
7 Mean square convergence

Let us begin with a simple, but crucial observation:

Proposition 7.1 (Best mean square approximation). Let 𝑓 ∶ [−𝜋, 𝜋] → ℂ be a Riemann-integrable function
and 𝑛 ∈ ℕ. Then for every trigonometric polynomial 𝑝 of degree deg(𝑝) ≤ 𝑛 we have

1
2𝜋 ∫

𝜋

−𝜋
|𝑓 − 𝑝|2 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑆𝑛(𝑓)|2 + 1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓) − 𝑝|2. (1)

Therefore the inequality
1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑝|2 ≥ 1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑆𝑛(𝑓)|2 (2)

holds, and we have equality we have if and only if 𝑝 = 𝑆𝑛.

In other words, 𝑆𝑛 is the unique trigonometric polynomial which minimizes the integral 1
2𝜋 ∫𝜋

−𝜋 |𝑓 − 𝑝|2
among all choices of trigonometric polynomials 𝑝 of degree at most 𝑛.

In particular, if 𝑚 ≤ 𝑛 then ‖𝑓 − 𝑆𝑚(𝑓)‖2 ≥ ‖𝑓 − 𝑆𝑛(𝑓)‖2.

Proof. It is clear that (2) follows at once from (1) and that equality holds in (2) if and only if the last term in
(1) vanishes; this happens if and only if 𝑝 = 𝑆𝑛.

So let 𝑝(𝑡) =
𝑛

∑
𝑘=−𝑛

𝑐𝑘𝑒𝑖𝑘𝑡. If we set 𝑔 = 𝑓 − 𝑆𝑛(𝑓) and 𝑞 = 𝑆𝑛(𝑓) − 𝑝 we have

𝑓 − 𝑝 = (𝑓 − 𝑆𝑛(𝑓)) + (𝑆𝑛(𝑓) − 𝑝) = 𝑔 + 𝑞.

Observe that, if 𝑒𝑘(𝑡) = 𝑒𝑖𝑘𝑡, |𝑘| ≤ 𝑛

1
2𝜋 ∫

𝜋

−𝜋
𝑓𝑒𝑘 = ̂𝑓(𝑘) = 1

2𝜋 ∫
𝜋

−𝜋
𝑆𝑛(𝑓)𝑒𝑘

(from the definition of 𝑆𝑛(𝑓)), and therefore

1
2𝜋 ∫

𝜋

−𝜋
𝑔𝑒𝑘 = 0, |𝑘| ≤ 𝑛.

Since 𝑞 = ∑𝑛
𝑘=−𝑛( ̂𝑓(𝑘) − 𝑐𝑘)𝑒𝑘 is a linear combination of {𝑒𝑘 ∶ |𝑘| ≤ 𝑛}, it follows that

1
2𝜋 ∫

𝜋

−𝜋
𝑔 ̄𝑞 = 0,

and so

1
2𝜋 ∫

𝜋

−𝜋
|𝑓 − 𝑝|2 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑔 + 𝑞|2 = 1

2𝜋 ∫
𝜋

−𝜋
(𝑔 + 𝑞)(𝑔 + 𝑞)

= 1
2𝜋 ∫

𝜋

−𝜋
𝑔𝑔 + 1

2𝜋 ∫
𝜋

−𝜋
𝑔𝑞 + 1

2𝜋 ∫
𝜋

−𝜋
𝑞𝑔 + 1

2𝜋 ∫
𝜋

−𝜋
𝑞𝑞

= 1
2𝜋 ∫

𝜋

−𝜋
|𝑔|2 + 1

2𝜋 ∫
𝜋

−𝜋
|𝑞|2

and (1) is proved.

This Proposition suggests the study of the quantity

‖𝑓‖2 = ( 1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑡)|2𝑑𝑡)

1/2
𝑓 ∶ [−𝜋, 𝜋] → ℂ integrable.



If 𝑓, 𝑔 are two (Riemann) integrable functions defined on [−𝜋, 𝜋] we define

‖𝑓 − 𝑔‖2 ∶= ( 1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑡) − 𝑔(𝑡)|2𝑑𝑡)

1/2

and ⟨𝑓, 𝑔⟩ = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑡)𝑔(𝑡)𝑑𝑡 .

Observe that ‖⋅‖2 satisfies

‖𝑓 − 𝑔‖2 ≤ ‖𝑓 − 𝑔‖∞ ∶= sup{|𝑓(𝑡) − 𝑔(𝑡)| ∶ 𝑡 ∈ [−𝜋, 𝜋]}

and that ‖𝑓‖2 = ⟨𝑓, 𝑓⟩1/2 .

Remark ̂𝑓(𝑘) = ⟨𝑓, 𝑒𝑘⟩, 𝑘 ∈ ℤ.

Lemma 7.2. If 𝑓, 𝑔 ∶ [−𝜋, 𝜋] → ℂ are two (Riemann) integrable functions, we have

(𝑎) |⟨𝑓, 𝑔⟩| ≤ ‖𝑓‖2 ‖𝑔‖2
(𝑏) ‖𝑓 + 𝑔‖2 ≤ ‖𝑓‖2 + ‖𝑔‖2 .

Proof. (𝑎) To show that |⟨𝑓, 𝑔⟩| ≤ ‖𝑓‖2 ‖𝑔‖2 I can assume that 1 that ‖𝑔‖2 = 1. If 𝜆 ∈ ℂ, from the definition
of ⟨⋅, ⋅⟩ we have

0 ≤ ⟨𝑓 − 𝜆𝑔, 𝑓 − 𝜆𝑔⟩ = ‖𝑓‖2
2 − 𝜆̄⟨𝑓, 𝑔⟩ − 𝜆⟨𝑔, 𝑓⟩ + |𝜆|2 ‖𝑔‖2

2
= ‖𝑓‖2

2 − 𝜆̄⟨𝑓, 𝑔⟩ − 𝜆⟨𝑔, 𝑓⟩ + |𝜆|2

so, setting 𝜆 = ⟨𝑓, 𝑔⟩, we have 0 ≤ ‖𝑓‖2
2 − 2|⟨𝑓, 𝑔⟩|2 + |⟨𝑓, 𝑔⟩|2 hence |⟨𝑓, 𝑔⟩|2 ≤ ‖𝑓‖2

2 = ‖𝑓‖2
2 ‖𝑔‖2

2 and the
required inequality is proved.

(𝑏) For each every 𝑓, 𝑔 we have

‖𝑓 + 𝑔‖2
2 = ⟨𝑓 + 𝑔, 𝑓 + 𝑔⟩ = ⟨𝑓, 𝑓⟩ + ⟨𝑓, 𝑔⟩ + ⟨𝑔, 𝑓⟩ + ⟨𝑔, 𝑔⟩

= ⟨𝑓, 𝑓⟩ + 2Re⟨𝑓, 𝑔⟩ + ⟨𝑔, 𝑔⟩
≤ ⟨𝑓, 𝑓⟩ + 2|⟨𝑓, 𝑔⟩| + ⟨𝑔, 𝑔⟩
≤ ‖𝑓‖2

2 + 2 ‖𝑓‖2 ‖𝑔‖2 + ‖𝑔‖2
2 = (‖𝑓‖2 + ‖𝑔‖2)2

by (𝑎), hence ‖𝑓 + 𝑔‖2 ≤ ‖𝑓‖2 + ‖𝑔‖2.

Corollary 7.3. The map (𝑓, 𝑔) → ⟨𝑓, 𝑔⟩ is an inner product and the map (𝑓, 𝑔) → 𝑑2(𝑓, 𝑔) ∶= ‖𝑓 − 𝑔‖2 is
a metric on the linear space 𝐶([−𝜋, 𝜋]). 2 That is, they satisfy

⟨𝑓, 𝑔⟩ ∈ ℂ 𝑑2(𝑓, 𝑔) ∈ ℝ+
(𝑖) ⟨𝑓 + 𝜆𝑔, ℎ⟩ = ⟨𝑓, ℎ⟩ + 𝜆⟨𝑔, ℎ⟩ (𝑎) 𝑑2(𝑓, 𝑔) = 𝑑2(𝑔, 𝑓)

(𝑖𝑖) ⟨𝑔, 𝑓⟩ = ⟨𝑓, 𝑔⟩ (𝑏) 𝑑2(𝑓, 𝑔) ≤ 𝑑2(𝑓, ℎ) + 𝑑2(ℎ, 𝑔)
(𝑖𝑖𝑖) ⟨𝑓, 𝑓⟩ ≥ 0 (𝑐) 𝑑2(𝑓, 𝑔) = 0 ⟺ 𝑓 = 𝑔.
(𝑖𝑣) ⟨𝑓, 𝑓⟩ = 0 ⟺ 𝑓 = 0.

1If ‖𝑔‖2 = 0 the inequality holds trivially and if ‖𝑔‖2 ≠ 0, replace 𝑔 by 𝑔
‖𝑔‖2

.
2However it is not a metric on the space of integrable functions, since the equality ‖𝑓 − 𝑔‖2 = 0 does not imply that 𝑓(𝑡) = 𝑔(𝑡)

for every 𝑡 ∈ [−𝜋, 𝜋]. It could happen for example that 𝑓 − 𝑔 is ≠ 0 at a single point of the interval only. We will see later that the
only conclusion one can draw is that the equality 𝑓 = 𝑔 is valid “almost everywhere” - a concept we will define then.



Proof. Relations (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) are immediate consequences of the linearity of the integral.

To prove that 𝑑2 is indeed a metric on 𝐶[−𝜋, 𝜋], we observe directly from its definition that

𝑑2(𝑓, 𝑔) = 𝑑2(𝑔, 𝑓) and 𝑑2(𝑓, 𝑔) ≥ 0

for every 𝑓, 𝑔. Also, if 𝑓, 𝑔 are continuous and unequal, then there exists 𝛿 > 0 and an open neighbourhood
𝑉 ⊆ [−𝜋, 𝜋] (of the form (𝑎, 𝑏) ∩ [−𝜋, 𝜋]) so that |𝑓(𝑡) − 𝑔(𝑡)| ≥ 𝛿 for every 𝑡 ∈ 𝑉 ; therefore

𝑑2(𝑓, 𝑔)2 = 1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑡) − 𝑔(𝑡)|2𝑑𝑡 ≥ 1

2𝜋 ∫
𝑉

|𝑓(𝑡) − 𝑔(𝑡)|2𝑑𝑡 ≥ 1
2𝜋𝛿2𝑚(𝑉 ) > 0

(where 𝑚(𝑉 ) denotes the length of 𝑉 ) and therefore 𝑑2(𝑓, 𝑔) = 0 if and only if 𝑓 = 𝑔 (thus we have also
proved (𝑖𝑣)). It remains to prove the triangle inequality: if 𝑓, 𝑔, ℎ are continuous, we have

𝑑2(𝑓, 𝑔) = ‖(𝑓 − ℎ) + (ℎ − 𝑔)‖2 ≤ ‖𝑓 − ℎ‖2 + ‖ℎ − 𝑔‖2 = 𝑑2(𝑓, ℎ) + 𝑑2(ℎ, 𝑔)

using the previous Lemma.

Remarks 7.4. (a) The elementary, but crucial remark that the expression ⟨𝑓, 𝑔⟩ ∶= 1
2𝜋 ∫𝜋

−𝜋 𝑓 ̄𝑔 has analogous
properties to those of the inner product of Euclidean space, allows the introduction of geometric methods
and notions, such as orthogonality.

(β) Equality (1) in Lemma 7.1 can be written

‖𝑓 − 𝑝‖2
2 = ‖𝑓 − 𝑆𝑛(𝑓)‖2

2 + ‖𝑆𝑛(𝑓) − 𝑝‖2
2

and its proof only uses properties (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖): it is an applications of the Pythagorean Theorem:
⟨𝑓, 𝑔⟩ = 0 ⇒ ‖𝑓 + 𝑔‖2

2 = ‖𝑓‖2
2 + ‖𝑔‖2

2, if one observes that ⟨𝑓 − 𝑆𝑛(𝑓), 𝑆𝑛(𝑓) − 𝑝⟩ = 0.

As we will show later, the next Theorem also holds for integrable functions.

Although the sequence (𝑆𝑛(𝑓)) for a continuous 𝑓 may fail to converge, even pointwise, it does converge
to 𝑓 with respect to the metric 𝑑2:

Theorem 7.5. If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is are continuous and 2𝜋-periodic, then

𝑆𝑛(𝑓)
‖⋅‖2⟶ 𝑓

that is
lim

𝑛
1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓) − 𝑓|2 = 0.

Proof. Since 𝑓 is continuous, from Fejér’s Theorem we know that 𝜎𝑛(𝑓) → 𝑓 uniformly. Therefore

‖𝜎𝑛(𝑓) − 𝑓‖2 ≤ ‖𝜎𝑛(𝑓) − 𝑓‖∞ → 0 .

But 𝜎𝑛(𝑓) is a trigonometric polynomial of degree at most 𝑛, hence by the best approximation Lemma 7.1
we have ‖𝑓 − 𝑆𝑛(𝑓)‖2 ≤ ‖𝑓 − 𝜎𝑛(𝑓)‖2 and so ‖𝑓 − 𝑆𝑛(𝑓)‖2 → 0.
Our next target is to relate ‖𝑓‖2 with the Fourier coefficients of 𝑓 .

Remark 7.6. If 𝑝(𝑡) = ∑𝑛
𝑘=−𝑛 𝑐𝑘𝑒𝑖𝑘𝑡 is a trigonometric polynomial, then

1
2𝜋 ∫

𝜋

−𝜋
|𝑝|2 =

𝑛
∑

𝑘=−𝑛
|𝑐𝑘|2 =

𝑛
∑

𝑘=−𝑛
| ̂𝑝(𝑘)|2.



Proof. Since ̂𝑝(𝑘) = 𝑐𝑘 = ⟨𝑝, 𝑒𝑘⟩ for |𝑘| ≤ 𝑛, we have

1
2𝜋 ∫

𝜋

−𝜋
|𝑝|2 = 1

2𝜋 ∫
𝜋

−𝜋
𝑝 ̄𝑝 = 1

2𝜋 ∫
𝜋

−𝜋
𝑝

𝑛
∑

𝑘=−𝑛
̄𝑐𝑘 ̄𝑒𝑘

=
𝑛

∑
𝑘=−𝑛

̄𝑐𝑘
1

2𝜋 ∫
𝜋

−𝜋
𝑝 ̄𝑒𝑘 =

𝑛
∑

𝑘=−𝑛
̄𝑐𝑘𝑐𝑘 =

𝑛
∑

𝑘=−𝑛
|𝑐𝑘|2.

Proposition 7.7 (Bessel’s Inequality). Let 𝑓 ∶ [−𝜋, 𝜋] → ℂ be integrable. Then

+∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2 ≤ 1

2𝜋 ∫
𝜋

−𝜋
|𝑓|2.

Proof. Let 𝑛 ∈ ℕ. Applying (1) for 𝑝 = 0 we have

1
2𝜋 ∫

𝜋

−𝜋
|𝑓|2 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑆𝑛(𝑓)|2 + 1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓)|2 ≥ 1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓)|2 (3)

But 𝑆𝑛(𝑓) is a trigonometric polynomial whose coefficients are ̂𝑓(𝑘) for |𝑘| ≤ 𝑛 and 0 for |𝑘| > 𝑛, hence
by the previous Remark we have

1
2𝜋 ∫

𝜋

−𝜋
|𝑓|2 ≥ 1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓)|2 =

𝑛
∑

𝑘=−𝑛
| ̂𝑓(𝑘)|2.

Since this inequality holds for every 𝑛 ∈ ℕ, the conclusion follows.

We will show later that in fact equality holds.

An immediate corollary of Bessel’s Inequality is the fundamental

Theorem 7.8 (Riemann - Lebesgue). If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is an integrable function, then

lim
𝑘→+∞

̂𝑓(𝑘) = lim
𝑘→∞

̂𝑓(−𝑘) = 0

equivalently lim
𝑛→+∞

𝑎𝑛(𝑓) = lim
𝑛→∞

𝑏𝑛(𝑓) = 0.

Corollary 7.9 (Parseval’s equality). If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is a continuous function, then

1
2𝜋 ∫

𝜋

−𝜋
|𝑓|2 =

∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2.

Proof.We have shown that 𝑑2(𝑆𝑛(𝑓), 𝑓) → 0. Since 𝑑2 is a metric on 𝐶([−𝜋, 𝜋]), by the triangle inequality
we have

|𝑑2(𝑓, 0) − 𝑑2(𝑆𝑛(𝑓), 0)| ≤ 𝑑2(𝑆𝑛(𝑓), 𝑓)
hence 𝑑2(𝑆𝑛(𝑓), 0) → 𝑑2(𝑓, 0), that is

1
2𝜋 ∫

𝜋

−𝜋
|𝑆𝑛(𝑓)|2 → 1

2𝜋 ∫
𝜋

−𝜋
|𝑓|2.

But by Remark 7.6 we have 1
2𝜋 ∫𝜋

−𝜋 |𝑆𝑛(𝑓)|2 = ∑𝑛
𝑘=−𝑛 | ̂𝑓(𝑘)|2, hence

∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2 = lim

𝑛→∞

𝑛
∑

𝑘=−𝑛
| ̂𝑓(𝑘)|2 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑓|2.

Note Let us state once again that the results of this Section will be generalised and strengthened, if one uses
the Lebesgue integral instead of the Riemann integral.



8 The Poisson kernel

If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is an integrable function, for each 0 ≤ 𝑟 < 1, the series

𝐴𝑟(𝑓)(𝑡) = 𝑓𝑟(𝑡) ∶= ∑
𝑘∈ℤ

𝑟|𝑘| ̂𝑓(𝑘)𝑒𝑖𝑘𝑡, 𝑡 ∈ [−𝜋, 𝜋]

converges absolutely and uniformly, hence defines a continuous function 𝑓𝑟 ∶ [−𝜋, 𝜋] → ℂ (although for
𝑟 = 1 the series, i.e. the Fourier series of 𝑓 , may fail to converge, even pointwise). Indeed, the (double)
sequence ( ̂𝑓(𝑘)) is bounded, because

| ̂𝑓(𝑘)| ≤ 1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑡)𝑒−𝑖𝑘𝑡|𝑑𝑡 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑓(𝑡)|𝑑𝑡 ∶= ‖𝑓‖1

for all 𝑘 ∈ ℤ and therefore
∑
𝑘∈ℤ

∣𝑟|𝑘| ̂𝑓(𝑘)𝑒𝑖𝑘𝑡∣ ≤ ‖𝑓‖1 ∑
𝑘∈ℤ

𝑟|𝑘| < ∞.

We have

𝑓𝑟(𝑡) = ∑
𝑛∈ℤ

𝑟|𝑛| ̂𝑓(𝑛)𝑒𝑖𝑛𝑡 = ∑
𝑛∈ℤ

𝑟|𝑛| ( 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑠)𝑒−𝑖𝑛𝑠𝑑𝑠) 𝑒𝑖𝑛𝑡

= ∑
𝑛∈ℤ

𝑟|𝑛| 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑠)𝑒−𝑖𝑛(𝑡−𝑠)𝑑𝑠

= 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑠) (∑

𝑛∈ℤ
𝑟|𝑛|𝑒−𝑖𝑛(𝑡−𝑠)) 𝑑𝑠 (uniform convergence)

= 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑠)𝑃𝑟(𝑡 − 𝑠)𝑑𝑠

where 𝑃𝑟(𝑡) ∶= ∑
𝑛∈ℤ

𝑟|𝑛|𝑒𝑖𝑛𝑡 =
−1
∑

𝑛=−∞
𝑟−𝑛𝑒𝑖𝑛𝑡 + 1 +

∞
∑
𝑛=1

𝑟𝑛𝑒𝑖𝑛𝑡

=
∞

∑
𝑘=1

𝑟𝑘𝑒−𝑖𝑘𝑡 + 1 +
∞

∑
𝑛=1

𝑟𝑛𝑒𝑖𝑛𝑡 = 1 + 2
∞

∑
𝑛=1

𝑟𝑛 cos𝑛𝑡

is the Poisson kernel. Writing 𝑧 = 𝑟𝑒𝑖𝑡, we have |𝑧| < 1 and

𝑃𝑟(𝑡) =
∞

∑
𝑛=1

̄𝑧𝑘 + 1 +
∞

∑
𝑛=1

𝑧𝑛 = ̄𝑧
1 − ̄𝑧 + 1 + 𝑧

1 − 𝑧

= ̄𝑧
1 − ̄𝑧 + 1

1 − 𝑧 = ̄𝑧(1 − 𝑧) + (1 − ̄𝑧)
(1 − ̄𝑧)(1 − 𝑧) = 1 − |𝑧|2

|1 − 𝑧|2 = 1 − 𝑟2

1 − 2𝑟 cos 𝑡 + 𝑟2

showing that 𝑃𝑟(𝑡) ≥ 0 for all 𝑡. Also, since the series converges uniformly, for all 𝑟 ∈ (0, 1) and 𝑘 ∈ ℤ we
have

𝑃𝑟(𝑘) = 1
2𝜋 ∫

𝜋

−𝜋
𝑃𝑟(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡 = ∑

𝑛∈ℤ
𝑟|𝑛| 1

2𝜋 ∫
𝜋

−𝜋
𝑒𝑖(𝑛−𝑘)𝑡𝑑𝑡 = 𝑟|𝑘|

and in particular
1

2𝜋 ∫
𝜋

−𝜋
𝑃𝑟(𝑡)𝑑𝑡 = 𝑟0 = 1.



Remark 8.1. The Poisson kernel has the following properties

(α) For each 𝑟 ∈ [0, 1), the function 𝑃𝑟 ∶ [−𝜋, 𝜋] → ℝ is continuous and non-negative.

(β) If 𝛿 ∈ (0, 𝜋/2) and 𝐸𝛿 ∶= [−𝜋, −𝛿] ∪ [𝛿, 𝜋], we have 𝑃𝑟(𝑡) → 0 uniformly for 𝑡 ∈ 𝐸𝛿 as 𝑟 ↗ 1;
hence lim

𝑟↗1
∫

𝐸𝛿

𝑃𝑟(𝑥)𝑑𝑥 = 0.

(γ)
1

2𝜋 ∫
𝜋

−𝜋
𝑃𝑟(𝑥)𝑑𝑥 = 1 for every 𝑟 ∈ [0, 1).

Proof. It only remains to prove (β): If 0 < 𝛿 < 𝜋/2 then for all 𝑡 with 𝛿 ≤ |𝑡| ≤ 𝜋 we have cos 𝑡 ≤ cos 𝛿,
hence

0 ≤ 𝑃𝑟(𝑡) = 1 − 𝑟2

1 − 2𝑟 cos 𝑡 + 𝑟2 ≤ 1 − 𝑟2

1 − 2𝑟 cos 𝛿 + 𝑟2

and the right hand side tends to 0 as 𝑟 ↗ 1.
Therefore, if 𝑓 is Riemann integrable, and hence bounded, we have

|𝑓𝑟(𝑡)| ≤ ‖𝑓‖∞
1

2𝜋 ∫
𝜋

−𝜋
|𝑃𝑟(𝑡 − 𝑠)|𝑑𝑠 = ‖𝑓‖∞

1
2𝜋 ∫

𝜋

−𝜋
𝑃𝑟(𝑠)𝑑𝑠 = ‖𝑓‖∞

(since 𝑃𝑟 is 2𝜋-periodic and nonnegative) for each 𝑡 and 𝑟.
If in addition 𝑓 is continuous και 2𝜋-periodic, then repeating the proof of Fejér’ s Theorem (which proof relied
exclusively on the corresponding properties (α), (β) and (γ) of the Fejér kernel) we arrive at the following

Theorem 8.2. If 𝑓 is Riemann integrable and 2𝜋-periodic, then at every point 𝑡 of continuity of 𝑓 we have
lim
𝑟↗1

𝑓𝑟(𝑡) = 𝑓(𝑡).

If 𝑓 is continuous, then lim
𝑟↗1

𝑓𝑟(𝑥) = 𝑓(𝑥) uniformly, that is, lim
𝑟↗1

‖𝑓𝑟 − 𝑓‖∞ = 0.

Remark 8.3. Note that although the functions 𝑓𝑟 are (in general) not trigonometric polynomials, they are
continuous (in fact differentiable - why?) functions given by absolutely and uniformly convergent Fourier
series.



9 Pointwise convergence and the localisation principle

(For proofs, see Stein & Shakarchi, ‘Fourier Analysis’, paragraphs 3.2.1 and 3.2.2. 3)

Definition 9.1. Complex-valued functions on the unit circle

Denote by 𝕋 the unit circle
𝕋 = {𝑧 ∈ ℂ ∶ |𝑧| = 1} = {𝑒𝑖𝜃 ∶ 𝜃 ∈ ℝ}.

If 𝜙 ∶ 𝕋 → ℂ, define 𝑓 ∶ ℝ → ℂ by
𝑓(𝜃) = 𝜙(𝑒𝑖𝜃).

The function 𝑓 is 2𝜋-periodic.
Conversely, if 𝑓 ∶ ℝ → ℂ is 2𝜋-periodic, then the function 𝜙 ∶ 𝕋 → ℂ given by 𝜙(𝑒𝑖𝜃) = 𝑓(𝜃) is well
defined.4 Thus we have a 1 − 1 correspondence between functions 𝜙 ∶ 𝕋 → ℂ and 2𝜋-periodic functions
𝑓 ∶ ℝ → ℂ.

We say 𝜙 is integrable if 𝑓 is integrable in some interval of length 2𝜋 (hence in all such intervals), we say
𝜙 is continuous if 𝑓 is continuous, we say 𝜙 is differentiable if 𝑓 is differentiable, we say 𝜙 is continuously
differentiable if 𝑓 is continuously differentiable and so on.

In what follows we shall make no distinction between 𝜙 and 𝑓 .

Theorem 9.1. Let 𝑓 ∶ 𝕋 → ℂ be an integrable function. If 𝑓 is differentiable at 𝜃0 ∈ 𝕋, then

𝑆𝑛(𝑓)(𝜃0) → 𝑓(𝜃0).

Remark 9.2. If we examine the proof of Theorem 9.1 we can see that the conclusion 𝑆𝑛(𝑓)(𝜃0) → 𝑓(𝜃0)
still holds under the following weaker assumption for 𝑓 :
‘The function 𝑓 is integrable and satisfies a Lipschitz condition at 𝜃0, that is, there exists 𝑀 > 0 such that

|𝑓(𝜃0 − 𝑡) − 𝑓(𝜃0)| ≤ 𝑀|𝑡|

for all 𝑡 ∈ [−𝜋, 𝜋]’.
One can now repeat the proof without modifications.

An important consequence of Theorem 9.1 is the localisation principle of Riemann: the convergence or
divergence of the sequence 𝑆𝑛(𝑓)(𝜃0) depends only on the behaviour of 𝑓 in a neighbourhood of 𝜃0. This is
not at all obvious; indeed, the partial sums 𝑆𝑛(𝑓)(𝜃0) are defined in terms of the Fourier coefficients ̂𝑓(𝑘),
|𝑘| ≤ 𝑛 of 𝑓 , which coefficients are given by integration on [−𝜋, 𝜋], thus taking into account the values of
𝑓 in the whole interval [−𝜋, 𝜋].

Theorem 9.3 (Riemann’s localisation principle). Let 𝑓, 𝑔 ∶ 𝕋 → ℂ be two integrable functions. Assume that,
for some 𝜃0 ∈ 𝕋 and some open interval 𝐼 ⊂ 𝕋 with 𝜃0 ∈ 𝐼 , we have

𝑓(𝜃) = 𝑔(𝜃) for all 𝜃 ∈ 𝐼.

Then
𝑆𝑛(𝑓)(𝜃0) − 𝑆𝑛(𝑔)(𝜃0) → 0.

In particular, the sequence {𝑆𝑛(𝑓)(𝜃0)} converges if and only if {𝑆𝑛(𝑔)(𝜃0)} converges.
3Από τις σημειώσεις του Απ. Γιαννόπουλου (2012) Παράγραφος 3.3
4Indeed, if 𝑒𝑖𝜃1 = 𝑒𝑖𝜃2 for some 𝜃1, 𝜃2 ∈ ℝ then 𝜃2 = 𝜃1 +2𝑘𝜋 for an integer 𝑘, hence 𝑓(𝜃1) = 𝑓(𝜃2) since 𝑓 is 2𝜋-periodic.



10 Complements

The goal is to prove:

Theorem 10.1. There exists a continuous function 𝑓 ∶ 𝕋 → ℂ for which

lim sup
𝑛→∞

|𝑆𝑛(𝑓)(0)| = +∞.

Therefore 𝑆[𝑓](0) diverges.

An important role in the proof is played by the trigonometric series

∑
𝑘≠0

𝑒𝑖𝑘𝑥

𝑘 and
−1
∑

𝑘=−∞

𝑒𝑖𝑘𝑥

𝑘 .

Lemma 10.2. Consider the function

𝑓(𝑥) = { 𝑖(𝜋 − 𝑥) If 0 < 𝑥 < 𝜋
−𝑖(𝜋 + 𝑥) If − 𝜋 < 𝑥 < 0

and extend it periodically to ℝ. Then, the Fourier series of 𝑓 is

𝑆[𝑓](𝑥) = ∑
𝑘≠0

𝑒𝑖𝑘𝑥

𝑘 .

Proposition 10.3. Let 𝑓 ∶ 𝕋 → ℂ be an integrable function. If the sequence {|𝑘 ̂𝑓(𝑘)|}𝑘∈ℤ is bounded, then
the partial sums 𝑆𝑛(𝑓) of the Fourier series of 𝑓 are uniformly bounded:

sup
𝑛

‖𝑆𝑛(𝑓)‖∞ < +∞.

That is, there exists 𝑀 > 0 so that
|𝑆𝑛(𝑓)(𝑥)| ≤ 𝑀

for all 𝑛 ∈ ℕ and all 𝑥 ∈ 𝕋.
Lemma 10.4. For each 𝑛 ∈ ℕ consider the trigonometric polynomial

𝑓𝑛(𝑥) = ∑
1≤|𝑘|≤𝑛

𝑒𝑖𝑘𝑥

𝑘 .

There exists 𝑀 > 0 so that |𝑓𝑛(𝑥)| ≤ 𝑀 for all 𝑛 and all 𝑥. 2

Lemma 10.5. For each 𝑛 ∈ ℕ consider the trigonometric polynomial

𝑔𝑛(𝑥) =
−1
∑

𝑘=−𝑛

𝑒𝑖𝑘𝑥

𝑘 .

There exists 𝑐 > 0 so that |𝑔𝑛(0)| ≥ 𝑐 log𝑛 for each 𝑛 ∈ ℕ. 2

Corollary 10.6. There is no Riemann integrable function 𝑔 ∶ 𝕋 → ℂ with

𝑆[𝑔](𝑥) =
−1
∑

𝑘=−∞

𝑒𝑖𝑘𝑥

𝑘 .

Comment. We will show later that there does exist a Lebesgue integrable function 𝑔 with

𝑆[𝑔](𝑥) =
−1
∑

𝑘=−∞
𝑒𝑖𝑘𝑥

𝑘 .
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