
Chapter 6

Riesz Representation Theorems

6.1 Dual Spaces

Definition 6.1.1. Let V and W be vector spaces over R. We let

L(V,W ) = {T : V →W | T is linear}.

The space L(V,R) is denoted by V ] and elements of V ] are called linear functionals.

Example 6.1.2. 1) Let V = Rn. Then we can identify R] with R as follows:

For each a = (a1, a2, . . . , an) define φa : Rn → R by

φa((x1, x2, . . . , xn)) = x · a =

n∑
i=1

xiai.

2) Let (X, d) be a compact metric space. Let x0 ∈ X. Define φx0
: C(X)→ R by

φx0(f) = f(x0).

Then φx0 ∈ C(X)].

Definition 6.1.3. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear. We
say that T is bounded is

sup
‖x‖V ≤1

{‖ T (x) ‖W } <∞.

In this case, we write
‖ T ‖= sup

‖x‖V ≤1

{‖ T (x) ‖W }.

Otherwise, we say that T is unbounded.

The next result establishes the fundamental criterion for when a linear map between normed linear spaces
is continuous. It’s proof is left as an exercise.

Theorem 6.1.4. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear. Then
the following are equivalent.

1) T is continuous.

2) T is continuous at 0.
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2) T is bounded.

Proof. 1)⇒ 2) This is immediate.

2) ⇒ 3) Assume that T is continuous at 0. Let δ be such that if ‖ x ‖V≤ δ, then ‖ T (x) ‖W . It follows
easily that ‖ T ‖≤ 1

δ .

3) ⇒ 1) Note that we may assume that ‖ T ‖> 0 otherwise T = 0 and hence is obviously continuous.
Let x0 ∈ V and let ε > 0. Let δ = ε

‖T‖ . Then if ‖ x− x0 ‖V< δ, we have

‖ T (x)− T (x0) ‖W=‖ T (x− x0) ‖W≤‖ T ‖ · ‖ x− x0 ‖V< ε.

Remark 6.1.5. 1) Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. Let T : V → W be linear.
Then we can easily deduce from the previous theorem that . if T is bounded, then T is uniformly
continuous.

2) Let
B(V,W ) = {T : X → Y |T is linear and T is bounded}.

Let T1 and T2 be in B(V,W ). Then if x ∈ V , we have

‖ T1 + T2(x) ‖W = ‖ T1(x) + T2(x) ‖W
≤ ‖ T1(x) ‖W + ‖ T2(x) ‖W
≤ ‖ T1 ‖‖ x ‖V + ‖ T1 ‖‖ x ‖V
= (‖ T1 ‖ + ‖ T2 ‖) ‖ x ‖V .

As such T1 + T2 ∈ B(V,W ) and in particular

‖ T1 + T2 ‖≤‖ T1 ‖ + ‖ T1 ‖

It follows that (B(V,W ), ‖ · ‖) is also a normed linear space.

Theorem 6.1.6. Assume that (W, ‖ · ‖W ) be a Banach space. Then so is (B(V,W ), ‖ · ‖).

Proof. Assume that {Tn} is Cauchy. Let x ∈ V . Since

‖ Tn(x)− Tm(x) ‖W≤‖ Tn − T2 ‖‖ x ‖V

it follows easily that {Tn(x)} is also Cauchy in W . As such we can define T0 by

T0(x) = lim
n→∞

Tn(x).

To see that T0 is linear observe that

T0(αx+ βy) = lim
n→∞

Tn(αx+ βy)

= lim
n→∞

αTn(x) + βTn(y)

= αT0(x) + βT0(y)

To see that T0 is bounded first observe that being Cauchy, {Tn} is bounded. Hence we can find an M > 0
such that ‖Tn‖ ≤ M for each n ∈ N. Moreover, since ‖T0(x)‖W = lim

n→∞
‖Tn(x)‖ ≤ M‖x‖V , we have that

‖T0‖ ≤M .
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Now let ε > 0 and choose an N ∈ N so that if n,m ≥ N , then

‖Tn − Tm‖ < ε.

Let x ∈ V with ‖x‖V ≤ 1. Then since ‖Tn(x)− Tm(x)‖W < ε for each m ≥ N , we have

‖Tn(x)− T0(x)‖W = lim
m→∞

‖Tn(x)− Tm(x)‖W ≤ ε.

In particular
T0 = lim

n→∞
Tn

in B(X,Y ).

Definition 6.1.7. Let (V, ‖ · ‖) be a normed linear space. The space B(V,R) is called the dual space of V
and is denoted by V ∗.

Example 6.1.8. 1) Let V = Rn with the usual norm ‖ · ‖2. For each a = (a1, a2, . . . , an) we defined
φa : Rn → R by

φa((x1, x2, . . . , xn)) = x · a =

n∑
i=1

xiai.

Then in fact φa ∈ Rn∗ and
‖φa‖ = ‖a‖2.

2) Let (X, d) be a compact metric space. Again, if x0 ∈ X and we define φx0
: (C(X), ‖ · ‖∞)→ R by

φx0(f) = f(x0),

then φx0 ∈ C(X)∗. In this case ‖φx0‖.

3) Let (X,A, µ) be a measure space and let 1 ≤ p ≤ ∞ with 1
p + 1

q = 1. Hölder’s Inequality allows us to

define for each g ∈ Lq(X,A, µ) and element φg ∈ Lp(X,A, µ)] by

φg(f) =

∫
fg dµ.

Moreover, Hölder’s Inequality also shows that φg ∈ Lp(X,A, µ)∗ with

‖φg‖ ≤ ‖g‖p.

Note that φg has the additional property that if g ≥ 0 µ-a.e., then φg(f) ≥ 0 whenever f ∈ Lp(X,A, µ)
and f ≥ 0 µ-a.e.

4) Let (X, d) be a compact measure space and let µ be a finite regular signed measure on B(X). Define
φµ ∈ C(X)] by

φµ(f) =

∫
f dµ.

Since

|φµ(f)| ≤
∫
|f | d|µ| ≤ ‖f‖∞‖µ‖meas

we see that in fact φµ ∈ C(X)∗ and ‖φµ‖ ≤ ‖µ‖meas.
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We note again that φµ has the additional property that if µ is a positive measure on B(X), then
φµ(f) ≥ 0 whenever f ∈ C(X) and f ≥ 0. Furthermore, in this case since

φµ(1) =

∫
1 dµ = µ(X) = ‖µ‖meas,

if µ is a positve measure we have
‖φµ‖ = ‖µ‖meas.

Problem 6.1.9. In Examples 3) and 4) above we have shown respectively that every element in Lq(X,A, µ)
determines a continuous functional on Lp(X,A, µ) and that if (X, d) is a compact metric space, then every
finite regular signed measure on B(X) determines a continuous linear functional on C(X). It is natural to
ask:

Do all continuous linear functionals on Lp(X,A, µ) and C(X) arise in this fashion?

6.2 Riesz Representation Theorem for Lp(X,A, µ)

In this section we will focus on the following problem:

Problem 6.2.1. What is Lp(X,A, µ)∗?

We have already established most of the following result:

Lemma 6.2.2. If (X,A, µ) is a measure space and if 1 ≤ p ≤ ∞ with 1
p + 1

q = 1, then for every g ∈ Lq(X,µ)

the map Γg : Lp(X,µ) → R defined by Γg(f) =
∫
X
f g dµ is a continuous linear functional on Lp(X,µ).

Further, ‖Γg‖ ≤ ‖g‖q and if 1 < p ≤ ∞ then ‖Γg‖ = ‖g‖q.

Proof. Assignment.

If (X,µ) is σ-finite, then equality holds for p = 1 as well.

Lemma 6.2.3. Let (X,A, µ) be a finite measure space and if 1 ≤ p < ∞. Let g be an integrable function
such that there exists a constant M with |

∫
gϕ dµ ≤M‖ϕ‖p for all simple functions ϕ. Then g ∈ Lq(X,µ),

where 1
p + 1

q = 1.

Proof. Assume that p > 1. Let ψn be a sequence of simple functions with ψn ↗ |g|q. Let ϕn = (ψn)
1
p sgn(g).

Then ϕn is also simple and ‖ϕn‖p = (
∫
ψndµ)

1
p . Since |ϕng| ≥ |ϕn||ψn|

1
q = |ψn|, we have∫

ψn dµ ≤
∫
ϕng dµ ≤M‖ϕn‖p = M

(∫
ψndµ

) 1
p

Therefore
∫
ψn dµ ≤ Mq. By the Monotone Convergence Theorem we get that ‖g‖q ≤ M , so g ∈ Lq(X,µ).

If p = 1, then we need to show that g is bounded almost everywhere. Let E = {x ∈ X| |g(x)| > M}. Let
f = 1

µ(E)χEsgn(g). Then f is a simple function and ‖f‖1 = 1. This is a contradiction.

Lemma 6.2.4. Let 1 ≤ p < ∞. Let {En} be a sequence of disjoint sets. Let {fn} ⊆ Lp(X,µ) be such that
fn(x) = 0 if x /∈ En for each n ≥ 1. Let f =

∑∞
n=1 fn. Then f ∈ Lp(X,µ) if and only if

∑∞
n=1 ‖f‖pp < ∞.

In this case, ‖f‖pp =
∑∞
n=1 ‖f‖pp.

Proof. Exercise.
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Theorem 6.2.5 [Riesz Representation Theorem, I]. Let Γ ∈ Lp(X,µ)∗, where 1 ≤ p < ∞ and µ is
σ-finite. Then if 1

p + 1
q = 1, there exists a unique g ∈ Lq(X,µ)∗ such that

Γ(f) =

∫
X

fg dµ = φg(f)

Moreover, ‖Γ‖ = ‖g‖q.

Proof. Assume that µ is finite. Then every bounded measurable function is in Lp(X,µ). Define λ : A →
R : E 7→ Γ(χE). Let {En} ⊆ A be a sequence of disjoint sets, and let E =

⋃∞
n=1En. Let αn = sgnΓ(χEn)

and f =
∑∞
n=1 αnχEn . Then f ∈ Lp(X,µ) and Γ(f) =

∑∞
n=1 |λ(En)| <∞ and so

∑∞
n=1 |λ(En)| = Γ(χE) =

λ(E). Therefore λ is a finite signed measure. Clearly, if µ(E) = 0 then χE = 0 almost everywhere, so
λ(E) − Γ(0) = 0. Therefore |λ| � µ. By the Radon-Nikodym Theorem, there is an integrable function g
such that λ(E) =

∫
E
g dµ for all E ∈ A. If ϕ is simple, then Γ(ϕ) =

∫
ϕg dµ by linearity of the integral. But

|Γ(ϕ)| ≤ ‖Γ‖‖ϕ‖p for all simple functions ϕ, so g ∈ Lq(X,µ) by the lemma above. Now Γ− φg ∈ Lp(X,µ)∗

and Γ−φg = 0 on the space of simple functions. Since the simple functions are dense in Lp(X,µ), Γ−φg = 0
on LP (X,µ), so Γ = φg. We have that ‖Γ‖ = ‖φg‖ = ‖g‖q as before.

Now asume that µ is σ-finite. We can write X =
⋃∞
n=1Xn, where µ(Xn) < ∞ and Xn ⊆ Xn+1 for

all n ≥ 1. For each n ≥ 1, the proof above gives us gn ∈ Lq(X,µ), vanishing outside Xn, such that
Γ(f) =

∫
fg dµ for all f ∈ Lp(X,µ) vanishing off of Xn. Moreover, ‖gn‖q ≤ ‖Γ‖. By the uniqueness of the

gn’s, we can assume that gn+1 = gn on Xn. Let g(x) = limn→∞ gn(x). We have that |gn| ↗ |g|. By the
Monotone Convergence Theorem ∫

|g|q dµ = lim
n→∞

∫
|gn|q dµ ≤ ‖Γ‖q

Hence g ∈ Lq(X,µ). Let f ∈ Lp(X,µ) and fn = fχXn . Then fn → f pointwise and fn ∈ Lp(X,µ) for
all n ≥ 1. Since |fg| ∈ L1(X,µ) and fng| ≤ |fg|, the Lebesque Dominated Convergence Theorem shows∫

fg dµ = lim
n→∞

∫
fng dµ = lim

n→∞

∫
fngn dµ = lim

n→∞
Γ(fn) = Γ(f)

If p = 1, then we cannot drop the assumption of σ-finiteness.

Theorem 6.2.6 [Riesz Representation Theorem, II]. Let Γ ∈ Lp(X,µ)∗, where 1 < p < ∞. Then if
1
p + 1

q = 1, there exists a unique g ∈ Lq(X,µ) such that

Γ(f) =

∫
fg dµ

for all f ∈ Lp(X,µ). Moreover, ‖Γ‖ = ‖g‖q.

Proof. Let E ⊆ X be σ-finite. then there exists a unique gE ∈ Lq(X,µ), vanishing outside of E, such that
Γ(f) =

∫
fgE dµ for all g ∈ Lp(X,µ) vanishing outside of E. Moreover, if A ⊆ E, then gA = gE almost

everywhere on A. For each σ-finite set E let λ(E) =
∫
|gE |qdµ. If A ⊆ E, then λ(A) ≤ λ(E) ≤ ‖Γ‖q.

Let M = sup{λ(E)|E is σ-finite}. Let {En} be a sequence of σ-finite sets such that limn→∞ λ(En) = M .
If H =

⋃∞
n=1En then H is σ-finite and λ(H) = M . If E is σ-finite with H ⊆ E, then gE = gH almost

everywhere on H. But ∫
|gE |qdµ = λ(E) ≤ λ(H) =

∫
|gH |qdµ

so gE = 0 almost everywhere on E\H. Let g = gHχH . Then g ∈ Lq(X,µ) and if E is σ-finite with H ⊆ E
then gE = g almost everywhere. If f ∈ Lp(X,µ), then let E = {x ∈ X|f(x) 6= 0}. E is σ-finite and hence
E1 = E ∪H is σ-finite. Hence
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Γ(f) =

∫
fgE1

dµ =

∫
fg dµ = φg(f)

Therefore Γ = φg and as before ‖Γ‖ = ‖g‖q.

We have shown that if 1 < p < ∞ and 1
p + 1

q = 1, then for any measure space (X,A, µ), Lp(X,µ)∗ ∼=
Lq(X,µ). If µ is σ-finite, then L1(X,µ)∗ ∼= L∞(X,µ). What happens when p =∞? L1(X,µ) ↪→ L∞(X,µ)∗,
but this embedding is not usually surjective. There exists a compact Hausdorff space Ω such that L∞(X,µ) ∼=
C(Ω). What is C(Ω)?

Let ϕ : [a, b]→ R be defined by ϕ(f) = f(x0). Then ϕ ∈ C[a, b]∗, and ‖ϕ‖ = 1. Let µx0 be the measure

on [a, b] of the point mass x0. If g ∈ L1([a, b],m), then ϕg(f) =
∫ b
a
fg dm is a linear functional on C[a, b],

and ‖ϕg‖ ≤ ‖g‖1. g is the Radon-Nikodym derivative of an absolutely continuous measure µ on [a, b], and
ϕg(f) =

∫
f dµ. If µ ∈ Meas[a, b], then ϕn(f) =

∫
f dµ is a bounded linear functional on C[a, b], with

‖ϕµ‖ ≤ ‖µ‖Meas.

6.3 Riesz Representation Theorem for C([a,b])

Theorem 6.3.1. [Jordan Decomposition Theorem]
Let Γ ∈ C([a, b])∗. Then there exist positive linear functionals Γ+,Γ− ∈ C([a, b])∗ such that

Γ = Γ+ − Γ−

and
‖ Γ ‖= Γ+(1) + Γ−(1).

Proof. Assume that f ≥ 0. Define
Γ+(f) = sup

0≤φ≤f
Γ(ϕ).

Then Γ+(f) ≥ 0 and Γ+(f) ≥ Γ(f). It is also easy to see that if c ≥ 0, then Γ+(cf) = cΓ+(f).
Let f, g ≥ 0. If 0 ≤ φ ≤ f and 0 ≤ ψ ≤ g, then 0 ≤ φ+ ψ ≤ f + g so

Γ(φ) + Γ(ψ) ≤ Γ+(f + g)

and hence,
Γ+(f) + Γ+(g) ≤ Γ+(f + g).

If 0 ≤ ψ ≤ f + g, then let ϕ = inf{f, ψ} and ξ = ψ − ϕ. Then 0 ≤ ϕ ≤ f and 0 ≤ ξ ≤ g. It follows that

Γ(ψ) = Γ(ϕ) + Γ(ξ) ≤ Γ+(f) + Γ+(g).

This shows that
Γ+(f + g) ≤ Γ+(f) + Γ+(g)

Therefore,
Γ+(f + g) = Γ+(f) + Γ+(g)

Let f ∈ C[a, b]. Let α, β be such that f + α1 ≥ 0 and f + β1 ≥ 0. Then

Γ+(f + α1 + β1) = Γ+(f + α1) + Γ+(β1)

= Γ+(f + β1) + Γ+(α1)

This shows that
Γ+(f + α1)− Γ+(α1) = Γ+(f + β1)− Γ+(β1)

As such , if we let
Γ+(f) = Γ+(f + α1)− Γ+(α1),
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then Γ+ is well defined.
Let f, g ∈ C[a, b]. Let α, β be chosen so that f + α1 ≥ 0 and g + β1 ≥ 0. Then f + g + (α+ β)1 ≥ 0 so

Γ+(f + g) = Γ+(f + g + (α+ β)1)− Γ+((α+ β)1)

= Γ+(f + α1) + Γ+(g + β1)− Γ+((α+ β)1)

= Γ+(f + α1)− Γ+(α1) + Γ+(g + β1)− Γ+(β)1)

= Γ+(f) + Γ+(g).

That is Γ+ is additive.
It is also clear that Γ+(cf) = cΓ+(f) when c ≥ 0. But since Γ+(−f) + Γ+(f) = Γ+(0) = 0, we get that

Γ+(−f) = −Γ+(f)

so Γ+ is linear.
Let

Γ− = Γ+ − Γ

Since it is clear that Γ+(f) ≥ Γ(f) if f ≥ 0, Γ− is also positive.
We know that

‖ Γ ‖≤‖ Γ+ ‖ + ‖ Γ− = Γ+(1) + Γ−(1)

Let 0 ≤ ψ ≤ 1. Then ‖ 2ψ − 1 ‖∞≤ 1. As such

‖ Γ ‖≥ Γ(2ψ − 1) = 2Γ(ψ)− Γ(1)

and therefore

‖ Γ ‖ ≥ 2Γ+(1)− Γ(1)

= Γ+(1) + Γ−(1)

Hence
‖ Γ ‖= Γ+(1) + Γ−(1).

Theorem 6.3.2. [Riesz Representation Theorem for C([a, b])]
Let Γ ∈ C([a, b])∗. Then there exists a unique finite signed measure µ on the Borel subsets of [a, b] such

that

Γ(f) =

∫
[a,b]

f dµ

for each f ∈ C([a, b]). Moreover, ‖ Γ ‖=| µ | ([a, b]).

Proof. First, we will assume that Γ is positive.
For a ≤ t < b and for n large enough so that t+ 1

n ≤ b, let

ϕt,n(x) =

 1 if x ∈ [a, t]
1− n(x− t) if x ∈ (t, t+ 1

n ]
0 if x ∈ (t+ 1

n , b]
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Note that if n ≤ m, then
0 ≤ ϕt,m ≤ ϕt,n ≤ 1

It follows that {Γ(ϕt,n)} is decreasing and bounded below by 0. Therefore, we can define

g(t) =


0 if t < a
lim
n→∞

Γ(ϕt,n) if t ∈ [a, b)

Γ(1) if t ≥ b

Moreover, if t1 > t, we have
ϕt,m ≤ ϕt1,n.
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Since Γ is positive, g(t) is monotonically increasing.
It is clear that g(t) is right continuous if t < a or if t ≥ b. Assume that t ∈ [a, b). Let ε > 0 and choose

n large enough so that

n > max(2,
‖ Γ ‖
ε

)

and
g(t) ≤ Γ(ϕt,n) ≤ g(t) + ε.

Let

ψn(x) =


1 if x ∈ [a, t+ 1

n2 ]

1− n2

n−2 (x− t− 1
n2 ) if x ∈ (t+ 1

n2 , t+ 1
n −

1
n2 ]

0 if x ∈ (t+ 1
n −

1
n2 , b]

Then

‖ ψn − ϕt,n ‖∞≤
1

n
.

Therefore,

Γ(ψn) ≤ Γ(ϕt,n) +
1

n
‖ Γ ‖≤ g(t) + 2ε.
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This means that

g(t) ≤ g(t+
1

n2
) ≤ g(t) + 2ε.

However, as g(t) is increasing, this is sufficient to show that g(t) is right continuous.
The Hahn Extension Theorem gives a Borel measure µ such that µ((α, β]) = g(β)− g(α). In particular,

if a ≤ c ≤ b, then
µ([a, c]) = µ((a− 1, c]) = g(c).

Let f ∈ C([a, b]) and let ε > 0. Let δ be such that if | x− y |< δ and x, y ∈ [a, b], then

| f(x)− f(y) |< ε.

Let P = {a = t0, t1, . . . , tm = b} be a partition with sup(tk− tk−1) < δ
2 . Then choose n large enough so that

2
n < inf(tk − tk−1) and

(*) g(tk) ≤ Γ(ϕt,n) ≤ g(tk) + ε
m‖f‖∞ .

Next, we let

f1(x) = f(t1)ϕt1,n +

m∑
k=2

f(tk)(ϕtk,n − ϕtk−1,n)

and

f2(x) = f(t1)χ[t0,t1] +

m∑
k=2

f(tk)χ[tk−1,tk])

Note that f1 is continuous and piecewise linear. f2 is a step function. It is also true that both f1 and f2

agree with f(x) at each point tk for k ≥ 1. Moreover, the function f1 takes on values between f(tk−1 and
f(tk) on the interval [tk−1, tk]. As such

‖ f1 − f ‖∞≤ ε

and
sup{| f2(x)− f(x) || x ∈ [a, b]} ≤ ε.

From this we conclude that
| Γ(f)− Γ(f1) |≤ ε ‖ Γ ‖ .

We use (*) to see that for 2 ≤ k ≤ m

| Γ(ϕtk,n − ϕtk−1,n)− (g(tk)− g(tk−1)) |≤ ε

m ‖ f ‖∞

Next, we apply Γ to f1 and integrate f2 with respect to µ to get

| Γ(f1)−
∫

[a,b]

f2 dµ |≤ ε

We also have that ∫
[a,b]

f2 dµ−
∫

[a,b]

f dµ |≤ εµ([a, b]).

Therefore,

| Γ(f)−
∫

[a,b]

f dµ |≤ ε(2 ‖ Γ ‖ +µ([a, b]).

Since ε is arbitrary,

Γ(f) =

∫
[a,b]

f dµ

for each f ∈ C[a, b]. Moreover, ‖ Γ ‖= Γ(1) =| µ | ([a, b]).
The general result follows from the previous theorem.
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6.4 Riesz Representation Theorem for C(Ω)

In this section we will briefly discuss how to extend the Riesz Representation to C(Ω) when (Ω, d) is a
compact metric space. In fact we can state this extension in greater generality:

Theorem 6.4.1. [Riesz Representation Theorem for C(Ω)] Let (Ω, τ) be a compact Hausdorff space. Let
Γ ∈ C(Ω)∗. Then there exists a unique finite regular signed measure µ on the Borel subsets of Ω such that

Γ(f) =

∫
Ω

f dµ

for each f ∈ C(Ω). Moreover, ‖ Γ ‖=| µ | (Ω).

Remark 6.4.2. Let µ ∈Meas(Ω,B(Ω)). If Γµ is defined by

Γµ(f) =

∫
Ω

f dµ (∗)

for each f ∈ C(Ω), then Γµ ∈ C(Ω)∗ and

‖ Γµ ‖=| µ | (Ω) = ‖µ‖meas.

Problem 6.4.3. For the converse how do we construct the measure µ?

Sketch: We will sketch a solution in the special case where (Ω, d) is a compact metric space.
By the Jordan Decomposition Theorem, we may again assume that Γ is positive.
Key Observation: Let K ⊆ Ω be compact. Assume that {ϕn} is a sequence of continuous functions

such that
0 ≤ ϕn+1(t) ≤ ϕn(t) ≤ 1

for every t ∈ Ω with
lim
n→∞

ϕn = χK

pointwise. Then
lim
n→∞

Γ(ϕn)

exists. Moreover, if µ is a measure satisfying (∗), then the Lebesgue Dominated Convergence Theorem shows
that

µ(K) =

∫
Ω

χK dµ = lim
n→∞

∫
Ω

ϕn dµ = lim
n→∞

Γ(ϕn).

From here, let K be compact. For each n ∈ N let

Un =
⋃
x∈K

B(x,
1

n
)

and let Fn = Ω \ Un. Then define

ϕn(x) =
dist(x, Fn)

dist(x, Fn) + dist(x,K)

where dist(x,A) = inf{d(x, y) | y ∈ A}.Then ϕn(x) = 1 if x ∈ K and ϕn(x) = 0 if x ∈ Fn. Hence ϕn → χK
pointwise.

Moreover since {dist(x, Fn)} is decreasing, we get

0 ≤ ϕn+1(t) ≤ ϕn(t) ≤ 1.
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