7 Mean square convergence

Let us begin with a simple, but crucial observation:

Proposition 7.1 (Best mean square approximation). Let f : [—m, 7| — C be a Riemann-integrable function
and n € N. Then for every trigonometric polynomial p of degree deg(p) < n we have

L eae = o [-sar s o 1800 - m

Therefore the inequality
1 [ N 1 [ N
- _ > —

holds, and we have equality we have if and only if p = S

In other words, S,, is the unique trigonometric polynomial which minimizes the integral % Ik 7; |f —pl?
among all choices of trigonometric polynomials p of degree at most n.

In particular, if m < nthen [ f—S,,(f)l, > [f = S,.(F)l,-

Proof. It is clear that (B) follows at once from ([l]) and that equality holds in (f]) if and only if the last term in
() vanishes; this happens if and only if p = S,,.

Soletp(t) = 3. cpet*. Ifwesetg= f—S,(f)and g = S,(f) — p we have
k=—n

f=p=(f—=8,()+(S.,(f) —p) =9 +4q

Observe that, if e, (t) = e, |[k| < n

1 [7 ~ 1 (7
5 | sE=F0 =5 [ S0

(from the definition of S,,(f)), and therefore

1 s
— e, =0 k| <n.
5 | =0 W<n

Since ¢ = Zzz_n(f( ) — ¢, )ey, is a linear combination of {e,, : |k| < n}, it follows that

1 ™
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and so
1 (" g _ 9 T .
o | I —plP= |g+q! (g+q)(9+q>
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and ([l}) is proved. O

This Proposition suggests the study of the quantity

1/2

If1l, = (;ﬂ/ \f(t)|2dt) f i [—m,m] = C integrable.



If f, g are two (Riemann) integrable functions defined on [—, 7| we define

17 =l = (55 [ 1701 - gtoPar)
and 1) = o [ st

1/2

Observe that ||-|,, satisfies

If =gly <1f =gl = sup{[f () —g(t)] : ¢ € [=m, ]}

and that | f], = (£, /)"/* .

Remark f(k) = (f,e,), k€ Z.

Lemma 7.2. If f, g : [—7,nw| — C are two (Riemann) integrable functions, we have

(@) [{(f, )] <1l gl
0) 1f +gly <[ fl, + 9l -

Proof. (a) To show that [(f, g)| <[ f], [g], I can assume that I that lgl, = 1. If A € C, from the definition
of (-,-) we have

0<(f—Ag. f—Ag) = | FI2 = A, g) — Mg, £) + [N gl
= 112 = Afrg) — Mg, ) + [A]2

: 2 2 2, 12
so, setting \ = {,g), we have 0 < | /|2 —2|(7,g)? +|(f. 9} hence |(, 9)* < |5 = | /I3 I and the
required inequality is proved.

(b) For each every f, g we have

If+gls={f+9.f+9) =, )+ (f.9) + (9, ) + (9,9)
=(f,f) +2Re(f,g9) + (g9.9)
< (f, f) +2[{f. 9|+ (9,9)
< F15+20f1, lgl, + gl = (IF1, + lgl,)?
by (a), hence [ f + gll, < If1, + lgl,- O

Corollary 7.3. The map (f,g) — (f,g) is an inner product and the map (f,g) — dy(f,g) == |If — gl is
a metric on the linear space C([—m, ). B That is, they satisfy

(frg) €C dy(f,9) € Ry
(i) (f+Ag,h)=(f,h)+ Xg, ) (a) do(f, 9) = da(g, f)
(i) (9. 1) =(f.9) (0) dy(f,9) < do(f, ) + dy(h,g)
(ii1) (f,f)=0 (c) dy(f,9)=0 <= f=g.
(iv) (f,/)=0 <= f=0.

'If | g]l, = O the inequality holds trivially and if |g[, # O, replace g by o
2
*However it is not a metric on the space of integrable functions, since the equality || f — g[|, = 0 does not imply that f(t) = g(t)
for every ¢ € [—mr, 7]. It could happen for example that f — g is # O at a single point of the interval only. We will see later that the
only conclusion one can draw is that the equality f = g is valid “almost everywhere” - a concept we will define then.



Proof. Relations (), (i) and (7i7) are immediate consequences of the linearity of the integral.

To prove that d,, is indeed a metric on C'[—, 7|, we observe directly from its definition that

d2<fag) :d2(97f> and dg(f,g) 20

for every f, g. Also, if f, g are continuous and unequal, then there exists 6 > 0 and an open neighbourhood
V C [—m, 7] (of the form (a, b) N [—m, 7]) so that | f(t) — g(t)| > 0 for every t € V; therefore

/ |f(t) — g(t)]2dt > /yf t)|2dt > 217T<5 m(V) >0

(where m(V') denotes the length of V') and therefore d,(f, g) = 0 if and only if f = ¢ (thus we have also
proved (7v)). It remains to prove the triangle inequality: if f, g, h are continuous, we have

dy(f,9) = I(f =h) + (h—=g)l, <If = bl + 1= gl, = dao(f, 1) + dy(h, g)
using the previous Lemma. O

Remarks 7.4. (a) The elementary, but crucial remark that the expression (f, g) := i f " fg has analogous
—T

properties to those of the inner product of Euclidean space, allows the introduction of geometric methods

and notions, such as orthogonality.

(p) Equality () in Lemma 71| can be written

If = pls =1 = Su(F)2+1S,.(F) — 2l

and its proof only uses properties (i), (i1) and (iii): it is an applications of the Pythagorean Theorem:
2 2 2,
(f,9) =0 = |f +4l; =1l + lgl if one observes that (f — S,,(f), S, (f) —p) = 0.

As we will show later, the next Theorem also holds for integrable functions.

Although the sequence (S,,(f)) for a continuous f may fail to converge, even pointwise, it does converge
to f with respect to the metric d,:

Theorem 7.5. If f : [—m, 7] — C is are continuous and 27-periodic, then

(H
n

that is

Proof. Since f is continuous, from Fejér’s Theorem we know that o, (f) — f uniformly. Therefore
lo (f) = Flly < llown(F) = fll, = 0

But 0,,(f) is a trigonometric polynomial of degree at most n, hence by the best approximation Lemma
we have [ f — S, (f)l, < [f —o,(f)l,and so [ f =S, (F)l, = 0. O

Our next target is to relate || f[|,, with the Fourier coefficients of f.

Remark 7.6. If p(t) = Z e et is a trigonometric polynomial, then

/ Ipl? = Z lexl? = Z p(k

k=—n k=—n



Proof. Since p(k) = ¢;, = (p, e;,) for |k| < n, we have

/p’2 277/ / kzn:néke_k

TL

n
= Z k:27r/ pep = Ckck: Z [N

k=—n k=—n

Proposition 7.7 (Bessel’s Inequality). Let f : [—m, 7] — C be integrable. Then

S Itk # <o [ 1

k=—o00

Proof. Let n € N. Applying ([l}) for p = 0 we have

c g [ 1= sor g [ 1srz g [ sor 5

But S,,(f) is a trigonometric polynomial whose coefficients are f(k) for |k| < n and 0 for |k| > n, hence
by the previous Remark we have

5w | 1022 0 [ 1,002 = 3 1w

Since this inequality holds for every n € N, the conclusion follows. O
We will show later that in fact equality holds.

An immediate corollary of Bessel’s Inequality is the fundamental

Theorem 7.8 (Riemann - Lebesgue). If f : [—m, w| — C is an integrable function, then

lim f(k)= lim f(—k)=0

k—+o0 k—o0
equivalently hI—P a,(f)= lim b,(f) =0.
n—+oo n—oo

Corollary 7.9 (Parseval’s equality). If f : [—m, w| — C is a continuous function, then

5 [ 1= 3 1w

k=—o0

Proof. We have shown that d,(S,,(f), f) — 0. Since d, is a metric on C'(|—, 7]), by the triangle inequality
we have

|da(f,0) = da(5,(f), 0)] < dx(S,(f), f)
hence dy(S,,(f),0) — dy(f,0), that is

5w | 1805 [

But by Remark 7.6 we have 5= fj; 1S, (F)12 =3 |f(k)[?, hence

> 1w = tim > 1w =5 [ 1P
k=—o00 k=—n -7

Note Let us state once again that the results of this Section will be generalised and strengthened, if one uses
the Lebesgue integral instead of the Riemann integral.



8 The Poisson kernel

If f : [—m, 7] — C is an integrable function, for each 0 < r < 1, the series

AN = fo(8) =D M fR)e*,  t e [—m, 7]

kez

converges absolutely and uniformly, hence defines a continuous function f, : [—m, 7] — C (although for
r = 1 the series, i.e. the Fourier series of f, may fail to converge, even pointwise). Indeed, the (double)
sequence (f(k)) is bounded, because

1 [7 : 1 [7
<o [ se = [ 1wl =1),

S|P F e < £, 3 < oo

for all k¥ € Z and therefore

kez kez
We have
1 (7 , ,
fr<t) — Zﬂn\f Znt Zr\’rﬂ (2/ f(s)eznsds) eznt
nez nez T Jx
= In| _—_ / f fzn (t—s)
r
7;2 2
1
=5 f (s) (Z rinle=in(t= 9)> ds (uniform convergence)
T
-7 nez

_ %L F($)P.(t — s)ds
where Pr(t) = Zr\nlemt — Z —npint 4 1+Z n gint

neZ n=-—o0
o

_ k —ikt n int __ n

= rte —|—1+E r’e —1+2§ r"™ cosnt
k=1 n=1 n=1

is the Poisson kernel. Writing 2z = re®®, we have |z| < 1 and

o ¢] o =
PH)=SF+1+ z”:1i£+1+1iz
n=1 n=1
_Z 1 zZ1—-2)+(1—2) 1—[z*> 1—r?
T 1T T U—5(—2 1—z2F 1—2rcostt?

showing that P, (¢) > 0 for all ¢. Also, since the series converges uniformly, for all » € (0,1) and k € Z we
have

— 1 [ . 1 [T
Bi(k) = o / Pttt = 3o / ity = b

neZ

and in particular — / t)ydt =19 = 1.



Remark 8.1. The Poisson kernel has the following properties

(a) Foreachr € (0,1), the function P, : [—7,m| — R is continuous and non-negative.
B) If6 € (0,7/2) and E5 := [—m,—06] U [0, 7|, we have P,(t) — O uniformly fort € Esasr /' 1;
hence lim/ P (z)dx = 0.
r, 1 o

¢) % /_7T P.(x)dx =1 foreveryr € [0,1).

Proof. 1t only remains to prove (B): If 0 < 0 < 7/2 then for all ¢ with 6 < |¢t| < 7 we have cost < cosd,

hence
1—72 1—r2

T 1—2rcost+72 = 1—2rcosd + 12
and the right hand side tends to 0 as r * 1. O

Therefore, if f is Riemann integrable, and hence bounded, we have

0 < P.(t)

1 (7 1 [
01 1l 5 [ R lds =115 [ Pule)ds = 1l
(since P, is 2m-periodic and nonnegative) for each ¢ and 7.
Ifin addition f is continuous ko 2w-periodic, then repeating the proof of Fejér’ s Theorem (which proofrelied

exclusively on the corresponding properties (o), (B) and (y) of the Fejér kernel) we arrive at the following

Theorem 8.2. If f is Riemann integrable and 2m-periodic, then at every point t of continuity of f we have

li t) = f(1).
lim £,(6) = f(¢)
If f is continuous, then li}ri f.(z) = f(x) uniformly, that is, li}l} If— £l =0.
T T
Remark 8.3. Note that although the functions f, are (in general) not trigonometric polynomials, they are

continuous (in fact differentiable - why?) functions given by absolutely and uniformly convergent Fourier
series.



9 Pointwise convergence and the localisation principle

(For proofs, see Stein & Shakarchi, ‘Fourier Analysis’, paragraphs 3.2.1 and 3.2.2. E)

Definition 9.1. Complex-valued functions on the unit circle
Denote by T the unit circle
T={zc€C:|z| =1} ={e": 0 € R}.
If¢p: T — C, define f: R— C by
£(0) = o(e).
The function f is 2w-periodic.

Conversely, if f : R — C is 2n-periodic, then the function ¢ : T — C given by ¢(e??) = f(0) is well
deﬁned.E Thus we have a 1 — 1 correspondence between functions ¢ : T — C and 2mw-periodic functions
f:R—C.

We say ¢ is integrable if f is integrable in some interval of length 27 (hence in all such intervals), we say
¢ is continuous if f is continuous, we say ¢ is differentiable if f is differentiable, we say ¢ is continuously
differentiable if f is continuously differentiable and so on.

In what follows we shall make no distinction between ¢ and f.

Theorem 9.1. Let f : T — C be an integrable function. If f is differentiable at 0, € T, then

Sn(f) () = f(6o)-
Remark 9.2. If we examine the proof of Theorem P.1| we can see that the conclusion S, (f)(6,) — f(6,)
still holds under the following weaker assumption for f:

‘The function f is integrable and satisfies a Lipschitz condition at 0, that is, there exists A/ > 0 such that

£ (6 —1) = f(0p)| < Mt|

forallt € [—m, 7] .

One can now repeat the proof without modifications.

An important consequence of Theorem is the localisation principle of Riemann: the convergence or
divergence of the sequence S, (f)(6,) depends only on the behaviour of f in a neighbourhood of 6. This is
not at all obvious; indeed, the partial sums S, (f)(6,) are defined in terms of the Fourier coefficients f(k),
|k| < n of f, which coefficients are given by integration on [—, 7], thus taking into account the values of
f in the whole interval [—7, 7.

Theorem 9.3 (Riemann’s localisation principle). Let f, g : T — C be two integrable functions. Assume that,
for some 0, € T and some open interval I C T with 6, € I, we have

f0)=g@)  forall €.

Then
Su(f)(0g) — Sn(9)(8p) — 0.

In particular, the sequence {S,,(f)(0,)} converges if and only if {S,,(9)(0,)} converges.

3 Amé Tic onperdostg Tov An. Tovvomovdov (2012) Mapéypogog 3.3
*Indeed, if ?%1 = €92 for some 6, , 0, € Rthen 6, = 6, + 2k for an integer k, hence f(6,) = f(0,) since f is 27-periodic.



10 Complements

The goal is to prove:

Theorem 10.1. There exists a continuous function f : T — C for which

limsup |S,,(f)(0)| = +oo.

n—oo

Therefore S[f](0) diverges.

An important role in the proof is played by the trigonometric series

eikm —1 eikr
Z k and Z o

E#0 k=—o0

Lemma 10.2. Consider the function

_Jim—2) fO<z<m
f(x)—{ —i(n+x) If —m<x<0

and extend it periodically to R. Then, the Fourier series of f is

eikm

Slfl@) =Y

k40

Proposition 10.3. Let f : T — C be an integrable function. If the sequence {|kf(k)|} .7 is bounded, then
the partial sums S,,(f) of the Fourier series of f are uniformly bounded:

sup S, (f)loe < o0

That is, there exists M > 0 so that
1S, () ()| < M

foralln € Nand all x € T.

Lemma 10.4. For each n € N consider the trigonometric polynomial

6ik:c
fal@)= > —
1<|k|<n
There exists M > 0 so that | f,,(x)| < M for all n and all x. O

Lemma 10.5. For eachn € N consider the trigonometric polynomial

—1 ikx
(&

k=—n

There exists ¢ > 0 so that |g,,(0)| > clogn for each n € N. O
Corollary 10.6. There is no Riemann integrable function g : T — C with
—1 ikx

Slgl@) = Y ©

k=—oc0 k .

Comment. We will show later that there does exist a Lebesgue integrable function g with

Sllz) = ¥ <=

k=—oc0
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