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When the simulation department ofManagement Science was created in 1978 it ushered in an era of significant
methodological advances in stochastic simulation. However, the foundation for the field—not just the

work that has been published in Management Science—was provided by two papers published long before
simulation had its own department in the journal. We will review the seminal papers of Conway, Johnson,
and Maxwell (1959) and Conway (1963), and then trace their impact through eight award-winning papers that
appeared much later in Management Science.
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1. Two Seminal Papers
Our objective is to discuss the technique of digital sys-
tem simulation. This procedure has already achieved a
considerable stature in industrial and research organi-
zations and promises to attain even greater importance
in the future. Yet, with few exceptions, the published
literature in the area consists of introductory exposi-
tions or of descriptions of the solution of particular
problems. (Conway, Johnson, and Maxwell 1959, p. 92)

From these opening remarks on the state of pub-
lished research in computer simulation, Conway et al.
(1959), in conjunction with a later paper by Conway
(1963), described a number of simulation problems
that continue to occupy researchers to this day. In
fact, it can be argued that these two papers defined
the simulation research area that is now known as
“analysis methodology” for the operations research
and management science communities (Nance and
Sargent 2002). In the following sections we will
review the research issues identified by Conway
et al. (1959) and Conway (1963) and then trace
their impact through eight award-winning papers that
have appeared in Management Science.

2. Strategic and Tactical Issues in
Simulation

Defining “simulation” is a notoriously difficult task.
However, the type of simulation that the readers of
Management Science have most often encountered has
three features:
(1) There are one or more stochastic input processes

that are specified via the language of probability and
from which synthetic realizations can be generated.

(2) There is a logical model that completely
describes how the system of interest reacts to real-
izations of the stochastic inputs. The logical model is
usually an algorithm that updates the system state
upon the occurrence of some discrete events.
(3) There are output processes, typically ordered

by some concept of time, that represent the system
behavior of interest to the analyst.
A standard example is a queueing system simu-

lation in which the input processes are customer-
arrival and customer-service times, the logical model
describes the order in which waiting customers are
chosen for service, and the output processes include
the delay in queue experienced by each customer and
the number of customers in the queue as a function
of time. The state of the system is the number of cus-
tomers in the queue and the status of the servers,
while the events that alter the system state are cus-
tomer arrivals and customer departures. This type of
simulation describes how a system evolves through
time at a very detailed level, which has several impli-
cations according to Conway et al. (1959):

Consideration of the atomistic characteristic of simula-
tion reveals much about its properties. First, it suggests
a condition for feasibility of simulation; a system, how-
ever complex, can be simulated if it can be broken
down into a set of elements for which operating rules
can be given. If the smallest elements into which we
can divide the system are themselves unpredictable
(even in a probabilistic sense) digital simulation is
not feasible. Second, it is a mathematical model that
is “run,” rather than one that is “solved.” It is not
inherently optimizing; rather it is descriptive of the

855



Nelson: Stochastic Simulation Research in Management Science
856 Management Science 50(7), pp. 855–868, © 2004 INFORMS

performance of a given configuration of the system.
Optimization must be superimposed upon this model
by varying the configuration in search of a maximum
of performance. Third, the simulation does more than
yield a numerical measure of the performance of the
system. It provides a display of the manner in which
the system operates. Finally, this discussion of the
description of individual elements, the recording of
individual events, and the frequent necessity of repli-
cation is rather suggestive of the reason why this form
of system simulation was not widely used before the
advent of the modern high-speed stored-program dig-
ital computer � � � . It is simply the tremendous volume
of logical, numerical and bookkeeping operations that
must be performed that makes this procedure a natu-
ral application for a digital computer. (Conway et al.
1959, pp. 94–95)

As a consequence of this analysis, Conway et al.
(1959) concluded that simulation problems fall into
two broad categories: the construction of a computer
simulation, and the use of a computer simulation. It
is probably fair to say that the construction prob-
lems that Conway et al. (1959) identified have been
addressed; they include modular construction of sim-
ulation programs for easy updating, management of
computer memory, controlling error due to discretiza-
tion, specifying an effective time-advance mechanism,
and managing active data files. The problems of sim-
ulation use, however, remain a source of significant
research interest. Conway (1963) divided the “use”
problems into those that are addressed by strate-
gic planning—primarily the design of an experiment
that will produce the desired information—and those
addressed by tactical planning—determining how each
of the simulations specified by the experiment design
will actually be run. A present-day student of simu-
lation reading Conway et al. (1959) or Conway (1963)
would clearly recognize and understand these strate-
gic and tactical issues. Perhaps more impressive, they
would also recognize that the solutions they know are
consistent with the proposals found in these papers.
Conway et al. (1959) and Conway (1963) viewed

simulations as statistical experiments, so it was natu-
ral that they would bring to bear the statistical tools
of the day for strategic planning, tools such as fac-
torial experiment design. Tactical planning is focused
on the efficiency of the simulation run, and here we
find problems that are unique to simulation and about
which little had been written at the time (Conway
1963, p. 48). Conway et al. (1959) and Conway (1963)
identified three key tactical issues:
(1) Establishing when a simulation run is in statis-

tical equilibrium. This is one aspect of the so-called
“steady-state simulation problem.” A stochastic sim-
ulation implicitly defines a stochastic process, which
we call the output process. Executing the simula-
tion generates sample paths. If the output stochas-
tic process has a limiting distribution, then it may

be of interest to estimate properties of that distribu-
tion as a summary of long-run behavior (this is not
the only definition of steady-state simulation; see for
instance Henderson 2000). Examples of steady-state
performance measures include the long-run expected
cycle time for products in a job shop, the long-run
availability of a repairable system, and the long-run
expected cost per period of an inventory policy. The
tactical problem is determining how much simulated
time should elapse before the probability law of the
output process is sufficiently close to the limiting dis-
tribution to allow accurate (i.e., low bias) estimates
to be obtained. A less strenuous requirement is that
some specific property of the output process, such as
its mean value, is close to the steady-state limit, and
this is the sort of definition that is typically employed
in practice. Deciding when statistical equilibrium has
been (nearly) attained is difficult, so Conway (1963)
described two approaches to reduce the impact of
deciding poorly: Delete data from an initial period
of each run, and choose starting conditions for the
simulation state that nudge the output process closer
to long-run conditions than an arbitrary initial state
does. The data deletion rule in Conway (1963) is prob-
ably the first published algorithm and it was the stan-
dard against which new proposals were tested for
many years (e.g., Gafarian et al. 1978).
(2) Producing precise comparisons of alternatives. Rec-

ognizing that most simulation studies are performed
to compare competing system designs, Conway et al.
(1959) and Conway (1963) observed that driving each
simulated alternative with the same realizations of
the input processes (when possible) would typically
yield sharper comparisons because the observed dif-
ferences should be due to structural differences in the
systems, rather than chance differences in the stochas-
tic inputs. They also recognized that using common
stochastic inputs introduces correlation between the
outputs from different alternatives, invalidating many
of the available statistical tools for making compar-
isons (e.g., ANOVA). Statistical analysis under “com-
mon random numbers” has been the topic of many
papers in Management Science, including Nelson and
Matejcik (1995) and Kleijnen (1988).
(3) Obtaining a valid measure of error for simulation-

based estimates of equilibrium performance. When simu-
lating, it is always possible to generate independent
and identically distributed (i.i.d.) replicates of any
simulation-based estimator simply by running the
model repeatedly with independent realizations of
the input processes. The availability of i.i.d. replicates
makes classical statistical analysis possible. However,
Conway et al. (1959) and Conway (1963) realized
that the difficulty of identifying an approximate
statistical equilibrium, and the potential waste of
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precious data from deleting outputs from each repli-
cation, argue against a multiple-replication approach.
The alternative is a single long run. However,
while the outputs from within a single run may
be identically distributed (if approximate equilib-
rium has been attained), they are rarely independent.
Lack of independence invalidates standard variance-
estimation and confidence-interval procedures, some-
times dramatically, as Conway (1963) demonstrates.
Both papers suggest partitioning the single out-
put realization into nonoverlapping batches of out-
puts, computing summary statistics from within each
batch, averaging these summary statistics to obtain
an overall estimator, and calculating a variance esti-
mator or confidence interval from the (typically
far less dependent) batch statistics. Conway (1963)
anticipates many papers in Management Science on
batching-based methods (e.g., Steiger and Wilson
2002), time-series methods (Fishman and Kiviat 1967),
and estimation of the so-called asymptotic variance
(Goldsman et al. 1990). He also states a result that
was later made rigorous by Schmeiser (1982): When
batching to estimate the mean, it is rarely beneficial
to form more than 20 batches no matter how much
output data are available.
The tactical issues in Conway et al. (1959) and

Conway (1963) were certainly known prior to the
publication of these papers, but their work is respon-
sible for bringing them to the attention of the opera-
tions research and management science communities.
And Conway (1963) acknowledges that they are not
the last words on these topics:

While there are some theoretical bases and rational
arguments for making these tactical decisions in sim-
ulation, much is still based on the experience and
judgment of the investigator. Simulation on a digi-
tal computer is still very much an art, with success
depending heavily on the skill of the artist. Particu-
larly during these formative years for the technique, it
is vital that its practitioners exchange information and
experiences on every aspect of its use, so that previ-
ous mistakes will be less frequently repeated. (Conway
1963, p. 61)

In §4 we will review some particularly outstanding
examples of the exchange of information that Conway
desired.

3. The Simulation Department and
the Award

In response to lobbying by The Institute of Manage-
ment Sciences (TIMS) College on Simulation and
Gaming, especially Robert Sargent (Syracuse Univer-
sity) and J. William Schmidt (Virginia Polytechnic
Institute and State University), a simulation depart-
ment was added to Management Science in 1978.

George Fishman (University of North Carolina) was
the first department editor, and his editorial policy for
the new department can be found in the Newsletter of
the TIMS College on Simulation and Gaming (Fishman
1980). In brief, the department was looking for con-
tributions that describe (a) innovative ideas for mod-
eling flow (state change) logic in simulated systems;
(b) new probabilistic representations of underlying
stochastic structures; (c) new and improved method-
ologies for analyzing simulation output and increas-
ing statistical efficiency in estimation; and (d) unusual
applications using existing or new methodological
procedures. Papers in category (c) have been most
prevalent, and Fishman set an important and influen-
tial standard for accepting such papers:

Papers under topic c should describe how the pro-
posed technique compares with past proposals for
solving a particular statistical or decision making prob-
lem. Here comparison would include considerations
of statistical performance, degree of generality, com-
putational efficiency, ease of implementation and sim-
plicity of concept. A methodological paper is expected
to demonstrate its proposed technique and evaluate
its performance relative to competing techniques. This
demonstration should be accomplished with simula-
tion models for which theoretical solutions are known.
In this way a reader can assess both absolute and rel-
ative performance. In cases in which a paper presents
a new methodology in an area where no alternatives
exist, the absolute standard will provide the basis
for an evaluation. A description of the testing proce-
dure should specify an experimental design for each
theoretical model considered. For example, if one is
using a queueing model as the basis for testing, one
would expect that studying performance of the pro-
posed technique for a range of traffic intensities would
be one element of the experimental design. (Fishman
1980, p. 5)

Fishman’s requirement for empirical, as well as
theoretical, evaluation of new methodologies using
a sensible experiment design and thorough docu-
mentation of the experiment has been a consistent
requirement of the department. James R. Wilson
(North Carolina State University) succeeded Fishman
as department editor, followed by Pierre L’Ecuyer
(Université de Montréal), Paul Glasserman (Columbia
University), and Perwez Shahabuddin (Columbia
University). When Glasserman took over in 1998 the
department was merged with applied stochastic mod-
els to become the stochastic models and simulation
department.
In May of 1980 the TIMS College on Simulation and

Gaming established an award to recognize the best
paper on simulation appearing in the previous year’s
volume of Management Science. As stated in Fall 1980
Newsletter, “All papers and technical notes in a given
volume ofManagement Science that have a major focus



Nelson: Stochastic Simulation Research in Management Science
858 Management Science 50(7), pp. 855–868, © 2004 INFORMS

Table 1 Recipients of the TIMS, then INFORMS, College on Simulation Publication Award

Award year Authors Title

1981 Lee W. Schruben A coverage function for interval estimators of simulation response
1982 Stephen S. Lavenberg and Peter D. Welch A perspective on the use of control variables to increase the efficiency of Monte

Carlo simulations
1983 (tie) Mark S. Meketon and Philip Heidelberger A renewal theoretic approach to bias reduction in regenerative simulations
1983 (tie) Averill M. Law and W. David Kelton Confidence interval procedures for steady-state simulations, II: A survey of

sequential procedures
1985 James R. Wilson and A. Alan B. Pritsker Experimental evaluation of variance reduction techniques for queueing simulation

using generalized concomitant variables
1990 Philip Heidelberger, Xi-Ren Cao, Michael A. Zazanis, and

Rajan Suri
Convergence properties of infinitesimal perturbation analysis estimates

1991 Ward Whitt Planning queueing simulations
1996 Perwez Shahabuddin Importance sampling for the simulation of highly reliable Markovian systems

on the theory or practice of simulation or gaming are
eligible for this award” (p. 3). Nominations for a min-
imum of three papers were required for the award to
be given in any year, and the recipient was selected
by a vote of the College membership.1 In 1985 the
College changed the award to the “Outstanding Sim-
ulation Publication Award” and expanded eligibil-
ity to include any simulation publication copyrighted
within the previous three years, with the recipient
selected by a College committee (see the Newsletter of
the TIMS College on Simulation and Gaming 1985). The
award continues to be given by the INFORMS Col-
lege on Simulation; more information can be found at
www.informs-cs.org.

4. The Award-Winning Papers
Five papers received the College on Simulation pub-
lication award during the period in which it was
restricted to papers appearing in Management Science,
and three papers that were published in Management
Science have received the award since the change.
The award-winning papers are listed in Table 1 with
complete bibliographic information in the references.
Although this list does not include nearly all of
the outstanding contributions to simulation found in
Management Science, it does provide a peer-selected
sample of the very best. For a list of simulation papers
with over 50 citations, as compiled by Hopp (2004),
see Table 2.
In the sections that follow, each award-winning

paper is reviewed in the context of the strategic
and tactical issues defined by Conway et al. (1959)
and Conway (1963). Before describing the papers, we
establish some basic background.

4.1. Notation and Definitions
A certain amount of background and notation is nec-
essary to appreciate the work in the eight award-
winning papers, and we present that here. We ask

1 If there were only one or two nominations in a year, then the
nominated papers carried over to the next year.

the reader to tolerate some mathematical looseness
throughout this section and the reviews; more rigor
would add complexity without adding insight. See the
papers themselves for technically tight presentations.
Most of the award-winning papers focus on a single

replication of a simulation output process, denoted
�Yi� i = 1�2� � � � �n� for discrete-time processes and
�Y �t
�0 ≤ t ≤ T � for continuous-time processes. As a
concrete example, Yi might be the delay in queue
of the ith customer to depart from a queueing sys-
tem and Y �t
 might be the number of customers in
the system at time t. For convenience we will some-
times let Y denote the entire output process from a
simulation.
The purpose of the simulation experiment is usu-

ally to estimate some property of Yi or Y �t
, often
the steady-state mean denoted by �. The standard
estimators are

�Y �n
= 1
n

n∑
i=1

Yi

for a discrete-time output process of n observations,
and

�Y �T 
= 1
T

∫ T

0
Y �t
 dt

Table 2 Most Cited Simulation Papers in the First 50 Years of
Management Science

Conway, R. W. 1963. Some tactical problems in digital simulation. Manage-
ment Science 10 47–61.

Lavenberg, S. S., P. D. Welch. 1981. A perspective on the use of control vari-
ables to increase the efficiency of Monte Carlo simulations. Management
Science 27 322–335.

Naylor, T. H., J. M. Finger. 1967. Verification of computer simulation models.
Management Science 14 B92–B101.

Van Horn, R. L. 1971. Validation of simulation results. Management Science
17 247–258.

Suri, R., M. A. Zazanis. 1988. Perturbation analysis gives strongly consis-
tent sensitivity estimates for the M /G /1 queue. Management Science 34
39–64.

Glynn, P. W., D. L. Iglehart. 1989. Importance sampling for stochastic simu-
lations. Management Science 35 1367–1392.
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for a continuous-time output process up to time T . It
is essential to have a measure of error for these esti-
mators, which usually requires an estimator of their
variances. Since Yi and Y �t
 are stochastic processes—
not the i.i.d. observations of classical statistics—
estimating the variance is tricky, as Conway (1963)
points out. However, under certain conditions the fol-
lowing limits exist:

�2d = limn→�nVar�
�Y �n



for a discrete-time output process, and

�2c = lim
T→�

T Var��Y �T 


for a continuous-time process. In either case the con-
stant �2 is called the asymptotic variance. For large n
or T , Var��Y �n

≈ �2d /n and Var��Y �T 

≈ �2c /T , respec-
tively. The asymptotic variance plays a role in several
of the award-winning papers.
A simulation output process is said to have regen-

erative structure if there is an increasing sequence
of times �Tj� j = 0�1�2� � � ��, with T0 = 0, such that
�Yi� Tj−1 ≤ i < Tj−1� are i.i.d. for j = 1�2� � � �, or in con-
tinuous time �Y �t
� Tj−1 ≤ t < Tj�� j = 1�2� � � � are i.i.d.
For instance, in some queueing systems letting Tj be
the jth time (either customer number for Yi or simula-
tion clock time for Y �t
) that a customer arrives to find
the queueing system empty and idle is a regeneration
time. Thus, the Tj partition the simulation output pro-
cess into i.i.d. (but random-sized) batches or cycles of
output data. Appealing to regenerative structure (plus
some additional conditions) is one way to establish
the existence of the asymptotic variance. However,
regenerative structure can also be exploited directly
in simulation output analysis.
Let Zj =

∑Tj−1
i=Tj−1 Yi or Zj =

∫ Tj
Tj−1 Y �t
 dt, and let Cj =

Tj − Tj−1 in either case. Abusing notation, let

N�t
=max�j� Tj ≤ t��

allowing t to represent either discrete or continuous
time. Thus, N�t
 corresponds to the number of com-
pleted cycles by time t. The standard regenerative
estimator for the steady-state mean � based on a sim-
ulation run of length T is

�̂�N �T 

=
∑N�T 


j=1 Zj∑N�T 

j=1 Cj

� (1)

Under certain conditions this estimator converges to �
with probability 1 as T →�. More critically, the i.i.d.
nature of the regenerative cycles provides an open-
ing to construct a variance estimator for �̂�N �T 

; see,
Glynn and Iglehart (1993), for instance. The draw-
back, of course, is the need to identify regeneration
times. In the award-winning papers, regenerative
analysis is used indirectly to prove results, and
directly to form estimators.

4.2. The Coverage Function (Schruben 1980)
Motivated by Conway et al. (1959) and Conway
(1963), much of the early research in analysis method-
ology focused on deriving valid confidence intervals
for steady-state performance measures. Typically a
procedure was proposed whose validity could be jus-
tified either heuristically or asymptotically (as the
simulation run length goes to infinity), and then sup-
ported by an empirical analysis. Schruben (1980), the
first paper to receive the TIMS College on Simulation
and Gaming award, introduced a tool for evaluating
the performance of a confidence-interval procedure
(CIP) and reporting the results of an empirical study.
Let R���Y
 be the interval generated by a CIP given

simulation data Y and nominal confidence level �.
Ideally, Pr�� ∈ R���Y
�= � (often � = 1− �, where �
is the allowable chance of error). The achieved cover-
age is

�∗ ≡ inf{� ∈ �0�1�� � ∈R���Y

}

the smallest confidence level at which the region just
covers the parameter. Schruben noted that under mild
conditions a valid CIP has the property that

F�∗��
≡ Pr��∗ ≤ ��= �

and he called F�∗��
 the coverage function. The beauty
of the coverage function is that deviations of F�∗��

from �, for 0≤ � ≤ 1, provide a more comprehensive
evaluation of the CIP than testing it at a small number
of standard confidence levels (e.g., 0.9, 0.95, 0.99). In
empirical studies on systems for which the true value
of � is known (as suggested by Fishman’s editorial
policy), an empirical coverage function based on m
independent trials can be formed as

F̂�∗��
≡ 1
m

m∑
i=1

���∗
i ≤ �
 (2)

where � is the indicator function.
In some simple cases (normally distributed data,

known variance and correlation structure) F�∗��
 can
be computed explicitly and Schruben (1980) did this
to illustrate the deleterious effects of initial-condition
bias and serial correlation about which Conway (1963)
warned. He also presented an empirical study esti-
mating the steady-state expected delay in an M/M/1
queue that demonstrated difficulties that the simplest
version of the regenerative estimator (1) and associ-
ated confidence interval could encounter. Figure 1 is
an empirical coverage function similar to the one in
the paper. As Schruben explains, the overcoverage at
low confidence levels and undercoverage at high lev-
els results from two factors: a negative bias in the
regenerative point estimator, which tends to cause the
confidence interval to be centered too low, and a pos-
itive correlation between the regenerative point esti-
mator and its associated variance estimator, which
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Figure 1 An Empirical Coverage Function Similar to Schruben (1980),
Figure 4
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implies that point estimators that are too small tend
to be associated with confidence intervals that are too
short.2

Schruben’s coverage function paper is an exam-
ple of all-too-rare research on tools for conducting
research, and it set important standards for a field in
which empirical evaluation is critical. The coverage
function concept was recently extended by Schmeiser
and Yeh (2002).

4.3. The “Equilibrium” Problem (Meketon and
Heidelberger 1982)

One of the key tactical issues for Conway et al. (1959)
and Conway (1963) was mitigating the bias due to
initial conditions in steady-state simulation. Meketon
and Heidelberger (1982) developed a simple strategy
for reducing the bias of the point estimator, a strat-
egy that is most effective when it is needed most (i.e.,
when the run length is short).
To present their idea it is easiest to work with the

continuous-time output process Y �t
 (e.g., number of
customers in the queue). In §4.1 we introduced two
estimators for the steady-state mean, �Y �T 
, the time-
average of Y �t
 through time T , and the regenerative
estimator based on N�T 
 regenerative cycles, �̂�N �T 

.
In typical cases both estimators have bias that is
O�1/T 
 as T increases. Meketon and Heidelberger
(1982) proposed the following simple refinement: Use
�̂�N �T 
 + 1
 instead. In other words, run the sim-
ulation until time T and then complete the current
regenerative cycle before computing the point estimator.
Amazingly (until you understand the reason), the bias

2 We hasten to point out that these problems have been addressed
by other researchers, including Meketon and Heidelberger (1982)
discussed in §4.3.

of �̂�N �T 
+1
 is O�1/T 2
, under very mild conditions,
completely eliminating the first-order term in the bias
(Meketon and Heidelberger 1982, Theorem 1).
Why does this work? As a consequence of the i.i.d.

properties of regenerative cycles, �N �t
� t ≥ 0� is a
renewal process to which the so-called “inspection
paradox” applies. Therefore, the regenerative cycle
containing time T tends to be longer than the typi-
cal cycle. “Thus this last cycle contains significantly
more information than a typical cycle and its inclu-
sion in the ratio estimate guarantees a reduction in
bias” (Meketon and Heidelberger 1982, p. 175). The
proof exploits the fact that N�T 
+1 is a stopping time,
while N�T 
 is not, and thus Wald’s identity applies
with the former but not the latter.
Meketon and Heidelberger (1982) is an elegant

example of an approach that was not well devel-
oped at the time of Conway et al. (1959) and Conway
(1963): View the simulation itself, or at least its out-
put processes, as an instance of a well-studied family
of stochastic processes and exploit knowledge about
such processes to do simulation better. The stochastic
processes perspective pays huge dividends because
powerful analysis tools can be applied that may not
depend on whether the simulation is of a queue, a
supply chain, or a financial instrument. This approach
turns up in nearly all of the award-winning papers.

4.4. Small-Sample Properties of Confidence-
Interval Procedures (Law and Kelton 1982)

While Schruben (1980) was interested in establishing
a methodology for evaluating CIPs, Law and Kelton
(1982) sought to compare the performance of the lead-
ing competitors of the day. The subject of their inves-
tigation was sequential CIPs, which are procedures
that terminate (stop simulating) when the stopping
criterion is satisfied. They examined four procedures,
two based on the regenerative method and two that
were not. Two of the methods terminate when the
half-length of their confidence interval achieves a pre-
specified relative width � (half-length of the interval
divided by the point estimator); the third terminates
when the half-length of the interval achieves a given
absolute width  ; and the fourth procedure did not
enforce a precision criterion (for simplicity it will be
omitted from the remainder of the discussion).
Law and Kelton (1982) were interested in deter-

mining which procedures could be expected to work
well in practice. To that end they selected 10 system
simulation models that were realistic, but for which
the steady-state mean � could be calculated: single
queues, networks of queues, and an inventory system.
Both discrete- and continuous-time output processes
were evaluated. Because all of these models could be
initialized in steady-state, or near steady-state, condi-
tions, the coverage of each procedure reflected only
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the procedures’ tolerance of dependent output data
and not the impact of any residual initial-condition
bias.
The CIPs were evaluated on their ability to achieve

a nominal 90% coverage and on the average total
run length required to terminate. Law and Kelton
(1982) considered coverage to be the most impor-
tant criterion and, among procedures that achieve the
desired coverage, the one that is most efficient is best.
This perspective has been pervasive in the simulation
literature.
Law and Kelton (1982) is exemplary for its selec-

tion of cases, careful experiment design, and thorough
documentation and analysis of the results. Although
the stated goal of the paper was to determine which
existing procedures would be useful in practice, it also
provided a benchmark against which new procedures
could be evaluated.
Why should we be interested in sequential pro-

cedures? Law and Kelton (1982) observed that a
guarantee neither of coverage nor of precision can be
provided if a fixed run length is specified arbitrarily.
“It will often not be possible to know in advance even
the order of magnitude of the run length needed to
meet these goals in a given simulation problem, so
some sort of procedure to increase iteratively this run
length would appear to be in order” (Law and Kelton
1982, pp. 550–551). The challenge of determining a
run length prior to doing any simulation is taken up
by Whitt (1989) in a later award-winning paper.

4.5. Control Variates (Lavenberg and Welch 1981,
Wilson and Pritsker 1984b)

Statistical efficiency was a paramount concern in
Conway et al. (1959) and Conway (1963), which
makes sense because, at the time, computing was rel-
atively slow. Surprisingly, as computers have gotten
faster, research on efficient simulation has increased,
rather than diminished, because the availability of
more computing horsepower has whetted the appetite
of modelers to solve more complex problems, more
often. Techniques that attempt to squeeze more pre-
cise estimators of system performance out of the same
amount of computing effort, or equally precise esti-
mators out of less effort, are called variance reduction
techniques (VRTs). VRTs were originally developed
for Monte Carlo estimation and survey sampling
problems, not discrete-event stochastic simulation.
Unfortunately, techniques that are effective in these
other contexts do not always translate directly to the
simulation of dynamic systems, especially when the
VRT requires changing the simulation model itself.
One technique that does translate well is the method
of control variates (CVs). CVs are not invasive; the
technique requires observing some additional con-
comitant variables that are generated during the

course of the simulation and then using them to mod-
ify the standard or “crude” estimator after the run is
completed.
In the late 1970s and early 1980s there were

significant advances in the application of CVs to
discrete-event, stochastic simulation, particularly for
the simulation of queueing systems (e.g., Iglehart and
Lewis 1979; Lavenberg et al. 1979, 1982). Lavenberg
and Welch (1981) surveyed the state of knowledge at
the time, resulting in one of the most-cited simulation
papers ever published in Management Science.
Lavenberg and Welch (1981) described CVs for

simulations employing multiple replications and for
single-run, steady-state simulations that have regen-
erative structure. For brevity we will focus on the
replication environment in which the goal is to esti-
mate � = E�Y 
, and i.i.d. replicates Y1�Y2� � � � �Yn can
be generated by the simulation. For example, Yi could
be the average delay in queue of all customers served
during replication i, so that � is the expected average
delay.
The standard or “crude” estimator in this case is

�Y �n
, the sample mean, which has variance �2Y /n.
CVs attempt to produce, with essentially the same
computational effort, an alternative estimator whose
variance is smaller (ideally much smaller) than �2Y /n.
Although � is unknown, there are many random
quantities in any stochastic simulation whose true
means are known, and some of these may be strongly
correlated with Y . CVs exploit this relationship. For
instance, the service-time random variables for a
queue are typically input processes, in which case
their distribution is completely specified by the mod-
eler. Therefore, if Xi is the average of all of the ser-
vice times sampled during the ith replication, then
"= E�Xi
 is known, and �Yi�Xi
 will tend to be pos-
itively correlated because longer than expected ser-
vice times will tend to be associated with longer than
expected delays in queue, and vice versa. The ran-
dom variable �Xi−"
 is called a “control.” Lavenberg
and Welch (1981) noted that simple functions of input
random variables are a good source of controls.
Here is how controls are used. Let Xi be a q × 1

vector of controls from the ith replication with known
expectation �. Then the control-variate estimator of
� is

�Y �b
= �Y �n
−b′��X�n
−�
 (3)

where b is a q × 1 vector of constants. Observe that
this estimator is the intercept term in a linear regres-
sion of �Y �n
 on the control vector �X�n
 − � with
slope coefficient vector b. This is an unbiased esti-
mator of � whose variance is minimized if b = � ≡
�−1

X �XY , where �X is the variance-covariance matrix
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of the controls, and �XY is the q × 1 vector of cor-
relations between each control and Y . The minimum
variance is

Var��Y ��

= �1−%2YX

�2Y
n

(4)

where %2YX is the square of the multiple correlation
coefficient between Y and X. The message from (4)
is clear: Stronger correlation means more variance
reduction. And because %2YX will never go down if
you add more controls, it seems to make sense to use
every control in sight. The flaw in this reasoning is
that the optimal value of b, �, is almost never known,
and an arbitrary choice of b can actually inflate the
variance. When � is estimated, as it must be, then
things change. See Lavenberg and Welch (1981) for
details on the estimator �̂.
Lavenberg and Welch (1981) surveyed a wide range

of issues, including the theory of CVs, the formation
and selection of controls, and published applications.
The greatest impact, however, came from establishing
a framework in which the properties of �Y ��̂
 can be
derived. Suppose that �Y �X
 have a joint, nonsingu-
lar, multivariate normal distribution. Then Lavenberg
and Welch (1981) showed that �Y ��̂
 is an unbiased
estimator of �, a valid confidence interval for � can be
formed, and

Var
(�Y ��̂
)=(

n− 2
n− q− 2

)(
1−%2YX

)�2Y
n
� (5)

The term �n − 2
/�n − q − 2
 became known as the
“loss ratio” because it shows the penalty for having
too many controls, and this penalty is independent of
the controls’ effectiveness. Expression (5) is perhaps
the most well-known result on the theory of CVs, and
it implies that it is very important to select a small
number of effective controls.3

Lavenberg and Welch (1981) concluded their sur-
vey with a list of research directions for the future,
including selection of controls (motivated by the loss
ratio), use of batch means instead of replications
for steady-state simulation, empirical studies of CVs
using the regenerative method, and a plea for pub-
lished applications of CVs. This list provided fodder
for researchers for many years (roughly five years
of the author’s research life was spent working on
the batching problem and remedies for nonnormal-
ity). An award-winning paper that picked up where
Lavenberg and Welch (1981) left off is Wilson and
Pritsker (1984b), which we discuss next.

3 The loss ratio concept was later extended by Venkatraman and
Wilson (1986) to the case of p output responses where it becomes
��n− 2
/�n− q− 2

p.

The multivariate-normal framework for CVs of
Lavenberg and Welch (1981) provided a formal justi-
fication for the use of CVs and associated inference;
thus, it makes sense to try to operate within that
framework. Wilson and Pritsker (1984a, b) observed
that the standard way of forming controls (averages
of input random variables) was inconsistent with this
goal. Suppose that the q controls X−� are themselves
sample means of stochastic input processes. Then
as the run length increases, the variance-covariance
matrix �X becomes singular because the variance of
the controls goes to 0; this will clearly cause prob-
lems when estimating �, and it is disconcerting that
difficulties should arise as sample sizes get larger.
Wilson and Pritsker (1984a) proposed a framework in
which “standardized” controls could be formed for
queueing-network simulations that are asymptotically
stable and satisfy the requirements of Lavenberg and
Welch’s (1981) multivariate-normal framework. For a
queueing network with q stations, the standardized
control associated with the kth station is

Xk�t
=
∑nk�t


j=1 �Ujk −"k


�k

√
nk�t


where �Ujk� j = 1�2� � � �� are i.i.d. service times at sta-
tion k, and nk�t
 is the number of service times started
at station k up to and including simulation time t,
for k = 1�2� � � � � q. Under mild conditions the vector
of controls �X1�t
�X2�t
� � � � �Xq�t

 will be asymptoti-
cally multivariate normal as t→�.
Wilson and Pritsker (1984b, the award-winning

Management Science paper) provided a thorough em-
pirical evaluation of these standardized controls in
the spirit of Fishman’s guidelines. They performed
experiments on two variations of a closed queue-
ing network and two variations of a mixed open
and closed queueing network; and they considered
estimation of the steady-state mean queue length,
utilization, and response-time measures using up
to four standardized controls. The evaluation was
comprehensive, considering point-estimator variance
(the primary goal of a VRT), confidence-interval
half-length, and confidence-interval coverage. Both
multiple-replication and single-replication regenera-
tive experiment designs were employed, and the
results were very encouraging. Although we have
only described the contribution of this paper to
research on CVs, Wilson and Pritsker (1984a, b) also
contain what is perhaps the best treatment of post-
stratified sampling (another VRT) for discrete-event,
stochastic simulation that has ever been published.

4.6. Gradient Estimation (Heidelberger et al. 1988)
In the 1980s there was a flurry of interest in going
beyond estimating system performance via simula-
tion to estimating the gradient of system performance
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with respect to controllable input or decision vari-
ables. Gradients are useful in their own right as mea-
sures of sensitivity, and also as a key component
of gradient-based optimization algorithms. A partic-
ularly active area of research was gradient estima-
tion via perturbation analysis (PA), which had (and
has) many variations, including infinitesimal pertur-
bation analysis (IPA, see Heidelberger et al. 1988
for a long list of references, and especially Suri and
Zazanis 1988, which is among the most-cited sim-
ulation papers in Management Science; see Fu 2001
for a current reference). IPA methods are intriguing
because they make it possible to estimate gradients
for multiple performance measures, and with respect
to multiple-input variables, from a single simulation
run. At the time, there were so many papers, talks,
and applications of PA and IPA that it was difficult
to keep track of exactly what was known and what
was yet to be established. Of some importance to the
analysis methodology community were the statisti-
cal properties of IPA estimators, specifically whether
or not they converge to the true gradients as the
simulation effort goes to infinity (this property is
known as “consistency”). Heidelberger et al. (1988)
developed a mathematical framework for establishing
when IPA estimators are strongly consistent (converge
with probability 1) that not only encompassed exist-
ing results, but also filled in gaps and revealed open
research problems. The paper’s rigorous treatment of
the topic, while also managing to convey an intuitive
understanding of the issues, made it an exceptional
contribution to the research literature.
Suppose that a steady-state performance measure �

is a function of an input parameter x. For example, �
might be the long-run expected delay for customers
in a queueing system, and x the arrival rate. We add a
subscript to �x to denote this dependence. Along with
an estimator of �x for any specific x, we would also
like to estimate

�′x ≡
d�x
dx

�

Estimating �′x presents a host of problems. Perhaps
the most obvious approach is to create a finite dif-
ference estimate by making simulation runs at set-
tings x+*x and x. Unfortunately, this introduces bias
and requires at least k + 1 simulation runs if x is
k-dimensional (we will only consider the scalar x case
here, however). IPA is based on the idea that for small
enough (say infinitesimally small) changes in x, the
sample paths of the simulation change in small but
predictable ways that can be tracked as the simula-
tion at setting x progresses; therefore, no run at a
perturbed value x + *x is required. IPA constructs a
“sample path derivative,” which is literally a deriva-
tive of the sample performance with respect to x.

Heidelberger et al. (1988) first considered systems
with regenerative structure. From (1) the regenerative
estimator of � based on n complete regenerative cycles
is denoted �̂�n
. The paper sought to determine when
the following holds with probability 1:

�′x =
d

dx
lim
n→� �̂x�n


?= lim
n→�

d

dx
�̂x�n


where the quantity on the far right-hand side is the
limit of the IPA estimator. Mathematical conditions
that allow the exchange of the limit and differenti-
ation are well known; the significant impact of the
paper came from embedding them in a mathematical
framework from which they could be interpreted for
stochastic simulation problems.
Loosely speaking, IPA is strongly consistent if, for

any sample path of the output process, there is a *x
that is small enough so that it is almost certain that
the order in which events are executed in the simula-
tion will not change. Yet for several specific cases in
which this condition is not satisfied, IPA is neverthe-
less strongly consistent. A goal of the paper was to
find out why.
Theorem 2.1 of Heidelberger et al. (1988) states “if

and only if” conditions for strong consistency of IPA
regenerative gradient estimators: Either the probabil-
ity that events change order goes to zero faster than
a critical rate as *x→ 0, or two bias terms that rep-
resent what happens when events do change order
precisely cancel each other. Of equal importance, the
form of this result provides insight into which types
of systems and performance measures will or will not
yield strongly consistent estimators. The paper also
presents results that do not depend on regenerative
structure, focusing in particular on IPA throughput
estimators, where throughput is the rate at which an
event (such as departure of a class i customer from a
queueing system) occurs over the long run. An empir-
ical evaluation confirmed that consistency, or lack of
it, is a key indicator of whether or not the IPA gradi-
ent estimator is useful in real problems.
Heidelberger et al. (1988), in concert with another

Management Science paper by L’Ecuyer (1990) that pre-
sented a unified treatment of a number of gradient-
estimation techniques, put Management Science in the
forefront for establishing the foundations of this area.

4.7. Experiment Planning (Whitt 1989)
A central tactical issue in Conway (1963) is choosing
the run length necessary to obtain performance esti-
mates with adequate precision in steady-state simu-
lation. To choose a run length you need a measure
of the estimator variability. The statistics literature is
replete with “known variance” procedures, often jus-
tified by past experience with a similar process. Sim-
ulators rarely find themselves with such experience.
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Even if they did, the variance they need is not the
marginal variance of an i.i.d. sequence of data, but
(in the best case) the variance of the sample mean
of a stationary time series of (generally dependent)
data. Thus, as the earlier quote from Law and Kelton
(1982) emphasized, if the goal is to determine the
run length necessary to reach a prespecified preci-
sion, then sequential simulation procedures are usu-
ally required.
Fortunately, “usually” is not always. In the context

of steady-state queueing simulation (including net-
works of queues), Whitt (1989) presented a method
for approximating the run length required to achieve
a prespecified absolute or relative width confidence
interval for queueing performance measures that can
be applied prior to running any simulation of the model.
His approach applied heavy-traffic limits and asso-
ciated diffusion approximations, along with adjust-
ments based on tractable queueing models, to a large
class of queueing systems.
In a nutshell, Whitt’s (1989) idea was to develop

simple approximations for the mean � and the
asymptotic variance �2 of the queueing output pro-
cess of interest. Given these values, an approximate
�1−�
100% confidence interval for �, as a func-
tion of the simulation run length t, has half-length
z1−�/2�/

√
t, where z1−�/2 is the 1 − �/2 quantile of

the standard normal distribution. Therefore, given
approximations for � and �2, the value of t needed
to achieve a given absolute or relative width can be
determined.
To be concrete we will focus on the queue-length

process �Y%�t
� 0≤ t ≤ T �. The additional subscript %
denotes the traffic intensity of the queue (or bottle-
neck station in a network of queues), where the sys-
tem is stable for % < 1, unstable for % ≥ 1, and the
congestion increases sharply as %→ 1. Let �2% denote
the asymptotic variance of �Y%�T 
 as T →�.
Whitt (1989) is a superb example of the stochas-

tic processes approach to simulation output analy-
sis. Supported by a large literature on heavy-traffic
queueing analysis, Whitt took as his central approx-
imation that as %→ 1 an appropriately standardized
version of Y%�t
 converges in distribution to a lim-
iting stochastic process that depends on only two
parameters. Even better, the asymptotic variance of
this limiting process is a simple function of the two
parameters. And best of all, for many queueing systems
the values of these two parameters can be determined prior
to simulating, using only information that must be avail-
able to build the simulation model.
The limiting process in Whitt’s analysis is regulated

Brownian motion (RBM), which is Brownian motion
on the positive real line with negative drift, a, posi-
tive diffusion coefficient, d, and reflecting barrier at 0.

For a queue-length process, the state of RBM corre-
sponds to the number in queue and the barrier repre-
sents an empty queue. The particular limit that Whitt
employed is

�1−%
Y%�t�1−%
−2

%→1=⇒��t- a�d


where � is RBM.
Stationary RBM is well studied: Its expected value

is d/�2�a�
, and the asymptotic variance of the sample
mean of RBM is �2R = d3/�2a4
. These results can be
used to derive the approximations

�% ≈ d

2�a��1−%

(6)

�2% ≈ d3

2a4�1−%
4
� (7)

As a refinement, Whitt (1989, p. 1354) multiplied the
right-hand sides of (6)–(7) by %2 to make them match
up better with known results for the M/G/1 queue.
The paper also shows how a and d can be obtained for
GI/G/m and G/G/1 queues, queues with interrupted
service and open queueing networks.

4.8. Importance Sampling (Shahabuddin 1994)
Similar to Lavenberg and Welch (1981) and Wilson
and Pritsker (1984b), Shahabuddin (1994) addresses
statistical efficiency in simulation experiments. The
goal in this case is more specific: to estimate the
mean time to failure (MTTF) or the steady-state
unavailability (long-run fraction of time that the sys-
tem is not usable) of a highly reliable system. The
VRT is a customized version of importance sampling
(IS), which we describe briefly below. In addition
to the College on Simulation award, the paper also
received the Nicholson Prize from the Institute for
Operations Research and the Management Sciences
as the best student paper in 1990 (see www.informs.
org/Prizes/NicholsonPrize.html for additional infor-
mation). IS is also the topic of one of the most-cited
simulation papers in Management Science, Glynn and
Iglehart (1989).
Imagine using simulation to estimate the probabil-

ity that a really unlikely event occurs. Because the
event is rare (e.g., say probability on the order of
10−9 of occurring), an excessive number of simulated
trials would be required to observe even a small num-
ber of these events. Conducting so many trials would
be impossible if each trial required even a moderate
amount of simulation effort. But suppose that you
could change the simulation model in such a way that
the rare event occurred much more often, say exactly
1,000,000 times more often. Then you would observe
the event more frequently, giving you a much better
estimator of the probability that it occurs. Of course,
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your estimator would be wrong, but you know exactly
how wrong (1,000,000 times), so you can correct for
the bias. This is essentially the idea behind IS, and the
correction factor is called the likelihood ratio. Unfor-
tunately, if the probability dynamics of the system
are changed crudely to increase the frequency of the
rare event, then the result is often a variance increase;
hence, IS is much more difficult than it might first
appear.
Shahabuddin (1994) considered systems of many

components that are subject to random failure, but
can also be repaired. When enough components in
certain combinations fail, then the entire system is
unavailable. A system is highly reliable if the com-
ponent failure rates are tiny relative to the repair
rates. Let X�t
 be a c × 1 vector of random vari-
ables representing the status of the components at
time t. Shahabuddin (1994) considered systems for
which �X�t
� t ≥ 0� is a continuous-time Markov chain
(CTMC) whose generator Q satisfies some sensible
conditions. The reason for using simulation instead of
numerical methods is the very large dimension of Q
for even moderate values of c, and the ease of simu-
lating X�t
 (see Shahabuddin 1994 for details).
IS for such problems is conceptually simple:

Change the failure rates (and perhaps the repair rates)
to make a system’s failure much more likely (e.g.,
replace the generator Q by a different generator Q′

that has larger component failure rates and smaller
component repair rates). Of course, this alters the
probability measure of the stochastic process, but the
correction can be computed similarly to the simple
example above. The idea is very powerful, but the
reality is that finding a Q′ (or more complex change

Figure 2 Balanced Failure Biasing for the Embedded DTMC
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of probability measure) that guarantees a variance
reduction in a dynamic, stochastic simulation is not
easy, and variance increases are possible. However,
Shahabuddin’s problem was not one of finding a good
change of measure; certain “failure-biasing” heuris-
tics (that make component failures more likely) had
been observed to work well for CTMCs with certain
characteristics (e.g., Goyal et al. 1992). Shahabuddin’s
question was why did they work, and which heuristic
could be expected to work for which problems?
In this type of simulation it is well known that

the CTMC itself need not be simulated, only the
embedded discrete-time Markov chain (DTMC) with
transition matrix P (Hordijk et al. 1976, Fox and
Glynn 1986). Figure 2 illustrates one of the IS heuris-
tics called “balanced failure biasing.” The top figure
shows a state x in the original DTMC along with
transition probabilities P�x� ·
 that move the process
to states with more failed components and transi-
tions that move the process to states with fewer failed
components (for simplicity the figure does not show
transitions to states with the same number of failed
components). The lower figure shows the transition
probabilities after balanced failure biasing. A fixed
value of the parameter � between 0 and 1 is used to
make the failure transitions more likely (� = 1/2 is
often used in practice).
Let " be the minimum component repair rate,

which without loss of generality can be taken to
be 1; and let / be the largest component failure rate.
Shahabuddin’s (1994) approach was to model the
component failure rates as a function of /; specifically,
the ith component failure rate takes the form ci/

di ,
where 0 < ci ≤ 1, ci ≈ 1, and di > 0. If the di param-
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eters for all of the components are approximately 1,
then the system is considered balanced; otherwise it
is unbalanced. Shahabuddin (1994) then examined the
performance of different failure-biasing heuristics as
/ → 0 (component failures become more and more
rare). In particular, he established whether different
failure-biasing heuristics lead to estimators of MTTF
or unavailability with bounded relative error. Relative
error is represented by the half-length of a confidence
interval for the unknown parameter divided by the
value of that parameter. The standard (no IS) estima-
tor has unbounded relative error.4 An IS heuristic that
results in bounded relative error can be expected to
work well in practice; in fact, it gets more efficient
as the problem gets harder. The remarkable feature of
this paper is the clever representation of the failure
rates as a function of the largest failure rate, and how
little else need be assumed about the structure of the
CTMC to obtain such deep results. The conclusions
of this and related work have been implemented in
IBM’s SAVE availability modeling package.

4.9. A Postscript
A reader of this review might incorrectly conclude
that there was no simulation research published in
Management Science between Conway’s paper in 1963
and Schruben’s paper in 1980. In fact, there was
substantial activity including influential papers by
Fishman and Kiviat (1967), Burt and Garman (1971),
and many others. Research topics that would not be
classified as analysis methodology have also appeared
throughout the years, including papers on verifica-
tion and validation of simulation models (e.g., Naylor
and Finger 1967 and Van Horn 1971, both among
the most-cited papers) and modeling paradigms (e.g.,
Sargent 1988). A search on the keyword “simulation”
at pubsonline.informs.org provides a long list.

5. The Future
The field of analysis methodology in stochastic sim-
ulation has matured to the point where it is impos-
sible for anyone to define the research problems for
the next 40 years in the way Conway et al. (1959) and
Conway (1963) did some 40 years ago. However, there
are two directions that seem obvious, and one that is
less obvious but that could (and should) develop.
1. The distinction between simulation analysis and

applied probability research will become even less

4 For the crude estimator of a probability p based on n i.i.d. samples,
the relative error is

z1−�/2

√
p�1− p


p
√
n

p→0−→��

That is, as the probability of interest gets smaller, the relative error
is unbounded.

clear in the future. Selfishly, we might like to once
again have a standalone simulation department in
Management Science, but the single stochastic mod-
els and simulation department probably makes sense.
Applied probability and simulation researchers are
both interested in formulating and evaluating stochas-
tic models, and the evaluation of increasingly complex
models often requires mathematical analysis, numeri-
cal approximations, and stochastic simulation in vari-
ous proportions. Nowhere is this more apparent than
in the emerging area of financial engineering and
quantitative finance (e.g., Glasserman et al. 2000). A
key to making a single department work is having
editors like Glasserman and Shahabuddin who have a
broad perspective.
2. Recall the comment in Conway et al. (1959) cited

in §2 that a simulation “is not inherently optimizing;
rather it is descriptive of the performance of a given
configuration of the system. Optimization must be
superimposed upon this model by varying the config-
uration in search of a maximum of performance.” The
problem of optimization of simulation—optimizing
the expected or long-run average performance of a
system that is represented by a simulation model—is
one in which experiment design, statistical efficiency
and even data management all come into play. Real-
istic problems that are attacked with methods that
do not account for the stochastic nature of simula-
tion can yield solutions that are far from optimal.
On the other hand, accounting for randomness inef-
ficiently can exhaust the time that is available to
solve the problem before much of the feasible space
is explored. Research progress in this area has been
slow because the approach has been to thoroughly
examine small pieces of the problem (e.g., gradient
estimation). We may now have enough pieces in place
to begin to assemble rigorously justified, but practi-
cally workable, algorithms (e.g., Andradóttir 1996, Fu
2002). Practitioners want to optimize, so it is impor-
tant that we do this.
3. Optimization of simulation is a problem that

taxes computing resources, but there are many situ-
ations in which the scarce resource is not computer
time, but rather decision-maker time. Simulation is
popular because it can incorporate any details that are
important, and the now common practice of animat-
ing simulations means that they have a face validity
that a system of equations can never hope to achieve.
Unfortunately, simulation can be a clumsy tool for
planning when the work is done interactively, per-
haps by a group of decision makers who need to con-
sider political, as well as performance, issues. Even a
few minutes per simulation run is too slow to allow
what-if analysis in real time. Optimization of simu-
lation does not solve this problem because an objec-
tive function must be formulated, which hinders the
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decision maker’s ability to consider trade-offs that
are not easily quantified. As researchers we need to
focus attention on the efficiency of obtaining useful
simulation results, as well as on the efficiency of the
simulation run itself. One approach is to use simu-
lation to parameterize sophisticated metamodels that
are easily explored or optimized with respect to the
controllable decision variables. Although it might take
days of simulation on multiple processors to build
the metamodel, if it supports a productive one-hour
meeting of highly compensated managers it is well
worth it. The experiment design, metamodeling, and
run-control tools to precisely map a large, complex
response surface, without overfitting, do not yet exist,
nor do the tools to query the result. They should.
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