SIAM J. NUMER. ANAL. (© 2009 Society for Industrial and Applied Mathematics
Vol. 47, No. 4, pp. 2752-2781

GALERKIN METHODS FOR PARABOLIC AND SCHRODINGER
EQUATIONS WITH DYNAMICAL BOUNDARY CONDITIONS AND
APPLICATIONS TO UNDERWATER ACOUSTICS*
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Abstract. In this paper we consider Galerkin-finite element methods that approximate the solu-
tions of initial-boundary-value problems in one space dimension for parabolic and Schrodinger evolu-
tion equations with dynamical boundary conditions. Error estimates of optimal rates of convergence
in L2 and H! are proved for the associated semidiscrete and fully discrete Crank—Nicolson—Galerkin
approximations. The problem involving the Schrodinger equation is motivated by considering the
standard “parabolic” (paraxial) approximation to the Helmholtz equation, used in underwater acous-
tics to model long-range sound propagation in the sea, in the specific case of a domain with a rigid
bottom of variable topography. This model is contrasted with alternative ones that avoid the dynam-
ical bottom boundary condition and are shown to yield qualitatively better approximations. In the
(real) parabolic case, numerical approximations are considered for dynamical boundary conditions
of reactive and dissipative type.
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1. Introduction. Our main goal in this paper is to analyze Galerkin-finite el-
ement methods for initial-boundary-value problems, involving dynamical boundary
conditions, for the linear Schrodinger and the heat equations. In addition, in a specific
problem arising in underwater acoustics and modeled by the Schrédinger equation,
we will also consider an alternative boundary condition and evaluate, analytically and
numerically, the two models.

We start with the underwater acoustic application. Consider the Helmholtz equa-
tion (HE) in cylindrical coordinates in the presence of cylindrical symmetry

(HE) Ap + kg 172(r, 2)p = 0.

Here z > 0 is the depth variable increasing downwards and r» > 0 is the horizontal
distance (range) from a harmonic point source of frequency fo placed on the z axis.
For simplicity we shall assume that the medium consists of a single layer of water of
constant density, occupying the region 0 < z < £(r), r > 0, between the free surface
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z = 0 and the range-dependent bottom z = £(r); ¢ = £(r) will be assumed to be
smooth and positive. The function p = p(r, z) is the acoustic pressure, kg = 2”f°
is a reference wave number, ¢y a reference sound speed, and 7(r,z) the 1ndex of

refraction, defined as C(‘;,OZ), where ¢(r, z) is the speed of sound in the water. The

(HE) is supplemented by the surface “pressure-release” condition p(r,0) = 0. In the
case of a soft bottom the homogeneous Dirichlet boundary condition

(D) p=0 atz=4¥r)

is assumed to hold. The case of a rigid bottom is modeled by a Neumann boundary
condition (with ¢ = %)

(N) Dz — é(r)pr =0 atz=4~2r).

Applying the change of variables p(r, z) = ¥(r, z) \/k— , assuming that [2ikot,| > ||

(narrow-angle paraxial approximation), and neglecting terms of O(%) (far-field ap-
proximation), we arrive (cf., e.g., [23], [19], [7]) at the standard “Parabolic” Equation
(PE), which is a linear Schrodinger equation of the form

(PE) Ur = 5= e 152 (P (r,2) — 1),

where ¢ = 1(r, z) is a complex-valued function of the two real variables r and z.
The (PE) has been widely used in underwater acoustics to model one-way, long-
range sound propagation near the horizontal plane of the source, in inhomogeneous,
weakly range-dependent marine environments. Its solution will be sought in the do-
main 0 < z < {(r), r > 0. The (PE) will be supplemented by an initial condition
¥(0,2) = 1¥o(z), 0 < z < £(0), modelling the source at r = 0, the surface boundary
condition ¥ = 0 for z = 0, r > 0, and a bottom boundary condition obtained by
transforming (D) or (N). The Dirichlet boundary condition (D) remains of the same
type (¢ =0 at z = £(r)) while the Neumann boundary condition (N) is transformed
to a condition of the form

(PN) b —(r) vy — gu(r) {(r)p =0 at z = {(r),

where g5(r) is complex-valued and is usually taken simply as ikg.

The theory and numerical analysis of this initial-boundary-value problem (ibvp)
with the Dirichlet bottom boundary condition is standard (cf., e.g., [20], [3]) and will
not be considered any further. On the other hand the analysis is complicated in the
case of the Neumann boundary condition, when Z(T) is not the zero function, due to
the presence of the term 1, in (PN). In [1] Abrahamsson and Kreiss proved existence
and uniqueness of solutions for this problem in the case of a strictly monotone bottom,
i.e., when ¢(r) is of one sign for r > 0.

We shall transform the above ibvp’s to equivalent ones posed on a horizontal strip.

With this aim in mind, we first introduce nondimensional variables as in [4], defined
by y =%, t:=f, w:= %, where we take L := = and t)of := max [t)g|. Then,

0
letting s(t) := ko (), 9(t) = ko9 (), *y(t,y) =5 [P (, %) — 1], we sce that
the (PE) becomes

(1.1) wy = Swy, +iv(ty)w, 0<y<s(t), t>0.

We note that the index of refraction 7, and consequently the function v, may be taken
to be complex-valued in order to model attenuation of sound in the water. The initial
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condition becomes

(1.2) w(0,y) = wo(y) == 5= %o (), 0<y<s(0).
The surface condition remains the same, i.e.,

(1.3) w(t,0) =0, t>0,

while the boundary condition (PN) becomes

(1.4) wy(t, s(t)) — 5(t) [we(t, s(t)) + g(t)w(t, s(t))] =0, t>0.

We now perform the range-dependent change of depth variable z := %, which maps

the domain of the problem onto the horizontal strip 0 < x < 1, t > 0. We also make
the transformation

(1.5) u(t,z) = exp(—id(t)x?) w(t, s(t)z),

which defines the new field variable u(t,z) for0 <z <1,¢ > 0. In (1.5) §(¢) := é(t)zs(t),

t > 0, where a dot denotes differentiation with respect to t. In terms of the new
variables, (1.1) becomes
(1.6) up =1a(t) Uge +16(t,x)u, 0<x <1, t>0,

where, for 0 <z <1,¢>0,

alt) = gk, At.2) = Balt,2) + 16,1, ),
(1.7)

Ba(t,z) = Rely(t,zs(t))] — S50 5, (1, 2) = Iy (t, 25(1))] + 5dly-

The purpose of introducing in (1.5) the factor e=19()*” with § = %5 is to avoid the

presence of a u, term in the right-hand side of (1.6) and, consequently, simplify
somewhat the analysis. Under the transformation (1.5), the initial and boundary

conditions (1.2)—(1.4) change accordingly. Specifically, we have

(1.8) w(0,2) = ug(z) == e 0Oy (25(0)) Va € 0,1,

(1.9) u(t,0) =0, t>0,

and

(1.10) Up(t,1) = 51(8) ug(t, 1) + m(t) u(t,1), t>0,

where

(L11)  si() = 20 (t) = g(0)s1 () +i(s1(D3(0) — 26(), ¢ >0,

The boundary condition (1.10) is an example of a dynamical boundary condition,
because it involves (if § # 0) the value of u; at the boundary. As was already
mentioned, the well posedness of ibvp’s of the type {(1.6), (1.8), (1.9), (1.10)}, for ¢
in a finite interval [0, 7], was proved in [1] under the assumption that $(¢) is of one
sign for all ¢ € [0,7]. One of our main purposes in this paper is to construct and
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analyze fully discrete Galerkin-finite element methods for approximating the solution
of the above ibvp.

We consider the ibvp consisting of (1.6)—(1.11). We assume that the bottom is
upsloping, i.e., that $(t) < 0, and that the problem has a unique solution, smooth
enough for the purposes of the error estimation. In subsection 2.2.1 we discretize the
problem in z by the standard Galerkin method and prove optimal-order L? and H'!
estimates for the error of the resulting semidiscretization. This is achieved by using
appropriate properties of the L? and the elliptic projections onto the finite element
subspace and a relevant H' superconvergence result. (The difficulty of the problem
lies in the presence of the u; term in (1.10); the condition $(¢) < 0, which implies
that s1(t) < 0, is needed to obtain a basic energy inequality for the error of the
semidiscretization.) Subsequently, in subsection 2.2.2, we discretize the semidiscrete
problem in the t variable using a Crank—Nicolson type method with a variable step-
length. Again, under the assumption that $(t) < 0 for 0 <t < T, we prove L? and
H' error estimates which are of optimal order in z and ¢.

In order to overcome the analytical and numerical difficulties caused by dynamical
boundary conditions of the form (1.10), Abrahamsson and Kreiss proposed in [2] an
alternative rigid bottom boundary condition, which, in the case of (PE), is of the form

(AK) Y, —ikol(r)yy =0 at z=4L(r).

This condition may be viewed as a “paraxialization” of (PN). When the nondimen-
sionalization z — y, r — t, ¥ — w is performed, (AK) becomes

(1.12) wy(t,s(t)) —is(t)w(t,s(t)) =0, ¢t>0.
Finally, after changing the depth variable by x = % and the dependent variable by
(1.5), it is not hard to see that (1.12) becomes simply

(1.13) ug(t,1) =0, t>0.

The proof of the well posedness of the ibvp consisting of (1.6)—(1.9) and (1.13) is
standard, cf. [20]. Its numerical analysis too is straightforward; under no restriction on
the sign of $(t) we state in subsection 2.3 optimal-order L? and H! error estimates for
the standard semidiscrete Galerkin scheme and its Crank—Nicolson full discretization.

In section 3 we present results of various numerical experiments that we performed
for problems on variable domains with the Neumann and Abrahamsson—Kreiss bot-
tom boundary conditions, using the fully discrete finite element methods analyzed in
section 2. We compared the results of the schemes in the case of the upsloping and
downsloping rigid bottom Acoustical Society of America (ASA) wedge (a standard
test problem for long range sound propagation in underwater acoustics, [16]), and
found that in the upsloping case there was very good agreement between the two
schemes. In the downsloping case, the scheme implementing the Neumann boundary
condition was not convergent. This is in agreement with the results of Abrahamsson
and Kreiss, [1], [2], who pointed out that for some downsloping bottom profiles one
may observe instabilities in the case of the Neumann boundary condition. On the
other hand, the scheme with the Abrahamsson—Kreiss condition was convergent and
its results agreed well with those furnished by the finite difference code IFD [17], [18],
[19], implemented with the rigid bottom boundary condition option. The IFD scheme
uses a discretized version of the Neumann boundary condition (PN), wherein the 1),
term is replaced by the right-hand side of the (PE). We prove a priori L? estimates for
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the resulting ibvp. A final point of interest emerging from the numerical experiments
is that, for some downsloping bottom profiles s(t) with an inflection point at some
t = t*, we observed violent growth of the L2-norm of the numerical solution of the
problem with the Neumann boundary condition for ¢ > ¢*. This growth (blow-up?) of
the solution seems to be a feature of the problem and not an artifact of the numerical
scheme.

Error estimates for a finite difference scheme of second-order of accuracy in x and
t for some of the ibvp’s considered here were proved in [4]. In the case of the Neumann
boundary condition (1.10) these error estimates were shown to hold not only when
5(t) < 0 but also in the strictly downsloping case $(t) > 0, t € [0,7], as a result of
the validity of a certain discrete H' estimate; this estimate mimics an analogous H'!
estimate for the continuous problem, which holds provided $(¢) < 0 or $(t) > 0 when
t € [0,7]. In [22] Sturm considered the Abrahamsson—Kreiss condition for the (PE)
in three dimensions over a variable bottom in the more general case of a multilayered
fluid medium with homothetic layers. When restricted to single layer problems in
the presence of azimuthal symmetry, the scheme of [22] is similar to the one analyzed
here in the case of the Abrahamsson—Kreiss bottom boundary condition. We have
considerably modified the analysis of [22] and obtain optimal-order estimates, since,
by using the transformation (1.5), we essentially avoid an elliptic projection with time-
dependent terms. We finally mention that a uniform range step version of the scheme
of this paper and also three-dimensional extensions thereof were analyzed in [5].

The problem addressed in the present paper, namely sound propagation modeled
by the (PE) in a single layer of water over a rigid bottom, is, of course, an idealized
model problem in underwater acoustics. More realistic environments consist, for ex-
ample, of a layer of water above several layers of fluid sediments of different density,
speed of sound, and attenuation overlying a rigid or soft bottom. If the layers are
separated by interfaces of weakly range-dependent topography and low backscatter is
expected, long-range sound propagation may again be modeled by the (PE) in each
layer with transmission conditions (continuity of 1 and of %g—lﬁ, where p is the den-
sity and n the normal direction to the interface) imposed across the layer interfaces.
Hence, the issue arises of how to treat the dynamical interface condition, now involv-
ing 1, on both sides of an interface, and the ensuing problems are analogous to those
encountered in the case of the dynamical bottom boundary condition. The analysis is
more complicated now, as it appears that possible nonhomotheticity of the layers has
to be balanced by the jump across the interface in the imaginary part of the analog
of the function v (cf. (1.1)) in order to ensure the well posedeness of the problem [14].
For a recent review of several issues regarding the interface problem for the (PE),
we refer the reader to [13]; references to underwater acoustics computations with the
(PE) in the presence of interfaces with change-of-variable techniques include, e.g., [4],
[22], and [13]. Here we just wish to point out that range-dependent topography has
often been approximated in practice by “staircase” (piecewise horizontal) bottoms
and interfaces. This raises the issue of what boundary / interface conditions to pose
on the vertical part of the steps of the staircase. Moreover, it is well documented that
staircase approximations lead to nonphysical energy losses or gains; cf., e.g., [16], [21].
To alleviate this problem of energy nonconservation, change-of-variable techniques
may be used as in the present paper. They may also be extended to interface [13] or
3D-problems [22].

We turn now to one-dimensional (real) parabolic problems with dynamical bound-
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ary conditions. We consider the following model problem: For 0 < T' < co we seek a
real-valued function u = u(t, z) defined for (¢,z) € [0,T] x [0,1] and satisfying

up = a(t)uge + Bt 2)u+ f(t,z) V(t,z) €10,T] % [0,1],

u(t,0)=0 vt elo,T],
1.14
(1 a(t)us(t,1) = e(t) ug(t, 1) + 5(t) u(t, 1) + g(t) Vt € [0,T],

u(0,z) = uo(z) Vz €]0,1],

where a(t) > a. > 0 for t € [0,T] and S, f, €, d, g, up are smooth, real-valued
functions. Such problems occur in heat conduction, [12, section 4.3.5], and in other
areas; see [15] for a fuller list of references. Our aim is to construct fully discrete
Galerkin-finite element approximations for the ibvp (1.14) and prove error estimates,
with techniques analogous to those used in the case of the Schrédinger equation. We
consider two different cases depending on the sign of the function ¢ in the dynamical
boundary condition.

We first treat the dissipative case, characterized by the hypothesis that £(t) < 0
for all t € [0, 7], in which the ibvp (1.14) is well posed; cf., e.g., [15]. In subsection 4.1,
applying the standard Galerkin method to this case, we prove optimal-order L? and
H' estimates for the error of the resulting semidiscretization and for the Crank-
Nicolson—Galerkin fully discrete scheme. Matters are more complicated in the reactive
case, wherein e(t) > 0 for ¢t € [0, 7]. In this case the problem is well posed in one space
dimension as in the case at hand, but in general is not well posed in higher dimensions,
[25], [9]. To construct a Galerkin-finite element method in this case, we replace the
term u; in the dynamical boundary condition using the pde in (1.14), thus obtaining
a boundary condition involving w,.(¢,1). The resulting ibvp is discretized in space
by means of a H'-type Galerkin method that uses finite element spaces consisting of
piecewise polynomial functions in H? of degree at least three. In subsection 4.2 we
analyze this method and prove optimal-order H! error estimates for the semidiscrete
approximation and the fully discrete one when the Crank—Nicolson scheme is used in
time-stepping. The case where £(t) changes sign in [0, 7] is under investigation; for a
discussion, see [8].

In http://arxiv.org/abs/0904.3900v1 the interested reader may find an extended
version of the present paper, [6], including proofs of results omitted herein.

2. Numerical schemes and error estimates for the (PE).

2.1. Preliminaries. Let D := (0,1). We will denote by L?*(D) the space of
the Lebesgue measurable complex-valued functions which are square integrable on
D, and by || - || the standard norm of L*(D), ie., ||| = {[, |f(2)? dz}z for f €
L?(D). The inner product in L?(D) that induces the norm || - || will be denoted
by (,-), Le., (f1, f2) = [, fi(z) fo(a) dx for fi, fo € L*(D). Also, we will denote
by L (D) the space of the Lebesgue measurable functions which are bounded a.e.
on D, and by | - | the associated norm, i.e., |f|e := esssup, |f| for f € L>°(D).
For s € Ny, we denote by H*(D) the Sobolev space of complex-valued functions
having generalized derivatives up to order s in L?(D), and by || - ||s its usual norm,
P, [1Fls = {3300 0412} for £ € H*(D). In addition, we set [v]; := ||v/|| for
v € HY(D). Also, H'(D) will denote the subspace of H*(D) consisting of functions
which vanish at z = 0 in the sense of trace; we set H*(D) = H*(D)NH! (D) for s > 2.
In addition, for s € Ny, we denote by W*°°(D) the Sobolev space of complex-valued
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functions having generalized derivatives up to order s in L*°(D), and by | - |00 its
usual norm, i.e., |f|s 0o := maxo<s<s |04 f|oo for f € W°°(D). In what follows, C will
denote a generic constant independent of the discretization parameters and having in
general different values at any two different places.

For later use, we recall the well known Poincaré-Friedrichs inequality

(2.1) v]| < Cpe|v)1 Vo € HY(D),
the Sobolev-type inequality

(2.2) [vlew < V)1 Vv € HY(D),
and the trace inequality

(2.3) [()* < 2]Jv]| [vh Vv e HY(D).

Let r € N and S, be a finite dimensional subspace of H' (D) consisting of complex-
valued functions that are polynomials of degree less or equal to 7 in each interval of
a nonuniform partition of D with maximum length h € (0, h,]. It is well known [11]
that the following approximation property holds:

dnf {llo =xll +Allo = xlh} < A ollsr Vo e HTHD),
(2.4)
$s=0,...,7 Vh € (0,h].

Also, we assume that the following inverse inequality holds:
(25) 8 <Ch7Hgll Vo€ Sh, Yhe(0,h

which is true when, for example, the partition of D is quasi-uniform [11]. In addition,
we define the L2-projection operator Py, : L>(D) — S}, by

(Pov,¢) = (v,6) V¢ € Sy, YvelLl*(D),
and the elliptic projection operator Ry, : H'(D) — S} by
(2.6) B(Rpv,¢) = B(v,¢) Vo €Sy, Yve HYD),

where B is the sesquilinear form defined for u, w € H'(D) by B(u, w) := (u’, w’). It
follows [11], [24] that

[Rpv = of| + B [|[Rpo — v[ly < O o]ls41 Vo € HTH(D),
(2.7)
s=0,...,r Yhe(0h

Finally, for v € L?(D), we define the discrete negative norm

o)1 ;:sup{%; ¢ €Sy and QS;AO} Vh e (0,h].

LEMMA 2.1. The elliptic projection operator Ry, has the following property:

(2.8) Rpv(l) =v(1) Yov e HY(D).
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Proof. Let v € H'(D) and w be the element of S;, given by w(z) = x for € D.
Then (2.6) gives Rpv(1) —v(1) = B(Rpv—v,w) = 0, which is the desired result. O
LEMMA 2.2. Let w € C1(D). Then

(2.9) |Ph(wé)1 < Clwlioeldli Yo € Sh, Yhe(0,h].

Proof. Let h € (0,h,] and ¢ € Sp,. Since |Py(w@)1 < |Pr(wp — Rp(wo))|1 +
|Rp(we)|1, using (2.5) and (2.6) we arrive at | Py, (wo)|1 < Ch™t ||wp—Rp(we) | +|wd|:.
Next, we use the estimate (2.7) for s = 0 to obtain [P, (w¢)]; < C|[|w|es [¢]1 +
|w'|c ][l ]. Thus, the bound (2.9) follows by combining the latter inequality and
(2.1). a

2.2. The Neumann (dynamical) boundary condition. In this subsection,
we shall consider the (PE) with the Neumann boundary condition, i.e., the ibvp (1.6),
(1.8), (1.9), (1.10). We shall write this problem in a slightly more general form as
follows. For T' > 0 given, we seek a function u : [0, 7] x D — C satisfying

u =ia(t) uge +iB(t, x)u+ f(t,z) V(t,x) €[0,7] x D,
u(t,0) =0 Vt¢e][0,T],

up(t,1) = p(t) [SE) w(t,1) + Gt u(t,1)] Vi e[0,T),
w(0,2) = up(x) VaxeD.

We shall assume that a : [0,7] — R\{0}, 3, f : [0,T]x D — C, ug : D — C, p,
S:[0,T] - R, and G : [0,7] — C are given functions. We shall assume that the
solution u of (N) exists uniquely, and that the data and the solution of (N) are smooth
enough for the purposes of the error estimates that will follow. (In some numerical
experiments of section 3 we shall revert to the specific physical data in (1.9), (1.10),

(1.11), and take the functions a(t), B(¢,x) as in (1.8), p(t) = %, S(t) = 1+S(2S((i)))2,
G(t) = g(t) S(t) +i[S(t) d(t) — s*(t)], where § = %)

2.2.1. Semidiscrete approximation. The weak formulation of (A'), obtained
by taking the L?(D) inner product of the pde in (N') with a function in H'(D), inte-
grating by parts and using the boundary conditions, motivates defining wy, : [0,T] —
Sh, the semidiscrete approximation of u, by the equation

(Orun(t,-), ) = ia(t) u(t) [S(t) Qeun(t, 1) + G(t) un(t, 1) ] ¢(1)
(2.10) —ia(t) B(un(t,-),¢) +i(B(t, ) un(t,-), )
F(f(t,),d) Vo€ Sh, Vtel[o,T),

and
(2.11) up(0,-) = Rpuo(-).

PROPOSITION 2.3. The problem (2.10)—(2.11) admits a unique solution up €
CL([0,T7; Sh)-

Proof. Let dim(Sy) = J and {¢;}/_; be a basis of S, consisting of real-valued

functions. From (2.10), it suffices to prove that the J x J complex matrix defined
by Agi(t) == (¢e, ¢;) —ia(t) S(t) p(t) de(1) ¢;(1), 1 < £,5 < J, is nonsingular for
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€ [0,7). Indeed, letting ¢ € [0,7] and = € Ker(A(t)), we have 0 = Re(zL A(t)r) =
HZJ L 2;¢;||?, and hence z = 0. O

THEOREM 2.4. Letu be the solution of (N') and uy, its semidiscrete approzimation
defined by (2.10)—(2.11). Assume that u(t) <0 and S(t) > 0 fort € [0,T]. Then
(2.12)

lun(t, ) = u(t, )l + hllun(t, ) = ult, )l < C A <||u( N4 +/ Iy (7) dT) 2
fort €[0,T] and h € (0, h,], where

Llr) = ulr, )24 + oru H+Z )y RIS

Proof. Let h € (0,hy], Op := up, — Rpu, and £(t) :=
superconvergence estimate

a(t) We first prove the H'

1
2

(2.13) 16n(t, )l < C AT+ </Ot T (7) dT) vt e [0,7].
Using (2.6) and (2.8) we obtain
(DuOn(t,-), d) = ia(t) u(t) [S(t) 0O (t, 1) + G(t) O (t, 1) ] H(1)
(2.14) —ia(t) B(On(t,-), ¢) +i(Pu(B(t,-) On(t,)), )
+ (Vu(t,),¢) VoeSh Vtel0,T],

where U, := [Qyu — Rp(Oyu)] — 18 (u — Rpu). Set ¢ = 9,0, in (2.14) and then take
imaginary parts to obtain

E10n(t, ) < ()] — 29000 (t, 1) + 21G(1)] |00 (2, 1)] |0:0n(t, 1) ]
(2.15) +216@)] 10:0n(t, )l —1,n [Pu(B(t,-) On(t,-))|1
+2§(t) Im(qj*(t7')7at9h(t7')) Vit e [O,T],

where S* := infj 71§ > 0. In order to bound properly the quantity ||0:04|| 1,5, first
use (2.7) to obtain

(2.16) 1.t < CR™ [Nut, s + 10t llrsa ] V€ [0,T].
Then, use of (2.2) and (2.16) in (2.14) gives
@0 (t..)] < 1a(0)][S(0) a1t D] + (1G] (0] +1) (8.1 ] s

+ C R (N Bgult, Y1 + [Jult, e ) 0]
+ |ﬁ(t7 )|OO ||9h(t7 )” ||¢|| V(b S Sh7 vVte [OaT]a

which, along with (2.1), yields that

2161000t -1 < C [160(t, My + B (0t Yo + ult, ) o1) |
(2.17)

+25(0) ()] [90n(E 1) Vi € 0,T].
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Thus, combining (2.15), (2.17), (2.1), (2.2), and (2.9), we arrive at
l6n1T < C [16n]F + h*CHD (Joull sy + ullfsr) | +2€ Im (s, 861)  on [0,7].

Since 65,(0, ) = 0, integrating with respect to ¢ in the inequality above yields

0ult, )} < © [ | s s+ 120 [ (ol + futs. ) ds
+In{ 2600 (1 (. 00(6.) =2 [ €106) (B, (5.) s

—2 /Ot §(5) (O (s,).0n(s,)) ds} Ve e [0,7].

Using in the above inequality the Cauchy—Schwarz inequality, (2.1), and (2.16), we
obtain

t
(2.18) |0h(t,-)|§gc/ 10n(s, )2 ds + C RV T (1) Vit e [0,T].
0

The estimate (2.13) follows from (2.18) using Gronwall’s lemma and (2.1). We con-
clude, in view of (2.7), that (2.12) holds. a

Taking into account the relation of a, p, and S to the function s(¢) describing the
bottom topography, we conclude that the error estimate of Theorem 2.4 holds in the
case of domains with upsloping bottom profiles, i.e., when $(¢) < 0 for ¢ € [0, T].

Remark 2.1. The H! superconvergence estimate (2.13), (2.2), and a standard L>
estimate for the error of the elliptic projection [26] yield as usual an optimal-order
estimate of the error |u — up|eo on [0, 7] (cf. [24]).

2.2.2. Crank—Nicolson fully discrete approximations. Let N € N and
(t")N_, be the nodes of the partition of [0,T] where t° = 0, t¥ = T, and t" < t"*!
forn =0,...,N — 1. Define ky, :=t" —t" L forn=1,...,N, t""z := % for
n=20,...,N —1, and k := maxij<n<y kn. We set u” := u(t",:) for n =0,...,N,
where u is the solution of (V). Finally, for sequences (V™)X _, we define V™ :=
(VT —Vml) and AVT = (VT V) form=1,..., M.

For n=0,...,N, the Crank-Nicolson method yields an approximation U;' € S
of u(t™,-) as follows:

Step 1. Set
(2.19) U := Ryup.
Step 2. Forn=1,...,N, find U € S}, such that

(QUP, x) = ia" 3 "3 [S"3 UML) + G2 AUP (1) ] x(1)
(2.20)

1

—ia" 3 B(AU, X) +i (872 AUR, X) + (f""2,x) VX € S,
where $"~2 1= S(t""2), p"2 = p(t""2), @’z = a(t""2), G"2 = G("2),
frmz=f(t"2,.), and g2 = Q" =, ).

We first examine the existence and uniqueness of U}}.
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PROPOSITION 2.5. Let n € {1,...,N} and suppose that U,ff*l € Sy is well
defined.

(1) If S7~2 > 0 and "= < 0, then there exists a constant C, such that if
kyn < Cp, then U} is well defined by (2.20).

(IT) In general, there exist constants Cp1 and Cy o such that if an < Cyp,1 and
kyn < Cp 2, then U} is well defined by (2.20).

Proof. (I) Since (2.20) is equivalent to a linear system of algebraic equations
with unknowns, the coefficients of U;' with respect to a basis of S}, existence and
uniqueness of U} will follow if we show that if there is a V' € S such that

& (vig) =ia et s Ly e iv |8
(2.21)

n

iR B(V,0) + 1 (P E V), 6) Vo€ S,

then V' = 0. Set ¢ = ﬁV in (2.21), and then take imaginary parts and use the
arithmetic-geometric mean inequality and (2.9) to obtain

VI = "% {25”—%

2 1
%4+ﬁmwwmwmﬂ

+ 2 Re(Pu (8" 2 V), 1)
(2.22)

n

A )
48" %

n n—z

<l Hk |5

_1
+ O e o [V (1 e

ja" 1)
For ¢ € Sp,, we use (2.21), (2.2), and (2.1) to obtain

(£, 0)] < lam~H| b [ 57

n—1
L8|+ e 5 v )] 1ol
n—1 n—1
+ 4 [l 4+ 18" T IV Ik,
which yields

(2.23)

1 1 1
I7ll—in < la" =2 | p" =2 S 72

L8|+ Ca Vs,

where Oy := 1 [[a" 77| +C |32 |ao+|a" 3 | |u"~ 2| |G~ 2| ]. Using (2.22) and (2.23),
(2.2) gives
(2.24)

n—1 n—=y12 n—21
V3 {1—kn { "LG2E 4 OCelf 21’“’+%2|u”‘%|5”‘%lﬂ"_%|i°°]}SO’

1
4sm72 la™ "2 |

which ends the proof of (I).
(II) Let dim Sy, = J and {¢;}7_; be a basis of S, consisting of real-valued func-
tions. It is easily seen that existence and uniqueness of U;' is equivalent to the
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invertibility of a matrix M € C’*7 defined by My; := M(¢;,¢¢) for j, £ =1,...,J,
where M : S, x ), — C is given by M(x, ¢) := (x,¢) —ia™ 2 u" 2 §7~ 2 y(1) ¢(1) +
%" [ —i(ﬂ"‘éx, @) —1i ,u"_% a3 GnT3 X(l)@—!—ia”_% B(x, d))] for x, ¢ € Sp,. If
z € Ker(M), we have Re [M(¢, ¢4)] = 0 with ¢, := >77_, x; ¢;. Then, using (2.3)
and (2.5), we get

n—1 n—1 n—4i n—4i
91 < B (18" %l l0ull? + 202 a3 1G™# 94 16411 |

IN

_1 1 _1 _1
b (18" oo + a1 ] Do,

which, under our hypotheses, yields x = 0 and ends the proof of (II). d

Therefore, if we suppose that 3 is in C([0,T], W1°°(D)), that a, u, S, G are
continuous on [0,7], and that S(¢) > 0 and u(t) <0 for t € [0,T] (i-e., the upsloping
case), then the existence and uniqueness of U}’ follows if k, < C, where C' is a con-
stant independent of n, since the quantity multiplying &, in (2.24) may be uniformly
bounded with respect to n. In the case of a general bottom topography, (II) shows
that existence-uniqueness of U} follows if we suppose that 8 € C([0,T], L>°(D)) and
a, p, G are continuous on [0, 7], and take k, < C; and %" < (O for some constants
C1, C5 independent of n.

PROPOSITION 2.6. Let u be the solution of (N). For n = 1,...,N, define
o":D —C by

(225) un_k’in71 — ia’n«—% uww(tn—%’ ) + 1571_% A’u,n + fn_% n 0'"'
Then,

(2.26) lo"|| < C (kn)? B}(u), n=1,...,N,

and

(2.27) [lo" Tt —o™|| < C [ (kn)?+|kns1—kn|] (kn+kni1) By(w), n=1,...,N—1,

where B} (u) := 22’22 maxn-1 . ||0ful| and By (u) := 2?22 maxn—1 n+1, ||Oful].

Proof. The proof follows easily by using the pde and Taylor’s formula. d

The following theorem asserts that in the case of upsloping bottoms, the Crank—
Nicolson—Galerkin method (2.19)—(2.20) yields fully discrete approximations U’ that
converge to the solution u™ of (N) at optimal rates in the L? and H' norms. As
in the semidiscrete case this is a consequence of a H' superconvergence estimate for
Ul — Rpu(t", ).

THEOREM 2.7. Let u be the solution of (N) and (UJ)N_, be the fully discrete
approzimations that the method (2.19)=(2.20) produces. Assume that u(t) < 0 and
S(t) > 0 fort € [0,T]. In addition, assume that there exists a constant C > 0 such
that

(2.28) \knt1 — kn| < C max{k2,k2,1}, n=1,...,N—1

Then, there exists a constant Cy such that if maxi<np<n(kn C1) < %, there exists a
constant C' > 0 such that

(2.29) max [[U = Ryu"|ly < C (K> 4+ A" Ex(u) Vh e (0,h],
<n<N
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and

(2.30) Jmax [|U} ="l < C (B> 4+ A8 2 (u) Yhe(0,hy], £=0,1,

where S5 (u) := Z?:o maxo r) ||8fu||r+1—|—max[o,ﬂ |03u|1 +maxo 7 ||8t4u|| +max, (.1
|0u(t, 1)].

Proof. Let h € (0,hy], 07 := U — Rpu™ for n = 0,...,N, £ := L and €77 .=
£t 2) forn=1,...,N. We use (2.20), (2.25), (2.6), and (2.8) to obtain

(965, x) = ia" "% p""F | S"TE 90(1) + G AG(1) - & | X(1)
(2:31) —ia"" 3 B(AGR, X) +1(Pa(5" 5 A6}, X)
+(EF =0 X)+ia" 2 BEY,X) VYx€E€Sh n=1,...,N,

where

EP == Ou™ — Ry(du™) — i Py B7 % (Au™ — Ry, (Au™))],
N = u(t"7) — Au”,
Ep =573 [t 2,1) — du"(1)] + G2 [u(t™ 2,1) — Au™(1) ].

Using Taylor’s formula and (2.7), we deduce the following estimates:

(2:32) Jerl < onrst (sl + s 1ol )
(2.33) €51y < Ok max [9Fuly,

and

@30 [E1<CR | mox RRu )]+ _max [@Fu(e1)] |

forn=1,...,N. Set x = 96} in (2.31), and then take imaginary parts to obtain
6713 < 16717+ 2k €773 | [P (5" % B 06]]|-1.n
ok |2 [ = 25,1065 (1) + 2 |G 2| |AG5(1)] 965 (1)]
(2.35)
+2|€3] |005 (1)] ]
+ 2k, Re[B(EY,001)] + 2k, e Im(&F —o™,007), n=1,...,N,
where S, = inf[O)T] S.
Now let us estimate ||00}||—1,5. For ¢ € Sy, (2.31)—(2.34), (2.26), (2.2), and (2.1)
give
(005, 0)| < la™ 2| |u" 2] 5" 72 |065 (1) ]y

+ C|A6‘Z|1 |(p|1 + C(hr—H + ki) |go|1 El(u), n=1,...,N,
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where =1 (u) 1= max(o 7 |[t|lr+1+maxe 7 || Opte|| 41 +maxo 7 [|02ul|1 +maxe 7 || 07 ul| +
max, e . |07u(t, 1)]. Hence, we conclude that

2k €72 00R || -1,0 < 2K [ 2] S™72 065 (1)] + C ko | AG
(2.36)
+Cky (W +k2) Z1(u), n=1,...,N.
Now, combining (2.36) and (2.35) we have

0713 < 10773 + Ckyy [AOR |3 + Chyy [ (k) + (R + K2) |AG |1 ] Zi (u)

+ 2k, Re[B(EY, 00)] + 2k €72 Im(E — ™, 00}), n=1,...,N,
from which there follows that for some constant C; > 0
(1= Crka) 077 < 1+ Crkn) 10,7 + Colon (W + ) (B1(w))?
+ 2k, Re[B(EF,007)]
2k, € Im(EY — 0™, 007), n=1,....N.

To continue, we assume that maxi<p<y(C1 kp) < %, which allows us to conclude that

%+gi n < 3Cikn for n =1,..., N. Hence

0717 < 2 0p 7T + 75 (BT 4 KD (B ()
2 [RelB(Eg, 007)] + € Im(E] — 0", 067) |, n=1,...,N.

cxp(SCl Dl k)e)

n .
Next, we define A7 := =ik,

at

and use a simple induction argument to arrive
n
012 < Co (S (w))® D0 ks X (0L 122
j=1

+23 kA [Re[zs(sg,aa;;)] L m(El - aﬂ',aa;;)], n=1,...,N,

j=1
which yields
(2.37) 0n <O + D2 (E (w)* + T+ T2, n=1,...,N,

where

T =2 ZAyRe[B(gg,eg; -6 h],

T”—QZ/\” “ITIm(E — 0,00 — 6.

Since

€3 — &1 < C (ky + kjsr) [ (k) + ka1 — kj] ] Ba(u), j=1,...,N—1,
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with Za(u) := maxy 7 |0?ul|; + max, 1 |07ul1 we see, after some algebra, that (2.33)
and (2.28) yield
(2.38) IT?| < Ck*Za(u)  nax 01, n=1,...,N.
In addition, observing that
&7 — &Y < C(kj+ ki) T E3(w), j=1,...,N—1,

with Z3(u) 1= max 1 [|Osulr1 + maxg 7 [|02u]|r+1, we may see from (2.32), (2.26)—
(2.28), and (2.1) that

(2.39) T2 < C(K* + ") 2y (u) (max [0, n=1,....N,
where Z4(u) = Zf:o max 7 [|Ofullr+1 + Z?:g max 7 [|0ful|. Now, from (2.37),

(2.38), and (2.39) it follows that

0318 < O (8 + 1Y) (Sa(u) + Za(w)) | max 107"

+ O (W + k%)% (21 (u)?, n=1,...,N,
which easily yields

max [072 < C (b 4 £%)2 (B1(u) + Ea(u) + Za(u))>

0<n<N

The desired estimate (2.29) is then a simple consequence of this inequality and (2.1).
Finally, (2.30) follows from (2.29) and (2.7). O

2.3. The Abrahamsson—Kreiss boundary condition. We consider now the
(PE) with the Abrahamsson—Kreiss bottom boundary condition, i.e., the ibvp (1.6),
(1.8), (1.9), (1.12), which we rewrite here, in slightly more general form, for the
convenience of the reader. For T' > 0 given, seek a function u : [0,7] x D — C
satisfying

w =ia(t)ugs +iB(t, x)u+ f(t,2) V(t,z) €[0,T] x D,
u(t,0)=0 Vtel0,T],

ug(t,1) =0 Vte|0,T],

w(0,2) = ug(z) Vaz € D.

We assume again that a : [0,7] — R\{0}, 8, f : [0,T] x D — C, uy : D — C
are given functions. We shall assume that the solution of (AK) exists uniquely and
that the data and the solution of (AK) are smooth enough for the purposes of the
error estimation. We note that (AK) may be considered as a special case of (N)
obtained by setting u equal to zero in (N). (This does not imply, of course, that
we assume that $ is zero. We recall that in the Abrahamsson—Kreiss formulation
the effect of variable bottom enters explicitly in the definition of a and 8 (cf. (1.7))
and in the change-of-variable formula (1.5).) All the error estimates for (AK) that
follow may then be considered as special cases of the analogous estimates in the two
preceding subsections but with some important simplifications; we shall just state the
results without proofs. They imply that finite element approximations of (AK) satisfy
optimal-order error estimates under no further assumptions (except smoothness) on
the shape of the bottom.
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2.3.1. Semidiscrete approximation. Using the finite element subspace Sj
and the notation established in subsection 2.1, we define the semidiscrete approxima-
tion wy, of the solution of (AK) as the map uy, : [0,T] — S}, satisfying

(atuh(tv ')7 (b) = _ia(t) B(uh(tv ')7 (b) +1 (6(t7 ) Up (tv ')7 (b)

(2.40)

+(f(t,-),¢) Vo€ Sy Vtel0,T],
and
(2.41) un(0,-) = ub,

where u)) € S, is an approximation of ug, which may be taken, for example, as P,uq
or Rpug.

THEOREM 2.8. The problem (2.40)—(2.41) admits in C1([0,T),Sy) a unique so-
lution, which in the special case f = 0 and B; = 0 preserves the L2(D) norm, i.e.,
llun(t, )| = ||ub]] fort €[0,T]. In addition,

t 2
u(t, ) — un(t, Ve < C | 1 — Ruolle + b7+ (||u<t,->||$+1+ / r/m,zmm) ]
0

for £ =0,1,t € [0,T] and h € (0, h,], where T 45 o(T) := Z}nzo o7 u(r, )24, and
Taca(7) :=T\(7) is the function defined in the statement of Theorem 2.4.

2.3.2. Crank—Nicolson fully discrete approximations. We now proceed to
the full discretization of (AK) by discretizing the initial-value problem (2.40)—(2.41)
in t using the Crank—Nicolson scheme. With notation introduced in subsection 2.2.2,
we define for n =0, ..., N approximations U}’ € Sj, of u(t", ), the solution of (AKC),
as follows:

Step 1. Set

(2.42) Up = uj).
Step 2. Forn=1,...,N, find U}’ € Sj, such that
(243) (9U}!.x) = —ia"" 2 BAU}, x) +i (8" % AUL, X) + (f""%,x) Y € S

THEOREM 2.9. Letn € {1,...,N}, and suppose U,’;*l is well defined. Then,
there exists a constant C, independent of n, such that if k, < C, U} is well defined
by (2.43). (In the special case f =0 and B; = 0, the scheme is conservative in L2,
i.e., there holds ||U|| = ||[uY|| for n = 0,...,N.) In addition, if maxi<p<w kn s
sufficiently small, we have

max U7~ "] < © [l Ruoioll + (8 + 07 S o(w)] - VhE (0]
where Zax o(u) == Yo maxg ) |07 w1143,y maxio o |07 ul| +maxiq 1 [|[0202u]l.
Also, if (2.5) and (2.28) hold, and maxi<n<n kn 1s sufficiently small, then

Jmax [UF —u"s < C [Jlu = Ruuolls + (B + h") Eaxa(uw) ] Vh € (0,h],

where Z a1 (u) 1= Eaxo(w) + maxio,r [|07ullr41 + maxie,r [|0Fu] +maxi r [|0703u].
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3. Numerical experiments. In this section we present the results of some nu-
merical experiments that we performed using the fully discrete Galerkin-finite element
methods, defined and analyzed in the previous section, to solve the ibvp for the (PE)
in domains of variable bottom topography with Neumann and Abrahamsson—Kreiss
boundary conditions. We also make, in subsection 3.2, a theoretical excursion with
the aim of explaining some experimental observations made in subsection 3.1. Recall
that in the case of the Neumann boundary condition, i.e., for the problem (N), our
convergence results were rigorously established in the case of upsloping bottoms, that
is, when $(¢) < 0 for all ¢ € [0,T]. One of our goals in this section is to study numeri-
cally the behavior of the Neumann boundary condition in the presence of downsloping
bottoms and compare the solution of (N') with that of (AK), for which rigorous con-
vergence results hold for any smooth s(¢). In the numerical experiments the finite
element subspace S}, consisted of continuous, piecewise linear functions defined on a
uniform mesh, while the temporal discretization was effected with uniform time step.
All computations were performed using double precision Fortran 77.

3.1. Comparison of (N) and (AK): The upsloping and downsloping
wedge. We first consider the ASA upsloping wedge underwater acoustic test problem,
see [16], with rigid bottom given in the original variables r, z by the function I(r) =
200 — 0.057 for 0 < r < 3339 m. The source, of frequency fy = 25 Hz, was placed at

2%) _

zs = 100 m and modeled by the initial value 1g(z) = 1/];—0{6Xp(—(2 — 25)°

exp(—(z + 25)2%‘%)}, 0 < z < I(0). The water was assumed to have constant sound
speed equal to ¢ = ¢y = 1500 m/sec and no attenuation. In (PN) gp(r) was taken
equal to ikg. The problem was transformed by the change of variables (1.6) to an
equivalent one on the horizontal strip 0 < z < 1, 0 < ¢t < T, and it was solved
numerically in both the (V) and (AK) formulations with h = 5=, k = 1455, and
T = 3339. (In the figures that follow we present the numerical results after trans-
forming them back to the original r, z variables. Specifically, we present graphs of the
numerically computed field ¥, represented as is customary in underwater acoustics,
by the transmission loss function TL= —201log, (|1 (z,7)|) + 10log,, r dB depicted as
a function of r at certain depths z.) For this upsloping example we show in Figure 1
the transmission loss curves as functions of r € [0,2200 m] at a depth of z = 90 m for
both the (V) and (AK) models, which evidently agree very well.

We then considered the analogous downsloping wedge given by (1) = 33.0540.05r
for 0 < r < 3339 m. The source, of frequency 25 Hz, was placed at z; = 25 m and
modeled as in the upsloping case. In this case, we found that the numerical solution
of the problem (N) apparently exhibited numerical instabilities and did not seem to
converge as the discretization parameters became smaller. For example, in Figure 2
we superimpose (at depth z = 25 m and for ranges up to 7' = 3339) the TL curves

corresponding to the (A) model with h = ﬁ, k= %, and h = ﬁ, k= ﬁ, on
the analogous results obtained by (AK) with h = k=, k = 1&5. The (AK) model

yields reasonable results that converge to the solution shown with dotted line. To
make sure that the numerical method used for (N') was not the culprit, we repeated
the numerical experiment using a Crank—Nicolson finite difference discretization for
(NV) and found results identical to those of our finite element scheme. We tentatively
conclude, therefore, that in this realistic downsloping bottom case, the model (N)
allows the growth of instabilities, in agreement with the remarks of Abrahamsson and
Kreiss in [1] and [2].

To check the validity of the (AK) solution of this problem, we compared the
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Fia. 1. Upsloping ASA wedge; TL as a function of v at depth z = 90 m, comparison of (N)
and (AK).
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F1G. 2. Downsloping ASA wedge; TL as a function of r at depth z = 25 m. (FE) solutions for
the (N) and (AK) models.

results of Figure 2 with those of yet another numerical method, the Crank—Nicolson
type finite difference code IFD for the (PE) [17], [18], [19], which has been widely used
in underwater acoustic numerical simulations. We chose the option of the rigid bottom
boundary condition in IFD and solved the problem using Az = 3.31 m, Ar =0.17 m
values by which the IFD solution had converged. (The IFD code solves the problem
in the original r, z wedge-shaped domain.) The TL curves obtained at z = 25 m by
(AK) model solved numerically by the finite element scheme with h = ﬁ, k= %,
T = 3339 (as in Figure 2) and for the IFD with the rigid bottom boundary condition
agree practically within line thickness in a graph with the axes scaled as in Figure 2.
In fact, they differ by about half a dB, as inspection of a typical window shown in
Figure 3 reveals. (It is worthwhile to note that at a higher frequency fy, = 80 Hz the
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depth=25m
T T

T T
Neumann (FE)
A-K (FE)

57

58

59

TL

60

61

62

1 1 1 1 1 1 1 1 1 1 1
1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420
range (km)

Fic. 3. Downsloping ASA wedge; TL as a function of r at a depth z = 25 m. Comparison of
(N) and (AK), discretized by (FE), and IFD with rigid bottom boundary conditions.

results of (N) approach those of (AK) and IFD.)

To explain this result we looked closely at how IFD implements the rigid bottom
boundary condition and found that it does not actually discretize (PN); instead, it
uses a different boundary condition obtained by replacing the ¢, term in (PN) by
ﬁd’zz + ”“70(772 — 1)¢ using the (PE), and then discretizing the 1., term at the
bottom with one-sided finite differences from the interior of the domain. In the next
subsection we offer an explanation why this rigid bottom boundary condition yields
a stable problem for any monotone bottom profile.

Our tentative conclusion, then, from this experiment is that in the case of realistic,
downsloping environments, (AK) and the rigid bottom boundary condition model
implemented by IFD apparently yield correct results, while the Neumann bottom
boundary condition used in (N), which retains the term v, at the bottom, allows the
growth of instabilities.

3.2. Using the pde in the dynamical boundary condition. Let w = w(t,y)
be defined for 0 < y < s(¢), 0 < ¢t < T, and satisfy (1.1)—(1.4). Replace the term
wy(t, s(t)) in (1.4) by its value given by the pde in (1.1) to obtain

(3.1) wy(t, s(t))—5(t) { 5wy (t, s(8)+ [17(t, s(t)+9(t)] w(t,s(t))} =0 Vtel0,T].

In the IFD code, the rigid bottom boundary condition used is a finite difference
discretization of (3.1).

To avoid the presence of the second derivative wy, (¢, s(t)) in the boundary con-
dition (3.1), we differentiate (1.1) with respect to y and put p(t,y) = wy(¢,y). (Note
that w(t,y) = [ p(t,€) d¢ since w(t,0) = 0.) Then, the ibvp (1.1)—(1.3), (3.1) be-
comes

Pt = 5Py +iv(ty)P+inty)w Yye0,s@)], Vtel0,T],
Py(t,0)=0 Vte[0,T],
plt, s(t)) — 5(t) {5y (t, (1) + [17(t, 5(t)) + g(t)] w(t,s(t))} =0 Vte[0,T],

p(0,y) = po(y) :=wy(y) Yy € 0,5(0)].
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(Note that using the (1.1) at y = 0 and the surface boundary condition w(t,0) = 0,
we obtain that py(t,0) = wy,(¢,0) =0.)

In what follows, we shall obtain an a priori L? bound for the solution of (3.2)
and then propose a finite element method for solving it. With this aim in mind, we
perform as usual the range-dependent change of depth variable x := ?yt) that maps
the domain of the problem onto the horizontal strip {(t,z) : t € [0,T], z € D}, where
D = (0,1). Consider the transformation

B3 pln) = oy o) (sl - Glna) [ aoac).

where the function ¢ will be specified below. After some calculations, we may derive
the inverse of the transformation (3.3) in the form

plt.2) = ) exp(c(t.) (pltas(0) + G 0.0) [t €sto)as).
We also obtain that the function 6, defined by 6(t,z) := [ p(t,&)d¢ for (t,z) €
[0,T] x D, satisfies the relation
(3.4) 0(t, x) = exp(C(t, ) w(t, xs(t)), (t,x) € [0,T] x D.

Following the ideas of [4], and after analogous computations (see, in particular,
(2.7) and (2.8) of [4]), we may deduce that p solves a well posed ibvp, in the case
of strictly monotone bottoms, i.e., when $(¢) is either positive or negative for all
t € [0,T]. To see this, define first ¢, as in [4], by the formula

(3-5) C(t,x) = 5 (a(t) = 1) 5(t)s(t)a® V¥ (t, @) €[0,T] x D,
where o(t) := % + ¢, if §(t) > 0, where ¢ is a positive constant, and o(¢) := 1,

or equivalently ¢ = 0, if $(¢) < 0. Then, in the transformed domain, the ibvp (3.2)
becomes

bt = Et) prr"’B(tax)pr
+[Ba(t,z) + G(t,x)] p+ Gy(t,x)0 V(t,z) € [0,T] x D,
(3.6) p(t,0)=0 Vtel0,T],

iy Palt, 1) = SEMODOD g 1) BOGELER0 gy 1) vt € [0, T),

p(0,2) = p’(z) Vae D,

where p°(z) = 5(0) exp(¢(0, )[wé(%( )+ (0, 2) [ wh(&s(0)) de], A(t) = 252(),
Ra(t) = 1&2@»2, B(t,7) = 2 33 — 5 Gt @), G(m) = < (m) w28 ¢, (1) +
iv(t,25(t) + 52 [ (Ga(t, )) Cm(t )], Ra(t) = [9(t) — G(t, 1) | Ru () + Gu(t, 1).
(Recall that 9 t ) = [ip In addition, note that (3.5) yields that B is

real-valued and is given by B(t x) ==z Etg o(t), so that B(t,0) = 0 and B, (t,z) =
B(t,1) = % o(t). It is easily checked that 1 — Ry (t) B(t,1) # 0 for ¢t € [0,T].)
We may now prove the following result.
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THEOREM 3.1. If the bottom is strictly monotone, the ibup (3.6) is L?-stable.
Proof. Multiply the pde in (3.6) by p(t, z), integrate with respect to z in [0, 1],
use integration by parts, and take real parts to obtain

Sl P = FIGE p(r, 1) — Re [ SELR @R o, 1) 57 T
+R6(Gz(t,')H(ta')vp(tv'))
+ 5 (Bo(t,)p(t, ), p(t,-) ) + Re( G(t,-) p(t,-),p(t,-)) Vtel[0,T].

Using the Cauchy—Schwarz inequality, the arithmetic-geometric mean inequality, and
noting that |6(¢, 1) < ||p(t, )|, [16(t, )| < |lp(t,-)||, we see from the above equation
that for any £ > 0 there exists a constant C¢ > 0 such that

Lot ) < (kg — A B +€) (e, D + Cellp(t, P Ve € 0,7,

Since ﬁ(t) —1B(1,t) <0 for t € [0,T], we may chose ¢ sufficiently small to make the
first term in the right-hand side of the above negative. Hence, by Gronwall’s lemma,
we conclude that ||p(¢,-)|| < C||p°|| for ¢ € [0, T], which ends the proof. a

Now, we can define a semidiscrete approximation py, : [0,7] — Sp of the solution
p of problem (3.6) by

pr(0,z) = p%(x) VzeD,
and

@m@ﬁrq@mmwﬂﬂt%%$ﬁmmn BOELIE 0 6, (¢,1)| (1)

( zph; )+([Bm(t,)+G(t7)]ph7¢)
( Gh, ) V¢ € Sy, VtE[O,T],

where 0 (t,z) = fom pr(t, &) d¢ and pY) € S, is a given reasonable approximation of
p°. Consequently, using (3.4), we see that exp(—((¢,))0(t,z) is an approximation
of the solution w(t, zs(t)) of the ibvp (1.1)—(1.4). Also, it follows, as in Theorem 3.1,
that there exists a positive constant C such that ||pp(t,-)|| < C||pY] for t € [0, 7).

3.3. Growth of solutions of (N) for various bottom shapes. The final
set of numerical experiments that we report concern the behavior of the size of the
solutions of (N), as ¢ grows, in the presence of bottom profiles of various shapes.
Recall that in [1] it was shown that (N) is well posed if s is strictly monotone, i.e.,
if $(t) > 0 or §(t) < 0 for t € [0,7]. In addition, downsloping bottom profiles were
identified for which the solution of (N) grew exponentially with ¢. (The fact that
problems may arise in case § changes sign may be expected, in view of the analogous
difficulties encountered in the (real) parabolic case; cf., e.g., [8].)

The ibvp (N) was solved numerically up to 7' = 1, with 8 = f =g = 0,
ug(z) = —z(z —1)3, 0 < = < 1, with mesh parameters h = k = z55, for eight
bottom profiles s(t), 0 < t < 1, labeled (a) to (h) and shown in the left-hand icons
of the pairs in Figure 4. (In all cases depth increases downwards.) The right-hand
icon shows the corresponding, numerically computed L?norm of the solution of (\)

lu(t, )| for 0 < ¢ < 1. (Note that ||u(0,-)] = 6\/_ 2 0.062994.) The bottom profiles
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FIG. 4. Behavior of the L?-norm of the numerical solution of (N) as function of t for bottom
profiles s(t) given by (a)—(h).
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are given for 0 < t < 1 by the following expressions: (a) s(t) = ef, (b) s(t) = e~
(c) s(t) =1+ (t—0.5)2, (d) s(t) =1— |t — 053, (e) s(t) =1 — (t —0.5)3, (f) s(¢)
2 — 2t — 1], (g) s(t) = 1+ (t —0.5)%, and (h) s(¢t) = 1+ 3. Only (a) and (b)
correspond to strictly monotone profiles for which the theory of [1] properly applies.
In the cases (¢), (d), () there is a change in monotonicity, in (e) and (g) we have that
$(t) = §(t) = 0 at t = 1, while in (h) there holds that 5(0) = §(0) = 0. (In the case
(f) a t-mesh node was placed at t = 0.5, where $ fails to exist.)

We observe that the solution maintains a small L2-norm in upsloping, like (b), or
eventually upsloping bottoms, as in the cases of the trenches (d) and (f). There is a
considerable growth of ||u|| in the examples wherein the bottom profile is eventually
downsloping; see (a), (¢), (g), and (h) in agreement with the observations in [1], [2].
We note that in the case (g), an apparent singularity develops at ¢ = %, where the
bottom curvature changes sign (with horizontal tangent) and the bottom becomes
downsloping. This apparently causes the L?-norm to grow violently for ¢ > % A
relatively weaker, but sizeable growth is also observed in (h), where the bottom is
such that § = § = 0 at t = 0 and is monotonically downsloping for ¢ > 0. One cannot,
of course, be certain about the existence of a singularity at t = % in the case (g), given
that the code does not at present possess an adaptive refinement capability in x and t.
However, when the experiment was repeated with k = h = ﬁ, it was confirmed that
the onset of rapid growth occurred at about ¢ = 3; for this mesh size, ||u| became of
order O(10%) at t = 1.

4. A parabolic problem with a dynamical boundary condition. Here we
consider the model one-dimensional (real) parabolic problem (1.14) with a dynamical
boundary condition analogous to that of (A'), which we rewrite here for ease in read-
ing: We seek a real-valued function u : [0,7] x [0,1] — R, such that

ur = a(t) uge + B, x)u+ f(t,x) V(t,x) € [0,T] x [0,1],

u(t,0)=0 VYtel0,T],
41
b a(t) ug(t,1) = () ug(t,1) + 6(t) u(t, 1) + g(t) Vit € [0,T],

u(z,0) =uo(z) Vazel0,1],

where 5 : [0,T] x [0,1] = R, f:[0,T] x[0,1] = R, ¢ :[0,T] = R, g:[0,T] —» R,
a: [0,T] — (0,400) with a, := infgrja > 0, ¢ : [0,7] — R, up : [0,1] — R
are given smooth functions. We shall construct and analyze Galerkin-finite element
approximations for the solution of (4.1), considering two different cases depending on
the sign of e.

4.1. The dissipative case. The dissipative case is characterized by the assump-
tion e(¢) < 0 for ¢ € [0, T]; the problem is well posed; see, e.g., [15]. We assume that
its solution is smooth enough for the purposes of the error estimates to follow. We
adopt the notation and the assumptions of subsection 2.1, restricting ourselves to the
real case, and avoiding the inverse inequality (2.5).

4.1.1. Semidiscrete approximation. Find wuy : [0,T] — Sk, a space-discrete
approximation of u, requiring

) (Drun(t, ), x) = [£(8) Beun(t, 1) + 6(t) un(t, 1) + g(t) ] x(1) — at) Blun(t, -), x)
' + (Bt ) un(t, ), %) + (F(&,-),x) ¥x € Sn, Ve [0,T],
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and
(4.3) uh(O, ) = Rhuo(-).

THEOREM 4.1. Let e(t) < 0 for t € [0,T]. Then, the problem (4.2)—(4.3) has
a unique solution up, € CY([0,T);Sh). If u is the solution of (4.1), we have for
h e (0,hy] and t € [0,T]

(4.4) lun(t,-) — Rpu(t,)||? < C h20+D </0 I'p(7) dT),
and
(4.5) un(t,-) —u(t, )| + hllun(t, ) —ult, )L
r+l u Jr t p\T T ’ )
<Ch [n (t, ) +1+(/Or (r) d ) ]
where Tp (1) == |lu(7, )71 + 0cu(r, ) |I74; -

Proof. The existence and uniqueness of u;, € C*([0,T]; S) follows if we argue as
in Proposition 2.3. Let h € (0, h,] and 6, := up, — Rpu. Using (4.2), the pde in (4.1),
(2.6), and (2.8), we obtain

A (0:0n(t,-), x) = [e(t) 00 (t, 1) 4+ 6(t) On(t,1) ] x(1) — a(t) B(On(t,-), x)
o + (B(t,) On(t,-), x) + (u(t, ), x) VX €Sh, VEe[0,T],
where @, := [Opu — Rp(0:u)] — B (u— Rpu). First we observe that from (2.7) it follows
that
(4.7) 124 (t, )l < CR [ult, Ylrs + [0pult, Mvsa] VYt e [0,T].

Setting x = 6, in (4.6) and using (2.3) and (4.7), we get
(08) e 1O < @100 (E DI + O e+ ) 006, ) + R0 T 1)

for all t € [0,T] and € > 0.
In addition, for x = 90}, in (4.6) and in view of (2.3) and (4.7) we get

(o) & [al®) |0n(t, )IF = 8(t) [On(t, DI* ] < = 2e(®)]0:0n(t, 1)

+ Cl0n(t, )3 + R2TIT (1)
for all t € [0, T)]. For positive € we define
(4.10) ve(t) = € ||0n(t, )I* + a(t) |0n(t, ) = 6(t) |0n(t, 1)]* V¢ € [0,TT].
Then, applying the trace inequality (2.3), we have

ve(t) = e [|0n(t, )I” + ax 10n(t, )13 — 206()] 0n(t, ) 1On(t, )12
(4.11) .
> 10, (, )2 + (e— M) 10n(8, 2 Yt € [0,T].
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If €p := % + 2 max 1 |0]?, (4.11) yields that

(4.12) Ve, (t) = % [10n(t, )l Vit € [0,T].

Now, setting € = ¢g in (4.8) and then adding the resulting equation with (4.9), we
obtain

(4.13) 4 1o (t) < Crgy(t) + (€0 + 1) K2 DL () Vit € [0,T].

Since 0(0, ) = 0, the bound (4.4) follows from (4.13) via Gronwall’s lemma and
(4.12). The error estimate (4.5) follows in view of (2.7). O

4.1.2. Crank—Nicolson fully discrete approximations. We use the notation
of subsection 2.2.2. For n = 0,..., N, the Crank—Nicolson method for the problem
(4.1) yields an approximation U}® € S}, of u(t"™,-) as follows:

Step 1. Set

(4.14) U := Ryup.
Step 2. Forn=1,..., N, find U}’ € Sj, such that

(OUFx) = [ 3 9U(1) +9" AU (1) + 9" | x(1)
(4.15)

— a3 BAUR, X) + ("7 AUZX) + (f"75,Xx) VX €S,

where "% := a(t""%), "% = §(t"2), e"TF = e(t""2), g""F = g(t""2),
frE = f(EnTE,), and BrTE = BN,

The following existence and consistency results are analogous to those of Propo-
sitions 2.5 and 2.6, and their proof is straightforward.

PROPOSITION 4.2. Let n € {1,...,N}, and suppose that U,’:_l € Sy is well
defined. If en—3 < 0, then there exists a constant C' such that if k, < C, then U} is
well defined by (4.15).

PROPOSITION 4.3. Let u be the solution of (4.1). Forn = 1,...,N, define

o":D —R by “njc:"_l = "2 Uy ("2, ) + B2 Au" + [ + 0", Then

o < € (a)?* ( max [0Ful + max [DFul), n=1,...,N.
[tn ’tn] [tn ’tn]

The main result of this subsection is contained in the following theorem, which is
stated here without proof. Its proof follows the general line of Theorem 2.7 and may
be found in [6].

THEOREM 4.4. Let u be the solution of (4.1), and let (U})X_, be the fully discrete
approximations that the method (4.14)—(4.15) produces. Assume that €(t) < 0 for
t € [0,T], and that (2.28) holds. Then, there exists a constant Cp > 0 such that if
maxi<p<n(kn Cp) < %, there exists a constant C' > 0 such that

max ||Uj — Rpu"|y < C(K* + 1) Tp(u) Vhe (0,h],

1<n<nN

max [|U? —u"||¢ < C (k> +h"T19 Th(u) VYhe(0,h], £=0,1,

0<n<N

w}zere Tp(u) = Zézo maxo,r ||0fullr+1 + Z?:Q maxo,r [|0full + Zi}zz maxX,epo,r)
|Opul(t, 1)].
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4.2. The reactive case. In this subsection, we propose and analyze finite el-
ement approximations in case the dynamical boundary condition in (4.1) is of re-
active type, ie., e(t) > 0 for ¢ € [0,T]. According to [25], [9], the problem is
well posed only in the one-dimensional case. To construct a finite element method
we replace (cf. subsection 3.2) the term wu; in the dynamical boundary condition
using the partial differential equation in (4.1). Hence we obtain a(t) u..(t,1) =
%um(l,t) - [% + B(t,1)] u(t,1) — [% + f(t,1)] for t € [0,T]. Then, to use this
as a boundary condition, we formulate a variational formulation using B(-,-) instead
of the L?(D) inner product (-,-). Of course, this approach also works if £(t) < 0 for
te€0,T].

4.2.1. Preliminaries. Let » € N with » > 3, and S;, be a finite-dimensional
subspace of H?(D) consisting of C! functions that are polynomials of degree less or
equal to r in each interval of a nonuniform partition of D with maximum length
h € (0, hy]. It is well known [10] that the following approximation property holds:

(4.16)  inf flo— x|}z < Che  vllsyr Yv e HTYD), s=1,...,r, Yhe (0,h].
XEOn
We introduce bilinear forms B*, v* : H2(D) x H*(D) — R given by B*(v,w) :=

(v, w") and v* (v, w) = (v, w") + (v, w') for v and w € H?(D), and set |v|y := ||v"']
for v € H%(D). Also, we define a new elliptic projection R} : H*(D) — Sj, by

(4.17) YV (Rjv,w) =v"(v,x) VX € Sh.

LEMMA 4.5. The elliptic projection R, has the following property:

(4.18) (Rjv)'(1) =v'(1) + (Rjv —v)(1) — £ B(Rjv —v,w) Vv e H*(D),
where w(x) = 3.

Proof. Let v € H*(D) and p = Rjv —v. Since w € S, setting x = w in
(4.17) we obtain [, p”(z)x dz = —} (p/,w’). Then, integrating by parts we get
p'(1) = p(1) = p(0) — & (¢, w’), which is the desired equality, since p(0) = 0. 0

PROPOSITION 4.6. The elliptic projection R has the following approximation
properties:

(4.19) [Rhv —vll1 + h||[Rjv —vll2 < Ch* ||[vfs41
and
(4.20) [(Rjv — ) (D] + [(Rpv = v)(1)] < Ch* [[v]|s41

fors=1,...,r, v e H*TY(D), and h € (0, h,].

Proof. Let h € (0,h,], s € {1,...,r}, v € H*TY(D), and e = Rjv — v. Using
(4.17), we have v*(e,e) = v*(e, x — v) for x € Sp, which along with (4.16) yields
(4.21) lel2 + leh < Ch* 7 |v]|sqa

Now, let w € H3(D) such that

(4.22)
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It is easily seen that (4.22) conceals a standard two-point boundary-value problem
with respect to w’ and thus existence and uniqueness of its solution follows in a
straightforward way; in addition we have that ||w||3 < C' |e|;. Thus, we obtain ||¢’||* =
v*(e,w — x) for x € Sp. Then, we use (4.21) and (4.22) to get

lel? < C (lelz + le]1) hlwl|s
< CR* vl s41 e,

which yields |e|; < Ch® ||v||s4+1. Hence, (4.19) follows in view of (4.21). In addition,
using (4.18), (2.3), (2.1), and (4.19) we have

le"(D]? + [e()[* < C (le)]” + [I€'*)
< Clef
< CR* ]2,

which obviously yields (4.20). O
For later use, we close this section by extending (2.3) as follows.
LEMMA 4.7. For v € H?(D) it holds that

(4.23) o' (W1 < o} + 2 vl [vl2.

Proof. Let v € H*(D). Observing that [v/(1)|> = [, [(v/(2))? 2]’ dx, we obtain
[W'(1)]? = [|[v'|* + 2 [, 2 (z) v"(x) dz, which yields (4.23) via the Cauchy—Schwarz
inequality. o

4.2.2. Semidiscrete approximation. We define u, : [0,7] — Sh, a space-
discrete approximation of u, requiring

B@un(t, ), x) = { 9 9,un(t,1) [% } un(t, 1)
(4.24) [ 58+ £ 0] FX 0+ 5600 X (0)
—a(t) B*(un(t, ), x) + B(B(t, ) un(t, "), x)
+B(f(t,),x) VX €Sh Vtel0,T],
and
(4.25) un(0,-) = Rpuo(").

THEOREM 4.8. Let e(t) > 0 for t € [0,T]. Then the problem (4.24)—(4.25) has
a unique solution up, € C*([0,T);Sk). If u is the solution of (4.1) and T'p, is the
function specified in Theorem 4.1, we have

1

(4.26) [un(t, ) —ult, )L < Ch" [IIU(L r41 + </O I'p(7) dT) 2]

for allt € [0,T] and h € (0, hy].
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Proof. Let h € (0,hy]. The existence-uniqueness of wuy follows as in Proposi-
tion 2.3. Also, let 0, := up, — Rju and n = Rju — u. Using (4.24), (4.17), and (4.1),
we obtain

B@:0n(t,): ) = { 48 0:00(,1) — |2 + B D] 08, 1)+ Enal®) | X' (1)
- a(t) B*(eh(tv ')v X) + B(ﬂ(tv ) oh(ta ')v X)

+ B(Ena(t,), x)
+a(t) B(Rju(t, ) —u(t,"),x) Yx €S8 Vtel0,T],

(4.27)

where
Er1 = [Owu — R} (Owu)] — B (v — Rju),
Enalt) = 28 0un(t,1) - [5G + B(t,1)] n(t,1).
First, observe that using (4.19), (4.20), and (2.1), it follows that

(4.28)
| B(Era(t, ), x) + alt) B(n(t,-),x) | < Ch" ([Jult, )lrr1 + [0eult, ) lr1) [xIa

and
(4.29) Er2(t) X' ()] < CR" [Jult,)[lr+1 X' (1)]

for x € S, and t € [0,T]. Then, set x = 6, in (4.27) and use the Cauchy—Schwarz
inequality, (2.1), (4.28), (4.29), (4.23), and (2.3) to get

L 100 )R <~ |0 ( VB C [ 1000 + B2 Tot) + 1041 042, )]
for all ¢ € [0, 7], which, along the arithmetic-geometric mean inequality, yields

L0 (t,); < C [10n(t, )] +h* Th(t)] Vtel[0,T].

Since 6,,(0, ) = 0, using Gronwall’s lemma we see that

(4.30) |0 (t, )] < Ch* (/t I'p(r) dT> vVt e [0,T].
0

Finally, we combine (2.1), (4.30), and (4.19) to arrive at the error estimate
(4.26). O

4.2.3. Crank—Nicolson fully discrete approximations. For n = 0,..., N,
the Crank-Nicolson method for the problem (4.1) yields an approximation U}’ € Sy
of u(t™,-) as follows:

Step 1. Set

(4.31) UY = Rjuo.
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Step 2. Forn=1,...,N, find U} € S}, such that

1

s(our. 0 ={ £ (v ) - | 55+ 02 | Avry

€

(4.32) - [gn_z +f”_%(1)] } X (1) + £77%(0) ¥ (0)
_ anfé B*(AU;?,X) —|—B(ﬂn7% AU}?,X)

+B(f*2,x) VYx€Sh

The proof of the following error estimate for the fully discrete approximation may
be found in [6].

THEOREM 4.9. Let e(t) > 0 for t € [0,T). Then, there exists a constant C
such that if maxi<p<n kn < C, then (UlY)N_, are well defined by (4.31)—(4.32). In
addition, if u is the solution of (4.1), there exists a constant Cr > 0 such that if
maxi<n<n(kn Cr) < %, there exists a constant C' > 0 such that

max [|U7 —u"|y < C (k* + ") Tr(u) Vhe(0,h],

1<n<N

1

3
Tr(u):= Z {max 08|,y 1 4+ max |0205ul(t, 1)@ + Zmax |0fu|; 4+ max |02uls.
—0 [0,T] t€[0,T] —2 [0,T] [0,T]
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