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A Short Solution to the Busemann-Petty Problem
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Abstract. A unified analytic solution to the Busemann-Petty problem was recently found by Gard-
ner, Koldobsky and Schlumprecht. We give an elementary proof of their formulas for the inverse
Radon transform of the radial function ρK of an origin-symmetric star body K .
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The 1956 Busemann-Petty problem asks the following question : suppose that K
and L are origin-symmetric convex bodies in n such that

voln−1(K ∩ H) voln−1(L ∩ H)

for every hyperplane H containing the origin; does it follow that

voln(K) voln(L)?

The problem has a long and dramatic history. A negative answer to the problem
for n 5 was established in a series of papers by Larman and Rogers [8] (for
n 12), Ball [1] (n 10), Giannopoulos [5] and Bourgain [2] (independently;
n 7), Gardner [3] and Papadimitrakis [10] (independently; n 5). Gardner [4]
proved that the answer to the Busemann-Petty problem is affirmative when n = 3.
A negative answer in the case n = 4 was claimed in 1994, but three years later the
main argument of that proof was shown to be wrong (for details, see Koldobsky
[7]). After that, Zhang [12] showed that the answer is affirmative when n = 4, and,
a little later, a unified solution to the problem was given by Gardner, Koldobsky
and Schlumprecht in [6].
The principal objective of this paper is to present an elementary proof for the

main positive result, namely the solution of the Busemann-Petty problem in four
dimensions. Gardner, Koldobsky and Schlumprecht proved in [6] that the radial
function ρK of a smooth symmetric convex body K in 4 is the Radon transform
of an explicit non negative function (see below); according to the 1988 result of
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Lutwak [9], the positive solution of the Busemann-Petty problem in 4 follows. In
this paper, we give an elementary proof for the result in [6] about the Radon trans-
form in 4 . Our proof of the four dimensional case extends to an elementary proof
of their formulas for the inverse Radon transform of ρK in every even dimension,
and to a relatively elementary proof in odd dimensions.
We would like to thank the referee for several valuable suggestions, that have

been included in the final version of this paper with his kind permission.
On n , we denote the scalar product by 〈·, ·〉 and the Euclidean norm by | · | .

We write Bn for the unit ball and Sn−1 for the unit sphere, and vn, sn−1 denote their
respective volumes. If K ⊂ n is a star body, its radial function ρK is defined for
every x ∈ Sn−1 by

ρK(x) = sup {λ > 0 ; λx ∈ K} .

The connection between the Busemann-Petty problem and the spherical Radon
transform R is due to Lutvak [9]. Recall that R acts on the space of continuous
functions on Sn−1 by setting

Rf (ξ) =
∫

Sn−1∩ξ⊥
f (u) dσn−2(u)

for every ξ ∈ Sn−1; here σn−2 is the Haar measure of total mass sn−2 on principal
n − 2 spheres. It follows from Lutvak [9], Zhang [11], that the Busemann-Petty
problem has a positive answer in n if and only if every symmetric convex body
K in n , with positive curvature and C∞ radial function, is such that R−1ρK is a
non-negative function. In [6], the authors express R−1ρK in terms of

Aξ(t) = Voln−1(K ∩ (tξ + ξ⊥)), ξ ∈ Sn−1

as follows:

THEOREM . Let n 3. Let K ⊂ n be an origin-symmetric star body, with C∞

radial function ρK .
If n is even, then

(−1) n−2
2 2nπn−2ρK = R

(
ξ )→ A

(n−2)
ξ (0)

)
.

If n is odd, then

(−1) n−1
2 (2π)n−1

(n − 2)! ρK = R



ξ )→
∞∫

0

t−n+1
(
Aξ(t) −

n−3
2∑

k=0
A

(2k)
ξ (0)

t2k

(2k)!
)
dt



 .

REMARK . Let us recall why this solves the case n = 4 of the Busemann-Petty
problem ([12], [6]). If n = 4, then R−1ρK(ξ) = −A′′

ξ (0)/16π2. If K is convex and
symmetric, the latter is non-negative (by Brunn-Minkowski, the largest hyperplane
section orthogonal to ξ is indeed the one through the origin).
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Proof.We first compute the Radon transform of ξ → Aξ(t), for any given t 0.
Let e ∈ Sn−1 and set f (t) := R(ξ )→ Aξ(t))(e). We identify e⊥ and n−1 , and for
y ∈ n−1 , we set φ(y) = Vol1(K ∩ (y + e)). Then

f (t) =
∫

Sn−1∩e⊥

∫

x∈ n, 〈x,ξ〉=t

1K(x) dn−1(x) dσn−2(ξ)

=
∫

Sn−1∩e⊥

∫

y∈e⊥, 〈y,ξ〉=t

φ(y) dn−2(y) dσn−2(ξ).

Considered as a function of g, the quantity
∫

Sn−1∩e⊥

∫

y∈e⊥, 〈y,ξ〉=t

g(y) dn−2(y) dσn−2(ξ)

(where g is defined on e⊥ , n−1 ) is linear, continuous and rotation invariant.
Hence there exists a measure µt on + such that for all g the previous expression
is equal to

∫

+

(∫

Sn−2
g(ru) dσn−2(u)

)
dµt(r).

Applying the definition of µt with the function g = 1rBn−1 yields

sn−2 µt([0, r]) =
∫

Sn−2

∫

〈y,ξ〉=t

1rBn−1(y) dn−2(y) dσn−2(ξ)

= sn−2 vn−2 1{t r}(r
2 − t2)

n−2
2 .

Consequently, dµt(r) = sn−3 r(r2 − t2)n−4/21{t r} dr. Thus we have proved that

f (t) = sn−3

∫ ∞

t

r(r2 − t2)
n−4
2 '(r) dr,

where ' is defined on by

'(x) =
∫

Sn−2
φ(xu) dσn−2(u).

Notice that ' is even, compactly supported and C∞ in some neighborhood of the
origin. Our aim now is to relate f (t) and '(0) = 2ρK(e)sn−2. The case n = 4 is
very simple: f (t) = 2π

∫ ∞
t

r'(r)dr, hence f ′′(0) = −2π'(0) = −16π2ρK(e).
By exchanging the order of the Radon transform and the derivative, we conclude
that ρK is the Radon transform of ξ )→ −A′′

ξ (0)/16π2.
If n is even:

f (t)

sn−3
=

∫ ∞

0
r(r2 − t2)

n−4
2 '(r) dr − tn−2

∫ 1

0
u(u2 − 1)

n−4
2 '(tu) du.



98 F. BARTHE ET AL.

The first term is a polynomial in t , of degree n − 4 and ' is C∞ in some neighbor-
hood of 0, thus

f (n−2)(0) = −sn−3(n − 2)!
∫ 1

0
u(u2 − 1)

n−4
2 '(0) du = (−1) n−2

2 2nπn−2ρK(e).

We conclude by exchanging the order of the Radon transform and the derivative.
If n is odd: the basic principle is still very simple, but the technical details are

slightly unpleasant. We shall begin by writing the proof as if ' were C∞ on ;
but this is not true, because there are points of e⊥ where our initial function φ is
not differentiable, for example the points of the boundary of the projection of K
on e⊥; we shall indicate afterwards the standard approximation argument that fixes
this difficulty. Integrating by parts, we get

F(t) := −n − 2
sn−3

f (t) =
∫ ∞

t

(r2 − t2)
n−2
2 '′(r) dr.

For k 0, let ak = (−1)k
( n−2

2
k

) = (−1)k
k!

∏k−1
j=0(

n−2
2 − j). Notice that

∑ |ak| < ∞.
Let

P(t) =
n−3
2∑

k=0
akt

2k
∫ ∞

0
rn−2−2k'′(r) dr.

Then the quantity F(t)−P(t)
tn−1 is equal to

∞∫

t

( ∞∑

k= n−1
2

ak

(
t−1r

)n−2−2k)
'′(r)

dr

t
−

t∫

0

( n−3
2∑

k=0
ak

(
t−1r

)n−2−2k)
'′(r)

dr

t

=
∞∫

1

( ∞∑

k= n−1
2

aku
n−2−2k

)
'′(tu) du −

1∫

0

( n−3
2∑

k=0
aku

n−2−2k
)
'′(tu) du.

By Fubini’s theorem and since
∫ ∞
0 '′(tu) dt = −'(0)/u , we get

∫ ∞

0

F(t) − P(t)

tn−1 dt = '(0)
( ∞∑

k=0

ak

n − 2− 2k

)
= cnρK(e),

which is finite. Thus, P is the Taylor polynomial of F of order n − 3 at zero, and
the above integral represents the action of the distribution t−n+1

+ on F . We obtain
therefore

〈t−n+1
+ , R(ξ → Aξ(t))(e)〉 = −cn

sn−3
n − 2

ρK(e).

A soft manner to compute cn is to replace ' by G(x) = e−x2 in the previous
computation. Once again, we end the proof by exchanging the order in which the
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Radon transform and the distribution t−n+1
+ act (we shall give some explanation

about this at the end).
We now explain how to deal with the fact that' is notC∞ everywhere. To every

continuous and even function '1 on , which is C∞ in a neighborhood of 0 and
supported on a fixed interval [−R,R] containing the support of ', we associate
the even function F1 on defined for t 0 by

F1(t) := −(n − 2)
∫ ∞

t

r(r2 − t2)
n−4
2 '1(r) dr.

LetQ(u) be the Taylor polynomial of degree n−3 for (1−u2)(n−4)/2 at the origin,
and let P1(t) := −(n−2) ∫ ∞

0 rn−3Q(t/r)'1(r) dr (of course, F1 = F and P1 = P
when '1 = '). One can get easily the following estimates (where C(n,R) or
C(a, n,R) denote constants depending only upon n,R or a, n,R):
– first, ‖F1‖∞ Rn−2 ‖'1‖∞;
– for every t , we have |P1(t)| C(n,R) (1+ |t|n−3)‖'1‖∞;
– finally, when '1 vanishes on some neighborhood (−a, a) of 0, one can see

that |F1(t) − P1(t)| C(a, n,R) tn−1‖'1‖∞ for 0 t 1.
These three estimates imply that the integral

∫ ∞
0 t−n+1(F1(t) − P1(t)) dt con-

verges to
∫ ∞
0 t−n+1(F (t)−P(t)) dt when we let'1, equal to' on a fixed interval

[−a, a] and supported on [−R,R], tend uniformly to'.
Let us turn finally to the interchange of the actions of the Radon transform

and the distribution t−n+1
+ on the function (ξ, t) → Aξ(t). It follows from our

hypothesis that this function is C∞ on Sn−1 × (−a, a) for some a > 0. Let us
assume n = 5 for example. Since K is symmetric, we may write

Aξ(t) = f0(ξ) + t2f2(ξ) + t4g(ξ, t)

where f0, f2 and g are continuous and bounded on Sn−1 and Sn−1× respectively.
Since Aξ vanishes for |t| > R, we have g(ξ, t) = −t−4f0(ξ)− t−2f2(ξ) for t > R,
and

〈Aξ, t
−4
+ 〉 =

∫ R

0
g(ξ, t) dt − R−3

3
f0(ξ) − R−1f2(ξ),

which shows that the interversion with the integral over ξ ∈ Sn−1 causes no
trouble.
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