
605: Comments on Exercises Ι

1. Show that the set T of trigonometric polynomials is a linear space, a subspace of the space of continuous functions
f : [−π, π] → C and that the set {ek : k ∈ Z} (where ek(x) = eikx) is a linear basis of T , as is the set
{c0, cn, sn, n = 1, 2, . . . } (where c0(x) = 1, cn(x) = cosnx, sn(x) = sinnx).
Show also that T is closed under pointwise multiplication and therefore for example the function
p(x) = (7− 2 cosx)5 belongs to T . Examine whether T contains some nonzero polynomial.

Comments: To show that the family {ek : k ∈ Z} is linearly independent: Suppose a certain linear combination

q :=
N∑

k=−N

akek is the zero function, i.e. q(x) =
N∑

k=−N

ake
ikx = 0 for all x. We have to show that all the coefficients

am,m = −N, . . . , N are 0. For some integer m ∈ [−N,N ], consider

1

2π

∫ π

−π

q(x)e−imxdx.

We know this is equal to q̂(m) = am (reason: the integral 1
2π

∫ π

−π
ei(k−m)xdx = δkm). But q = 0, so q̂(m) = 0 for all

m.

The same method shows that the set {c0, cn, sn, n = 1, 2, . . . } is linearly independent: now one must multiply
separately by cosmx and by sinmx.

Another method: consider the function

eiNx
N∑

k=−N

ake
ikx = a−N + a−N+1e

ix + · · ·+ aN (eix)2N .

This is a polynomial of degree (at most) 2N in the complex variable z := eix. So, if it has more than 2N complex
roots, it must be identically zero, i.e. ak = 0 for all k.

So we have reached a stronger conclusion: if the trig. polynomial q(x) vanishes for more than 2N distinct values of x,
then it must be identically zero.

To show that T is closed under multiplication: For the exponential form, this is obvious: the product of two elements
of the basis is another element of the basis: ekem = er where r = k +m.

For the sine-cosine form one must remember the trig. formulae relating products cos kx cosmx, cos kx sinmx and
sin kx sinmx to linear combinations of sines and cosines. But these formulae are easy to find and prove: use the
relations eix = cosx+ i sinx to transform them into sums of products of exponentials.

Conclusion: The set T is not only a linear space, but it is also a ring under pointwise operations; it is an algebra.
Question: Does T contain any polynomial (except zero)? Can a polynomial in x be a linear combination of sinnx and
cosnx?

I will leave this question for the Discussions!

4. We have seen that for all δ > 0 there exists M(δ) < ∞ so that for all x ∈ [δ, 2π − δ] and all n ∈ N we have∣∣∣∣∣12 +

n∑
k=1

cos kx

∣∣∣∣∣ ≤ M(δ) και

∣∣∣∣∣
n∑

k=1

sin kx

∣∣∣∣∣ ≤ M(δ) .

Examine whether the two sequences are uniformly bounded in (0, 2π).

Comments: They are not: There cannot exist a constantM such that |cn(x)| ≤ M and |sn(x)| ≤ M for all x ∈ (0, 2π)
and all n ∈ N simultaneously.

For the first, cn(x) = 1
2 +

∑n
k=1 cos kx: this is a continuous function on [0, 2π] and it takes the value n+ 1

2 at x = 0.
Therefore for each n there must exist a point xn > 0 so that |cn(xn)| > n+ 1

3 .
1

This argument does not work for sn, since sn(0) = 0. But we can still find a suitable xn: since sn(x) is given (for
x ∈ (0, 2π)) by the formula sn(x) =

cos x
2−cos(n+ 1

2 )x

2 sin x
2

, we need a sequence (xn) with xn → 0 (so that the denominator
2 sin xn

2 goes to 0) while at the same time the nominator cos xn

2 − cos(n+ 1
2 )xn does not vanish. For example, we can

try xn = π
2n+1 . We get

1Thanks, J. A.-B.



cos π
4n+2 − cos(n+ 1

2 )
π

2n+1 = cos π
4n+2 − cos( 2n+1

2
π

2n+1 ) = cos π
4n+2 − cos π

2 → 1.

Incidentally, this same sequence xn = π
2n+1 also works to show that (cn(xn)) cannot be bounded.

5. For which real values of x does the series

2
∞∑
k=1

(−1)k+1

k
sin kx

converge? Recall (as shown in class) that this is the Fourier series of the 2π-periodic function f : R → R which
satisfies f(t) = t when t ∈ (π, π].
Also find the Fourier series of the 2π-periodic function g : R → R which satisfies g(t) = t when t ∈ (0, 2π].

Comments: It clearly converges at every x ∈ 2πZ (sum of zeroes). Therefore (periodicity) it is enough to examine
what happens when x ∈ (0, 2π). Let us prove that it aleways converges:

Observe that sin(nπ − nx) = (−1)n+1

n sinnx (proof: check when n is even and when n is odd, remembering that sin
is 2π-periodic) and hence

N∑
k=1

(−1)k+1

k
sin kx =

N∑
n=1

1

n
sin(nπ − nx) .

Now you can use the argument used for the series
∞∑
k=1

1
k sin kx: indeed the sequence ( 1k ) monotonically decreases to

0, and for each δ ∈ (0, π) the partial sums
∑N

n=1 sin(nπ−nx) are uniformly bounded in [−π+ δ, π− δ] (by 1
sin(π−δ

2 )
,

from the formula in Exercise 3), so the Dirichlet criterion applies, etcetera...

The Fourier series of the 2π-periodic function g : R → R which satisfies g(t) = t when t ∈ (0, 2π].

(n = 0) ĝ(0) =
1

2π

∫ 2π

0

tdt =
1

2π

(2π)2

2
= π.

(n ̸= 0) ĝ(n) =
1

2π

∫ 2π

0

te−intdt =
1

−2πin

∫ 2π

0

t(e−int)′dt

=
i

2πn

∫ 2π

0

t(e−int)′dt =
i

2πn

([
te−int

]2π
0

−
∫ 2π

0

e−intdt

)
=

i

2πn
(2πe−i2nπ − (0)ein0 − 0) =

i

n
e−i2nπ =

i

n

So the complex form of S(f) is

g ∼ π +
∑
n ̸=0

i

n
eint.

Thus

an(g) = ĝ(n) + ĝ(−n) =
i

n
+

i

−n
= 0, n = 1, . . .

and bm(g) =
ĝ(−m)− ĝ(m)

i
=

1

−m
− 1

m
= −2

1

m
, m = 1, 2, . . .

hence

g ∼ π − 2

∞∑
m=1

1

m
sinmt .

Ia 2. Let f : R → C be 2π-periodic and integrable over compact intervals. If x ∈ R define fx : R → C by
fx(t) = f(t− x) (t ∈ R). Show that f̂x(k) = e−ikxf̂(k) for all k ∈ Z.

Solution

2πf̂x(k) =

∫ π

−π

fx(t)e
−iktdt =

∫ π

−π

f(t− x)e−iktdt

(s=t−x)
=

∫ π−x

−π−x

f(s)e−ik(s+x)ds = e−ikx

∫ π−x

−π−x

f(s)e−iksds

= e−ikx

∫ π

−π

f(s)e−iksds



(the last equality holds because the function s 7→ f(s)e−iks is 2π-periodic hence its integral over any interval of length
2π is the same).

Comment on the previous Exercise Applying the last result to the function g−π(t) = g(t + π) we see that ĝ−π(k) =
eikπ ĝ(k) and so ĝ−π(0) = π while for m = 1, 2, . . . , am(g−π) = 0 and

bm(g−π) =
1

i
(ĝ−π(−m)− ĝ−π(m)) = 2

(−1)m+1

m
.

Thus

gπ ∼ π + 2

∞∑
m=1

(−1)m+1

m
sinmt .

But notice that when t ∈ (−π, π], we have t+ π ∈ (0, 2π] and so g−π(t) = g(t+ π) = t+ π. Therefore we recover
the Fourier series for the 2π-periodic function f satisfying f(t) = t for t ∈ (−π, π]:

f = (gπ − π) ∼ 2

∞∑
m=1

(−1)m+1

m
sinmt .

8. If 0 < δ < π, find the Fourier coefficients of the function f : [−π, π] → R (whose graph is triangular) given by
the formula

f(x) =

{
1− |x|

δ (|x| ≤ δ)

0 (δ < |x| ≤ π)

Solution The function is even. So bn(f) = 0 for all n ∈ N by Exercise 6. Also,∫ π

−π

f(x) cosnxdx (e)
= 2

∫ π

0

f(x) cosnxdx = 2

∫ δ

0

(1− x

δ
) cosnxdx

because x 7→ f(x) cosnx is even (e) and f(x) = 0 for x > δ. Therefore we have

a0(f) =
1

π

∫ π

−π

f(x)dx =
1

π
δ (δ is the area of the triangle)

(n > 0) an(f) =
1

π

∫ π

−π

f(x) cosnxdx =
2

π

∫ δ

0

(1− x

δ
)

(
sinnx
n

)′

dx

=
2

nπ

∫ π

0

([
(1− x

δ
) sinnx

]δ
0
−
∫ δ

0

(1− x

δ
)′ sinnxdx

)

=
2

nπ
(0 +

1

δ

∫ δ

0

sinnxdx) =
2

nπδ

[
− cosnx

n

]δ
0

=
2

n2πδ
(1− cosnδ)

=
2

n2πδ
2 sin2(

nδ

2
) =

δ

π

(
sin nδ

2
nδ
2

)2

So

f ∼ δ

2π
+
∑
n≥1

δ

π

(
sin nδ

2
nδ
2

)2

cosnx.


