the proof for n = 1. This also proves the general case by restricting
the functions to lines and noting that the estimate do not depend on the choice of
the line but only on the moduli of continuity or the quantitative formulation of the
o-condition.

Assume f ∈ Ck and take Py to be the k’th Taylor polynomial of f at y. For
simplicity, we just treat the case of k = 2, the proof of the general case is similar.
Write

R2(x) = f(x)− f(y)− f ′(y)(x− y)− f ′′(θx)
2

(x− y)2

=
∫ x

y

f ′(t)dt− f ′(y)(x− y)− f ′′(θx)
2

(x− y)2

=
∫ x

y

(f ′(t)− f ′(y))dt− f ′′(θx)
2

(x− y)2

=
∫ x

y

∫ t

y

(f ′′(s)− f ′′(θx))dsdt ≤ max
y≤s,θ≤x

|f ′′(s)− f ′′(θ)| (x− y)2

2

and the result follows from the continuity of f ′′.
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The converse direction is immediate. ¤

This observation led Whitney to the following definition of Ck functions on
general closed sets

Definition 4.3. Let F ⊂ Rn be a closed set. A k-jet (fα) on F is said to be the
jet of the Ck function f = f0 on F if for every z ∈ F there is a k-degree polynomial
Pz s.t. for every compact set A ⊂ F and for every |α| ≤ k

fα(y)−DαPz(y) = o(‖z − y‖k−|α|)

uniformly for y, z ∈ A.

Remark. Note that the definition requires as data not only the function f = f0

but the whole k-jet (fα). We shall comment on this at the end of the chapter.

For a Ck function on Rn the Taylor polynomials Py(x) depend continuously on
y (and x) with an o

(
(‖y− z‖+ ‖x− y‖)k

)
estimate – and similarly for DαPy. This

is also true for the Pz’s in the definition of Ck k-jets on F .

Lemma 4.4. Let F ⊂ Rn be a closed set and let (fα) be a Ck jet on F . For z ∈ F
let Pz be the polynomials in the definition of a Ck jet. Then for every compact set
A ⊂ F and for every |α| ≤ k

DαPy(x)−DαPz(x) = o
(
(‖y − z‖+ ‖z − x‖)k−|α|)

uniformly for y, z ∈ A.

Proof. It is enough to estimate Py − Pz (i.e., when α = 0) because DαPy is just
the polynomial associated with the (k − |α|)-jet (fα+γ)γ≤k−|α|.

Thus, expand the polynomial Py(x)− Pz(x) = g(x) =
∑ Dαg(z)

α! (x− z)α around
the point z, and estimate Dαg(z) as

Dα(Py(x)− Pz(x))
∣∣
x=z

= DαPy(z)− fα(z) = o(‖y − z‖k−|α|).

It follows that

Py(x)− Pz(x) =
∑ Dαg(z)

α!
(x− z)α =

∑
o(‖y − z‖k−|α|) · ‖z − x‖|α|

= o
(
(‖y − z‖+ ‖x− z‖)k

)
.

¤

Theorem 4.5. Let F ⊂ Rn be closed and let (fα) be a Ck jet on F . Then f = f0

can be extended to a Ck function f on all of Rn with Dαf = fα for all |α| ≤ k.

Proof. Fix a Whitney cover of F c and choose, for each j a point yj ∈ F nearest to
Qj . Let ψj be the partition of unity of lemma 4.1, and define

Tf(x) =

{
f(x) x ∈ F∑

ψj(x)Pyj (x) x /∈ F.

We need to show that for every z ∈ Rn there is a polynomial Pz so that
DαPz(x)−DαTf(x) = o(‖z − x‖k−|α|). As in previous extension theorems this is
obvious for x, z ∈ F (by the definition of a Ck jet) and when z /∈ F (because Tf is
C∞ in a nbhd of such a point). Thus we only need to treat z ∈ F and x /∈ F .
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We start with α = 0, i.e., Pz(x)− Tf(x) = o(‖z − x‖k). Indeed,

Tf(x)− Pz(x) =
∑

ψj(x)(Pyj
(x)− Pz(x))

but
Pyj (x)− Pz(x) = o

(
(‖yj − z‖+ ‖x− z‖)k

)
= o(‖z − x‖k)

by Lemma 4.4 and because ‖yj − z‖ ≤ C‖x− z‖ for the j’s for which ψj(x) 6= 0.
We now pass to the first derivative, and denote by D the derivative with respect

to x1, say. We need to check that DPz(x)−DTf(x) = o(‖z − x‖k−1) and write

DTf(x) =
∑

ψj(x)DPyj
(x) +

∑
Dψj(x)Pyj

(x).

As for α = 0, the first sum is DPz(x) up to o(‖z − x‖k−1). To estimate the
second sum let y ∈ F be nearest to x and, as

∑
Dψj(x) ≡ 0, write it as

∑
Dψj(x)(Pyj

(x)− Py(x)) = O(1/d(x, F )) · o(‖y − x‖k) = o(‖z − x‖k−1).

The proof for general α is similar. ¤

5. Sard’s theorem

The following theorem of Sard plays an important role in the study of smooth
functions between differentiable manifolds. (For a nice application see Hirsch’s proof
of the non-retraction and Brouwer’s fixed point theorems in [5], page 14.) The case
of mappings between manifolds reduces trivially to mapping between Euclidean
spaces - and this is how we formulate it.

Definition 5.1. Let U ⊂ Rs, V ⊂ Rt be open and let f : U → V be C1. A point
x ∈ U is called a critical point of f if the rank of the Jacobi matrix Jf(x) is smaller
than its maximal possible value, namely, min(s, t). A point y ∈ V is a critical value
of f if y = f(x) for some critical point x.

We denote the set of critical points by C, and then the set of critical values is
f(C).
Theorem 5.2. With the notation above, if f is Ck and k ≥ s/t then f(C) has
measure zero.

Proof. We shall only discuss the case s = 2, t = 1; k ≥ 2 of the theorem. This
case essentially contains (in a simple form) all the ingredients of the general case.
For the proof of the general case see [5], [4] or [2]. We shall then apply Whitney’s
extension theorem to show that in this case k = 1 is not enough.

The theorem is of a local nature (it is enough to show that every x ∈ U has a
nbhd W s.t. f(C ∩W ) has measure zero). We may thus assume that U is the close
unit cube.

As a preliminary step we need to treat the case s = 1, but the proof for s = t
is the same for any s (and, of course, f only needs to be C1). Given ε > 0 there
is a δ > 0 s.t. the |det(Jf)| < ε in any subcube Q of side δ which intersects C. It
follows that the volume of f(Q) of such a cube Q is smaller than εδs. Now cover
U with δ−s cubes of side δ, then the total measure of those f(Q)’s s.t. Q ∩ C 6= ∅
is smaller than εδs × δ−s = ε.



10 YOAV BENYAMINI

Turning to s = 2, let C1 ⊂ C be the set of points where also all the second
derivatives are zero. Cover U with ε−2 squares of side ε. If Q is one of these cubes
which intersects C1 at a point a, say, then by Taylor’s formula

f(x)− f(a) = o(‖x− a‖2).
It follows that the length of the interval f(Q) for such a Q is o(ε2). Thus the

total measure of these f(Q)’s is ε−2 × o(ε2) = o(1).

Assume now that a ∈ C \ C1 and we shall find a nbhd W of a s.t. f(C ∩W ) has
measure zero.

Assume, for example, that f ′′x,x(a) 6= 0. It follows that the Jacobi matrix of the
mapping g(x, y) = (f ′x(x, y), y) is non-singular at a. Thus it is a diffeomorphism of
some nbhd W of a onto an open set W ′ ⊂ R2, and the set C′ of critical points of
f◦g−1 in W ′ is just g(W∩C). But if (x, y) is a critical point of f then g(x, y) = (0, y),
i.e., C′ is contained in the line x = 0. By the case s = t = 1 it follows that the
measure of f(W ∩ C) = (f ◦ g−1)(C′) is zero. ¤

A C1 function f : R→ R is determined (up to a constant) by its derivative. Let
Γ be a simple curve in R2 and let f : R2 → R be C1. Is f|Γ determined by ∇f|Γ?
Equivalently, if ∇f|Γ ≡ 0 is f constant on Γ?

If f is C2 Sard’s theorem implies that the answer is yes. Indeed, if ∇f|Γ ≡ 0
then the interval f(Γ) is contained in the set of critical values of f , which, by Sard’s
theorem has measure zero – so it reduces to a single point.

Whitney [9] constructed an example which shows that, at least for s = 2, t = 1
the restriction k ≥ 2 cannot be reduced to k = 1. To this end he constructed a curve
Γ ⊂ R2 and a Cantor set in Γ and then considered the associated Cantor function f
on the curve. The construction is such that f satisfies |s− s0| = o(‖f(s)− f(s0)‖)
on the curve hence, by Whitney’s extension theorem it extends to a C1 function f
on all of Rn. But then f(C) ⊃ f(Γ) which is the whole unit interval.

Instead of Whitney’s construction we shall follow Glaeser [3] (pages 57-58) who
noted that the classical Koch curve gives a similar example.

Example 5.3. We recall the construction of the Koch curve. Replace the middle
third of K0 = [0, 1] by the two other edges of the isosceles triangle whose base is
this middle third. The resulting figure is a curve, K1 = K1(t), which maps the four
intervals Ij = [ j−1

4 , j
4 ] isometrically onto the four intervals of the image. The curve

K2 = K2(t) is obtained by repeating the same construction on each of the intervals
Ij . Continue inductively, and the Koch curve K = K(t) is the limit curve of the
Kn(t)’s.

Define f(s) = K−1(t), and we want to prove that f(s)− f(s0) = o(‖s− s0‖) for
every s0 ∈ K. Indeed, let n be the minimal index s.t. s and s0 are separated by an
edge in Kn. It follows that ‖s− s0‖ ≥ 1

2·3n . On the other hand

|f(s)− f(s0)| = |t− t0| ≤ K
∑

j≥n

1
4j

= O(1/4n)

hence |f(s)−f(s0)|
‖s−s0‖ = O

(
3n

4n

) → 0. (This is actually the same proof as Koch’s proof
that K is not differentiable anywhere.)

Remark. Consider [0, 1] equipped with the metric d(s, t) = |s − t|α for some
0 < α < 1. If ϕ : [0, 1] → R2 is a Lipschitz embedding, i.e., ϕ and its inverse are
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Lipschitz, then it is clear that f = ϕ−1 satisfied f(s)− f(s0) = o(‖s− s0‖), and is
an example of the same type.

The computations for the Koch curve show that, in fact, K(t) is such a Lipschitz
embedding for α = log 3

log 4 .
Assouad [1] investigates the relations between n, k and α so that the cube [0, 1]k

with the metric d(s, t) = ‖s− t‖α is Lipschitz embeddable in Rn. In particular, he
proves that for k = 1 and n = 2 this is true iff 1/2 < α ≤ 1.
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