A HISTORY OF THE DEFINITE INTEGRAL
by
BRUCE VICTOR KALLIO

' B.A., University of British Columbia, 1961

A THESIS SUBMITTED IN PARTTAL FULFILMENT
 OF THE REOUIREMENTS FOR THE DEGREE OF -
MASTER OF ARTS
o ~ in the ' ,
. DEPARTMENT OF MATHEMATICS

We accept this thesis as conforming to the
reauired standard.

THE UNIVERSITY OF BRITISH COLUMBIA
"~ August, 1966



In presenting this thesis in partial fulfilment of the requi%ements
for an advanced degree at the University of British Columbia, I agree
that the Library shall make it freély available for reference and
study. T further agree that permission.for extensive copying of this
thesis for scholarly purposes ﬁay bé éranted by the Head of my
Department or by his representatives. It is understood that copying
or publication of this thesis for financial gain shall not be allowed

without my written permission.

Department of ;%45L22Qéwn.aAZg%

The University of British Columbia
Vancouver 8, Canada

Date AZizjznzf 2E 2//£Q(j




ii

ABSTRACT

Theﬂdéfiniﬁe'infegral has an intereéting'hiétbry. In
thié th?sis}wé-trace-its deyelopment from the timémdf‘ahciéﬁt
GreéCeF(SOOfEOO B;;C;)Xuntil'the modern pefiqd. We”place épecial_
'emphasis on tﬁe“work‘done in.the hinetéénthvééhtury and on the

work of Lebeégue (1902).

| v”The tﬁééié.is diVided intobfour parts arranged roughly
'chronoldgiCally; 'The<first'pér£vtra¢és the developments in tﬁe‘
_period from the fifth'ééntﬁfy B. C. until thé eighteenth century
A, Dg..Secpndafytéburcés>Were uééd'ih wfi%ing ﬁhié'hiS%ofy;_ The
'_second part”recouhts;fhe céhtfibutiéné of the ﬁineteénth ééntgry.
'Thé'bfiginalvwofks of'Cauchy, Dirichlet; ﬁieméﬁn, Darboux, éﬂd
-"Stiéifjéé aré examined} The third part is ébncérﬁed withwthel
‘ devéiohmeht bf measures in the}lattér pért of-the:niheteenth
vcehtury; This work leads tovthe Lebesgue integral. The final .

part is a brief'sufvéy'of;mbdérnnideas.
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CHAPTER ONE A Brief History of Early Contributions

The'idéa ofhthe,definite integral arose from the
prbblemé of caiculating 1ehgths, aréas, and Vélumeéwéf curvi-
linear geometric fiéureé. These p}bblehé were first solved with

gome success by the mathematicians of ancient Greece.

Pr5bébly thé éarliest attempt at a solution was‘one
v'déﬁiééd.for célcuiétihg éreésjbf curvilinear figureé. It can be
trécéd Baékffb ﬁﬁo Gréék éébmeters, Antiphon (430 B. C.) and
Bf&Sén (M5O B. C:)_. They aﬁtemptéd to find the area of a cir-
_cie by inscribing regular”pdiygdné, and then éuccéééiveiy
déubfing thé”humbéf'bf sides. BV this pfoceduré théy hébédwfb
'oxmaust" the area of the 01rc1e, bellev1ng that the polygon
would eventuallv c01ncide W1th the 01rcle Thls implled that
the 01rcumference of the clrclevwas not 1nfiﬁi£éiy divisible, .
5ut'mu§t be mdde'déubf‘“iﬁéiVigiﬁigé“ms}'Hgﬁfinitesiméiéﬁ. |
‘vnese 1deas were vague and 1ed to di%flcu]tles ‘Ih fact,'phe
-1deas_of_inf1n1tes;mals and,tmevlnflnlte.caused so much diffi-

v:ulty'fhatItﬁéybﬁéré'éicludéé from Greek geometry.

FEudoxus of Cnidus (408 355 B. C.) is generally
.:credlted with dev1sing a method of finding areas and volumes
Jhich avéidéa tmese pfoblems.’This method, whicn later became
“':hgﬁﬂ”és tﬁéwﬁétﬁbaﬁbf ExhauétithWés the Greék edﬁivaléﬁtusf
iﬁféérétibh} It used the basic‘idea of éﬁbfaiimétiﬁé curvilinear

figures by rectilinear‘figurés but dééa"6hly a finite number of



tnese figures It avoided the pfsiiémé‘bf tne‘infinitesimal and
the 1nfinite by the Judic1ous use of a double reductio ad absur-

dum argument

The_Metnodmof,ﬁkhaustion was based on'the’follouing

aXiom,soommonlyvcalled the lemma,;or’postulate, of Archimedes,

”Two unequal magnitudes being set out if from
the greater there be subtracted a magnitude
greater than 1ts half and from that which is
left a magnitude greater than its half and

it this process be repeated continually, there
will be left some magnitude which will be less
than the lesser magnitude set out. ([21], P. 14)

Uéihgwtﬂié princlple, for ex5m91é,'¢hé ééh oonclude that a reg-
'_‘ular rnscritedunolygon can approximatefa cirole so that the:

- differenee in tne areas can be made as Small ag one'Wishes
- This is accomollsned by quccesslvely doubling the number'of sidea

-,thereby decreasing the difference in area by»more than’half each

time.

The following example from Euclid ([21], pp. 374-375)
illustrates the procedure used in the Method of Exhaustiont

(This is a condensed version of the actual procedure.)

Suopose one W1shed to prove for two circleQ

: 2 . 42 : :
_that_ Al : A2 = d1 f'd2 . lwhere Al , A2
are areas of the circle and d1 R d2 , are
their diameter (The Greeks did not have

numbers for geometrlcal quantltles because



iof the problem of the incommensurable but used
proportions 1nvolving four geometrical quanti—
ties); One then used the double reductio ad
‘absurdum argument. Suppose first that

‘Ai : AQ > d2 : dg . Then by the 1emma.there
-exists a polygon P 1nc1uded in A and
such that P, A2 > d : dg . Construct
- a 31milar oolygon P2 1n A~ . From ogevious
results one knows that P Pé = dl : d? . Now
Pl : A2 > P : P2 which implies that A < P2
But this is impossible since the oolygon P
is 1nc1uded in A2 . By a similar argument
Al_: A2 < di : dg leads to a contradiction

. . . w2 . )
‘Hence the result A, A2 = d1 : d2

is proved.

_ - This Method of Exhaustion was used extensively by
Eudoxus and his successors until tne seventeenth century. The
‘procedure had the advantages of being logically correct and in-

g tuitively cWear but had the disadvantages of being cumbersome to

apply and difficult to deduce new results from.

’ Archimedes (267-212 B. C.), who is generally consid-
ered to be the greatest mathematician'of antiquit&, greatly ex-
tended the work of finding area and uolumes of geometric figures.
He supplemented the Method of Exhaustion and devised an ingenious .
heuriStic method for finding results before proving them formally
He was then abie to anticipate many of the results of integral

calculus.

" The heuristic method which Archimedes deVised to get

initial results was based on the mechanical law of the lever,



The-geometrical figuresiin questibn were visualized as being
"made ﬁp":bf lines or plaﬁes. The lines or-plénes were then
Mpicﬁﬁred a8 being huhg'from one end of a levef whiéh was then
baléhged byla_figure of knéwn content and centré of gravit&.
From this proceAurevthe,conteht of thevunkhown figure could be
caléulated.' The metnod is illustrated by the foliowing example‘

given by Archimedes ([20] P. 15-17).

The pfoblem,was_td show that ih‘the following diagram

the parébdlk:ségment:ABC has area equal to 4/3 p ABC

Fig. 1 ¢

Iﬁ the diagram D is the mideint of . chord ‘AC s

DBE and AKF -are drawn parallel to the axis
.. of the parabola,

CF 1is a tangent,

CK = KH,

CH 1is visualized as the lever balanced at K ,

MO- is anyfﬁne:ﬂlA AFC parallel to AKF and

DBE ’

Archimedes proceeded as foliows: From the properties.'

of the parabola and the constr&ctions he showed that CK 1is the



‘mfmedién of A AFC and thatl %% = %% = %%‘= %% . He considered
the first and last term %% =,%%, and interpreted this mechani-
"“cally‘as meaning that line'ségment 0P at  H .will balance MO
at vNQ-wiﬁh' K beilng the fulcrum. This result is true for any
TEESWdonuof MO in A AFC:; .Since the geometric figures are
."madé“up".of lines he concluded that pafabolic segment ABC at
N H-.wi;i'balancéi'A AFC at its center of gfavity. Since the cen-
_ ter of_gravity of aktriangle‘is 1/3 the distance aiong its
o median he cbncluded that paraboiic segmént ABC = 1/3 A AFC .
» By a_pfévibus result Archimedes knew that A AFC = 4 § ABC

 Hence parabolic segment ABC = 4/3 p ABC .

_Archimedes then rigorously proved, by the Method of

: EkhaustiOn;'every result suggested by the heuristic bfocédure
}becauéelhe did not c§nsidef it to be a Valid mathematical de-
.mohétration.. Mahy of his appiications of the‘Method‘of Exhaust-
ion were quité ingénious. In some problems, for ekample-in
,'findiﬁg-the volume of a paraboloid,»he apprbximated the figure
both fromAfhe inside and frqm the outside with elementary figures.
In other problems his procedure was very similar to that which we
:now use in integrél calculus. For example, in his official
proof.that'the area . of the parabolic segment ABC is engl to

4/% the area of A ABC he proceeded as follows ([5], pp. B5L-52):




~ He approximated the area of the.parebolic segment ABC by suc-

cessively forming triangles such as A AFB and A BDC . He

showed that the area after the n°D step was A ABC ( 1 + + ;Z
+ # + ....#n.l) .~ Rather than considering a limit and showing

" that the limit is equal'to 4/3 A ABC he completed the last

step by the double reductio ad absurdum argument.

Using these methods Archimedes was able to find areas,
volumes, and centers of gravity of numerous geometric figures.
1 His results were a great 1ncentive toward the further development

of the subgect especially in the seventeenth century.

| During the two thousand year period from Archimedes

until the sixteenth century 1t appears that nothing significant

was done in devis1ng new methods and techniques for finding area
-rwand volumes However, two new ideas, useful in the furtner
-’development of(integrétibn, were advanced during this period.
One was the -study of verietion. People began to study ideas
suchnavaelocity, acceleration,bdensity, and thermal content

as physical quantities rather than aquualities; This was the
first step in the development of the idea of a function. The
second idea, due.to Nicole Oresme, (1323—1352)'was'the»realiza«
_tion of.a,connection between certain geometrical pictures end
physicel situations. Oresme devised the equivalent of a Car-
tesian coordinate’system and represented velocities»by lines on
the coordinate system._ He even interpreted the area under the
velocity curve as representing the distance thet the body travell-

ed,"These ideas were probably incentives for the further devel-
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‘opMent of integration.

The sixteenth century saw a revival of interest in the
_prbbléms of:quadratures, cubétures, and centers»of gravity. Thié“
.‘fénewed interést wds caused mainly by the translation of |
Archimedés* Work into Laﬁin in 1544; People first copiedlhiél
“fbrmal.methdd.(Thé Methéd_bf Exﬁéuétibn§ but soon they begaﬁ to
seek improvements“aﬁd then to devise new‘methbds‘fbr solving the

probléms.

The first suggeéted reform came from the Flemish

ehgiﬁéér, Simon Stevins (1566) , and the Ttalian mathematician,

qvreduqtio.ad'absurdum_argument byié'airect'passage7to the 1limit.
- However, they still_thought intgeometricalyterms and did not have

'jthe'arithmetic ideas neceséary to give precise definitions.

| Thé-unwieldiness of the Mephod of Exhaustioh caused
»ﬁhe mathematicians of the'éevéhteenth cenfury to drop the pro-
'déduré'cbmpletely and tb-adopt-the less rigorbus ideas of indi-—
visiblés'br infinitesimals. Iﬁ fact, the period in the éeven—
teenth céntury_until the timé'of Newton and'Leibniz (1670) has
been called the Period of the Tndivisibles ([12], P. 341)
integration became assdciated:with the idea of summihg ﬁheéeh

iﬁdivisibles.

The first to make extensive use:of infinitesimals was

Johahn Kepler (1571—1650). He became intereéted in length, areas,



' and'vélume proﬁlehé ﬁﬂile'sﬁudying the laws of blanetary motion.
,LHé,was,fgced with'thé probiems of finding the area of an ellipticv

éegmént and ﬁhe‘iength'of an elliptic arc. Kepler ﬁas,alsovin—

"terestéd inrgaugihg the contents of wine casks. To sdlve tﬁese

bpioblems and oﬁhers, Keplef Visuéiized-that'geometric solids

o wéreimééé uﬁlof,infihitesimals. For example, a circie was made

,upioffanvinfinite‘number’ofvtfiéngles with a common vertex and
ah ihfinitely smallvbaée,'and a sphere wés.hadé dp 6f an in-

finite number of ihfiniteiy smgli‘pYramids. .To find the content

6ne mefeiy added up the bontents of thevébmbbhehté. For example,
the area'of a_cifclé is equal to the sum of the areas of the

_ ﬁfiéhglés,and thié'is equal to one-half fiméé the total sum of

- the bases (f.e. the circumference)'times the radius.

v _ﬁsihg procedures such as this, Kepler w5$ éﬁie tb find

- the cohtdﬁ$ of mére_thaﬂ eighty_newnéeometrical figures.

_ It was’ undoubtedlv Kepler's work that led Bonaventura
' S
Cava}ieri (1599 1647), an Ttalian Jesuit mathematician, to
develop his method of indivis1b1es His work was probably the

- most 1nf1uentia1 one of this period

fcévaiiéri was.never too'brééiSe é; to what he meant

- by,én_ihdivisible, but it Seemévhe visualized poihts as being
 iﬁaiviéibies of lines, lines as beiﬂé.indiviéibies of surfa9¢§,
vand planes aé béiﬁg indivisibles of vblumés wafindmiéﬂééhs,

fareas, or volumes, he added uo the lDlelSlbleS. To aVOid the

orobiem of the infinite he always considered two geometric



figures and formed a correspondence between them This approach

is illustrated by the so called Cavalieri's Theorem

,If two solids have equal altitudes, and if
sections made by planes parallel to tne bases

end atequal dtstances’ ﬁom them are alwavs in a
given ratio, then the volumes of the solids
are also in that ratio.

_ ”,Cavalieri's use of indivisibles to prove propositions
| can be 11lustrated . by the following simple example (5], D. 116).
'He was_interestedtin proving that.parallelogram ACDF has area
equal to double the area of A CAF or A CDF and'proceeded as

'followsfr'

Fig; 3

If EF = CB and HE and BM are parallel ‘to CD then the
vlines‘”BM and HE are edual. Therefore,'all the lines of

A CAF .are‘equal to all the lines of A CDF and the two triangles”
-are therefore equal Also tne area of the parallelogram ACDF

is equal to»twice‘the area of either triangle.

By a similar but more involved procedure, Cavalieri

was able to obtain results which have been 1nterpreted ([51, p.120)
m+l

as being equivalent to the formula j x dx = —EIT s although

he. thought of his work as pertaining only to geometrical con-

slderations. His work was a generalization of Kepler's as it
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'went beyond the specific geometric problems.

Cavalierit's work on indivisibles stimulated more math-
‘emeticians.to‘ﬁork on problems‘involving areas and volumes. Also
:some nethemeticians; such as tne Frenchman Roberval»(1634j
v;developed'ideas of indivisibles independently. _Thus_there emerg-
ed,vin>tneAperiod from 1630 to 1660, a myriad of individual |
dmétnbés'fbr solving theseuproblens. Aststruik'(f42],“p. l38)
:”pointsiout,fhowever,'tnere evolved two distinct trends.in the
‘wwork.‘néarelieri fToricelli “and Barrow, (Newtonls'teecher)
concentrated on a geometrlcal approach while Fermat Pascal
dDescartes, and Wallls used more of the new algebra and also more
:of'the new analytic geometry which had been developed in-tnis
:period._'Both groups"were concerned with thne éa@e basicvproblem:

Practlcally all authors in the oerlod from

'lt30 to 1660 conflned tnemselves to quest-

.ions deallng with. algebralc curves, espec—
ially those with the equations a v = p"x™

and they found egch 1n h1 ?wn way, formulas

m+l first for posi-

vtive'integers mo, later for m negative
integer and fractlonal ~([42], p. 135)

m
lequlvalent to :I X dx = a

We will consider in detail two of the methods devised
in this period, first that of Pierre Fermat, and then that of
John Wellisu These methods were the most advanced of the period
in'that thevtechniques used'moSt closely resemble the modern

saporoech to the integral.
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Pierre Fermat devised a precedure for calculating area
~under the curve for special curves. His ingenious procedure used

a geometrie’eefies'ana the new idea of a limit.
_ o Fermat devised thiq procedure for finding the area under
the curve of v = ig_ from O to b ([51, p PP . lbO lbl [43]

pp. 53-54) . -
pp. 53-5%) _yixk

o S b eb b

‘ T S ‘ Pig. - ,

};;'He first subdiv1ded the interval from O to o, not into a
'ifinite number of subintervals, but into an infinite number of

He selected e <3lv and then parti;

2.

"fi?interyale of unequal_lengthf
‘.ﬁieﬁed'the"igterval-by the points b, eb, eb, e

s hee e
I{ee_fermed the approximeting sum and'found it fofﬁedteh iﬁfinipe

' .geometric prbgression; The formula for the sum was known at the

Ctime. o o of o
o S”;ibq (b - eb) + (eb (eb e%) +(é%rﬁe b - e35)f+"”
= b%’“(b - eb) (1 + eq -+ e—%+? +. ]
‘ o) . N ez
=b‘q‘(b—eb)[1p]=P_.j_1__e_)
_ N p+d
s » l-¢ 4
Substituting e Eq he found: 7
1qA._o“ﬁ( B) (1+E4 B 4 5%
S‘bT( p+q>“ : : nP+q-d:
C1-E (-_)(1:+,E+E? + E )
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To make the 31ze of the rectangle "inflnltely ‘small"

:he'let }eléll' ( 1n51nuating a limit as e approaches one.).

lvgnTheiuidths“offthe rectangles approacn zero and lE ‘épbroacnes

'§5i§he; He-substituted- E =1 1nto the sum and found 1t to be

’ T p+q % - p+qa
. 1 t - q . b . x d.‘\ - _q__ .
equa o p+q b q Hence I 549 a -
As Boyer p01nts out ([5] : l6l) Fermat's demonstre—

'»-tion possesses many of the important characteristlcs of the

mddefinite integral; There is an equation‘of a curve, a partition
‘of the x-axis, a sum formed from the areas of approximating rec-
- ténéles,-end”sOMe idea“ofvemlimit'of“the'sum as‘the:uidtthof
'5the rectengles abpréach‘l'zéfé | Fermet however, dld‘not”reellie
the 51gnificance of the operation He regarded the procedure as

v'a method of solving a partlcular geometrical problem and had no

:e;thought of a. generallzed procedure

‘,fjghn Wallis (1616-1703) was an English mathematician.
?*He dev1sed an 1ntegrat10n procedure which 1ntroduced arlthmetlc

fdinto the geometrical procedure and 1ntroduced tne 1dea of a 1imit

Wallls' procedure is 1llustrated by the follow1ng

”example.taken from Hooper ([23], pp 250—258) . TIn this example,
hwallls wes ;nterested in comparlng the eree under the curve ’
'5yi¥lx2: between O -and B with the area in the rectengle

OBAC
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@ » Ay y=X

éol;:'/ “B

He began by subdhddﬂg the 1nterval OB . into m + 1 equal parts

“and formed approximatlng rectangles with the neighté_éeiected ee

tnat the total area would be proportional to 02“-1-””12 + 22’...+vm?.
- The ‘area of rectangle OBAC " is proportional,to' (m + 1) 2
L | 2 L2 o2 S
- Hence the ratio of the areas 1s & +1 + 2° 4 ‘T'm Sub-
] o T S (m + 1)
stituting values for m he found: 'l;‘ ,
(2) m=2 -%;i_%;i_é =1/3 + 1/12
T o+ A+ _
B 0414 b9 mi
(2) 'n“'} ‘4+9+9+9,_1/3+>1/-:L8

= nghdféa ﬁhat'the'greater the'hu@ber of terms, the eioser;the
.rratioAapﬁerimates 1/3 . TIf this is continued to infinity the
difference "will be about to vanish completely " ([5], b. 172).

4.“WConsequehtly the ratio-fer an infinite number of “terms i 173 "

ﬁ B 2>
([51, p. 172). ‘This result is equlvalent to the formula Jx dX—-3 .
Wallis was able by a s1m11ar procedure to derlve ‘the formula '

' W m+l

1 xPax :-7Erf»- for nigher powers of integers and then he
Ao | ‘ ' :

Wabparently affirmed the rule for all boWers, rational ahd irr



1k,

'frationaimekcept n=-1. He was ab]e to apply these results to

bﬂ7prob1ems of quadratures and cubatures.

o Wallis and Fermat came very close to our present ‘idea
fof the definite integral In fact according to Boyer ([5],p 173
_.the basis for the concept“of the”definite
'1ntegra1 may be considered fairly well es-
Jtablished in tne work of Fermat and Wallis

r_ant, asvhe'pointsfont
it‘was to become confused later by the
vintroduction of the conceptions of fluxions

and differentials

‘Tnese two contributions came from Newton and Leibniz

‘ Newton and Leibniz are generally considered to be the inventors

’5-Lof calculus,_as they deV1sed algorithms for differentiation

’ﬁand intégration,-but thelir work marKS'a change in. the concept of

~the integral.

' Isaac Newton (1b42 172() wa.s primarily ‘interested 1In

R fthe idea of tne derivative, which was also being studied at the

:‘timef, He showed tnat tne area under the curve could be calcuiat—
’ ed, not by a sunmation process ag his predecessors.had done, but

-..bypa’process which depended on the idea of differentiation. For
'eiample,}([5];'pf 191) he considered a curve with abscissa x
‘and ordinate .Y, with area-under the curve being given by

-m+n

z = EEE) axTI . If 0O represents the infinitesimal increase
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“4in the ‘abscissa then the augmented area will be Z + 0.y
: _ m+n
(x +0) m . If, in this equation, one-uses the'binomial

—(m+n

,theorem, divides through by o, and then neglects the terms in-
volving (Newton was uncertain of the justification for this

orocedure but was: thinking in terms of a limit conceot) the
m

Cresult will be 'y'=.ax-ﬁ .. Hence, if the area is z ; (—=—)
min. : . a , '
cLoax o the curve. Will be y =ax O . Conversely, if the curve
Lo o : L m+n
'is" v = ax n- then-the area will be 2z = %:H) ax " . Thus

to find tne area one could work backwards from the derivative
Newton, consequently defined the integral or fluent as he
called it, as the inverse of the fluxion or derivative and con-

centrated on the metnods for finding derivatives

Leibniz, (loho 1716) working at the same time as
Newton, was interested in developing operational rules for sums
and differences of infinitesimals He introduced the notation

V LIX and later j X dx - to represent the sum of all the values ‘

’-*fOffthe magnitudes' X - or the integral of x- , a name which

was suggested by the Bernoulli brothers However, in devising
rules for the sum of the infiniteSimals, Leibniz relied upon
the fact that sums and differences are inverse operations and

. he used the rules for finding differences. For example, he

derived the rule that tne difference (or derivative) of_ x
_VWas' nx" = . Hence, the sum or integral of x"  must be
el

%
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With-the work of Newton and Leibniz, the idea of the
ihtégfé} had chaﬁgéd . It was‘no longer associated Wifh the

. idea of a sum, but was now viewed as a secondary operation.
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¢

CHAPTER TWO Developmenu31n Integratlon Durlng the Nlneteenth ‘
' - Century ,

, ’ Frdm theltime-of,ﬁewton and Leibniz until the begihpﬁﬁg
dgfithe niheteenth eenturj, integratiehpwas vieWed as tpelipyerse
v eperationvtd»differentiation.p As»we have noted, ﬁeWtbn had:'
definedethe,ihtegral_as the-inVersefef-the fldkiop er'derivative,
i‘ﬁhile ieibniz in practiceidsed the idea ef an antiderivative.
den;theifarther deveiopmeht»efvthe subject, Johahh Bernoulli and
‘ LiEﬁler.aise stressed'the:integral as‘the.inverse of the_differe

“ntial EuTersin fact, in'the publication of his Institutiones

meethod of flndlng from a given relatlon of dlfferentials, the
'Tffquantlties themselves ([32], p..be). He used the sum concept

:”lonlyxas;a'means of approximating the valueuof the integral.

.,tThe coneept of‘alfunction in use at this time was
'Etrather‘restrictedgx:It usually-meant & quantity. y reiated:to
-ﬂd?rvériapieﬁ-x ﬁby-an'equation involving certain censtahts, to-
?fjgether'ﬁith symbeis to represent arithmetie, trigonometric,
aexponehtial or logarithmic operations. For example, vy #wjke s

x would be classified as functions.

 j ;‘sin x + bx y = a
‘.Functlons coqu also be deflned and represented geometrlcally,
but it appears as if tne graph must be a smootn continuous curve
'before 1t represented a true functlon Also it was assumed that
‘somehow these true geometrlcal functions could be reprecented

by a single analytlc.expression, whlle arbltrary curves could



not be - ([35], p. 3) .

i

The work of J B Fourier published in his_famous
.ijook "The Analytic Theory of Heat” '(1807—l822)f'?forced a

"reexamination»of these fundamental ideas.

Fourier first showed that some discontinuous functions

'ffcould be represented bv a single analytic expression, namely a

'1faftrigonometric qeries. For example, a function equal to l from

--dO to a s and O from a to ”ﬁ' has a trigonometric expansion

‘ tThus the requirement of having an analytic expreSSion did not
'.distinguish between a true. function and some arbitrary functions.'
iiMoreover it'seemed no longer necessary-to associate the existence

:]Lof a Single analytic expression With the definition of a function.
*;because such expressions could apparently be determined after—

o wards Tnis work suggested a more general conceot of a function.

It aleo forced a re- examination of the notion of

’:u.integral In the development of-the trigonometric or Fourier

»5.;series of a discontinuous function, the coefficients are de- .

¢

fifined in terms of the integral of discontinuous functions For
sexample, in. expanding the function f in a trigonometric series

e . .

- the coeffients ai are given by %- ‘ﬁ f(x) sin ix dx or
s _‘Tr

e

, - .
"T"Fﬂ ‘r f(x) cos ix dx .  These definite integrals could not be
T s

';defined as tne inverse of a derivative but they seemed to- have
:-some interpretation in terms of area ([15], D. lOb) :’Therefore

they -added impetus to the development of tne integral in terms

¥ fiof apprOXimating sums .



19.

A.:Lt Caucny (1523) was the person who clarified

" theSe-concepts'- He-suggeSted a‘nore"general‘definition-of'a

-f_ffunction and he restored 1ntegration to a primary idea rather

'[atthan a secondary operation

He first con31dered the concept of a function -He

began by defining an independent variable ([O], D. 17).

'When variable quantities are related in such a:rfrti“
~manner that given one of ‘them one can conclude
' V:the value of all the otners, the flrct quantity

iis called an independent variable

"‘dThétdéfiﬂitiOn bf'function followed directly}

.’t and the other quantities, eXpres51ble by .
means of the 1ndependent variable, are called
functions of this variable '

':fSinilarly;vfunctionsdofamore than one variableHWereidefined.
f“éau¢£§75iaihbt, hoWeuer, think in terms“of the'nodern‘notionﬁof
”ti[fuhcpibn_becéuéé'hié later work suggested that he thought of the

ijériabiés being_related; not by any”arbitrary rule, butdby anl

"equation

Cauchy next con31dered a spe01al tvpe of function,

l:which he named continuous and which he defined as follows,

‘iff_t([o],;pp.”l9—20) :

When the function f(x) has unique and finite
values for all x between two given limits, _
" and the difference £{x4i) - f(x) is an infin-
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'alfﬁiteWV small quantitv, one says that the func—
tion f(x) is a continuous function of X |
between the given 11mits '

o }TThe stage was now set for Cauchy's definition of the
o integral (1623) W He»arbitrarily restricted himself by defining’

'_1the»integra1'onlvnfor»continuousvfunctions, probably beceuse”con—'

'”fftinuous functions or tnose with a finite number of discontinuimes

weére the only functions which at the time, were considered

- _1mportant An_outline of his procedure (1867, pp. 122—125)‘is:es__

:'follows'b

‘rLet f( ) be a continuous function of x defin—'

b'ﬁed between the two finite limits ~x and x_X
.ﬁwLet xo, xl, x2, R xn_ X be a partition of

, ‘e_[xo, X] and- form the sum . S = (x - %) f(x ) +
o (x f;xl) £(x l) St (X - X _ 1) f(x 1) . Then

:’the sum S approaches a definite limit as the
'Jdifferences (x - X Xy _ 1) become infinitely
small This limit which deoends only on the
o
'called the definite integral of f(x) and is
represented by the notation deﬂx dx.;
(The notation is due to Fourier )

- function f ( )_ and the values x_ and X is

Tt is interesting to”note that Cauchy's proof of the
:'ekistence of the'integreliis incomplete as he assumed uniform

.”}continuity of the function.

Ceuch& then proved the standard algebraic properties

- of tneiintegral. He also apparently ([5], p.”a8<;), geve»the.
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’first rigorous demonstration of the fundamental theorem of cal-

| culus,ie, if £ 1is a‘continuous function and F(x) = f f(x)dx
“then F'(x) = f£(x). N | T

'CauchV’next extended integration to a certain class of

q'punbounded function ([8], ' 143) . The following is an outline

Ejfof the procedure

d:If the function f(x) becomes infinite between x—xo
.and x=X at the points finite in number)

, X
X, then the 1ntegral fx f(x)dx is definedlas =
| S - : "o o
X | X1 | Xé Sho
J' (x)dx ; lim Wj | f(x)dx + I (x)dx . ff(x)d
Cxg 0 e X, 1+€yl | J%fexl

iprovidedbthevlimit ekists,vuhere “1Yl’“2 u .y

”,Z‘and €: are arbitrary positive constants
If the limits of integration are infinite then
_ the integral f f(x)dx is defined as :

. % | o l/S'Y .
- Ii:?%)dx lim LII eu X + JiffEYl.vl...,.+ Ii(feii ;

»provided the limit exlsts where wu.- and yare
'arbitrary pOSitive constants.

iIf in the preVious definitions all of the arbitrary

: ~:constants are reduced to unity one gets Cauchy's definition of

'{athe principal value

Thus Cauchy's work gave integration its modern char—"
f[.acter : Later developments in the field were based on the found-
| ation which he ‘had prOVided
‘ _The. work of Legeune Dirichlet a contemporary of
~Cauchy, on Fourier series motivated a further development of
the integral Dirichlet in 1629, devised sufficient condi-

rtions under wnich a function could be represented by a conver-
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' gent Fourier series.vvmhese.zonditions-were‘(fil], p. 16) :

(1) The function has only a finite number of'meXima
~and minima.
: (2) Iheﬂfunction‘has only a finite number of discon-

. tinuities. . . .

7:1anéﬁseoond oonditiOn wa.s included'beCause it was”only'under this
',s_condition that the integrals defining the coefficients were con-

J.fsidered

hThe-next step.in the deveiobment seemedﬁto>befto alter

,:;this seoond condition by extending tne idea of the integral

fiFirst Diricnlet nimself attempted to do this by . extending the :

d'f>integra1 to functions whose set e of discontinuities has a

””ﬂ;7finite~number of_accumulation-points ~ An example of this type

3Jof-function isq“'émlTe s for the only accumulation p01nt is 0.

sinz
ny;

v: The integral was defined as follows (1351, p. 10) :

i'The‘ecoumulation’oointszof e will divide
the intervel [a, b,] into a finite number
L of partial intervals " Let [d, B] be one
'of them. The 1nterva1 [a + h, B - k] Will
,,contain only a finite number of polnts of .

e and one can consider the Cauchy 1ntegra]
- Bk

j  f(x)dx provided it exists. Then
Ye+h s _ .- ' '

B ek o
-“[u f(x)ax =§1§ f@H-h f(x|)dx provided the
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-limit'exists” The integrallover a, ] is
'then ‘Just the sum of the integrals over the
}.intervals

*anis integral apparently was not extensively used

a fpartly because the original paper was- never published(l)but

:f*mainly because it was superceded by the integral of Riemann

G B Riemann (1854) was also interested in extending
:egthe conditions of Dirichlet . In fact, he was interested in -
"Vfinding not only sufficient but neceggary conditions under‘
"fwnich the representation can occur. This led him quite naturally
’?i?to an investigation of the meaning of the. symbol »Iz>f(x)dxm.

ipﬁjThe resultvof the,investigation Wwas - the famous Riemann-integral.

Riemann began by considering what J f(x)dx meant

"fftfirst for bounded functions Unlike Cauchy he made no other

: 7{ﬂassumptions about'the furctions. An dﬂﬂineofhis procedure‘

v€pﬁ({M6],'plt239)d.is;as follows:

be an increasing sequence
, & = X -, 52‘.“.4'
v__x2'— xl,.m..d, 6 = b —,xn~l" ~Form thevsum

: S = & 1 £ (a + € 51)‘+ ﬁgf(xl +5252?-+ ,f._+.

'8 f(xn 1 + € ndn ) where the € are positive

i
proper fractions The value of the sum. S

2 ""ini
of - values in (a, b) and let

Let xl, X

' depend= upon the chOice of .the intervals .6i
and the numbers € - If this sum has the
’_oroperty that it approaches a finite number
A -as the Qi approach zero, no matter how

'(1)' It is mentioned in [35] p. 10
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5 and el are chosen, the value A is,the
definite integral I f(x)dx . If %he sum S
, does not have. this pPoperty then f’ f(x)dx .

has no meaning. a

o _ _ ey . S
“grRiemann also defined I f(x)dx for functions f

f_ which have a singularity at: a pOint c ,. a < c<b ([4o], p 2@

c-a7 Y < ~j
j f(x)dx + I f(x)dx_
. a’ c+a s
for‘ 1, a2 arbitrary positive constantg

- Now let aq and as approach zero 1ndeoend-'”
: ently If 'S. approaches a limit then this

:” Hmit. is defined as 'f_f(x)dx

i

‘Form the integrals 5.

':WUnder what conditions 1moosed on the function. f

‘°t:W1ll the integral ex1st¢ This is the next question tnat

'>ngiemann answered v He showed that a necessary and sufficient

dlnrcondition for the 1ntegral of a function to exist is that given |

*.Qﬁfoﬂ>“o' then the sum' of the lengths of 1ntervals where the 08~

' ?f;,cillation of the function is greater than that o can be made

zfas small as one would like

o This'statement suggested the idea of a- measure of-a'
1ﬁset and may ‘have. been a stimulus in the- development of that

'fv,sconcept ([4],,”, 249),

. Eiemann;s work'thus introduced the property'of_f
’:.integrahility of a‘function and'widened_the class of integrable

functionsito'include many discontinuous ones.
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G. M. Darboux [10] (1875) while attempting to make
Riemann's work on integration more precise, suggested a. different

o approach to the integralvthrough the use of upper and lower sums.

Darboux began by defining precisely the supremum M

i
_4_and infﬂnum my of a bounded function f on an interval Ta,b].
fbHe ‘then subdivided the interval (a, b) by the points xl,'xa,....
.._“xn_i and formed the new sums"

i mo=m 61 + m262

+m.8 |
. Where - 51 = xi‘xi 1. 8o =Xt by =b Xy
]jMi = sup f(x) f»”mi = inf f(k) .

i

‘ Then he proved what became known as the Darboux Theorem ([lo] p. b5)
e I 8 < 6 for all 1 , then there exists finite

" such that 1im M =M ,
. "ab ' po0 - 2P 7
1im ‘m=m . : ' ’ '
gm0 ab

numbers Mab s

vHe did not call these limits the upper and 1ower integrals nor

did he use the notation Jf(x)dx and ff(x)dx . These contri-
‘jbutions apparently came from Jordan in 1892 ([28], p; 404)

In considering the integral I f(x)dx Darboux started

i'with the characteristic sum.
J';
1

z = alf(a+elsl) + 62f(xl+9262)..

SERREEE 4 8, £ (& 1+ 8:8,)

Madd m , i

- Hegthen'formed his upper and 10Wer»sums, 'discuéééd



 above, and showed that a necessary and sufficient condition that

the sum T has a limit as -0 (6, < 6) is that the limits M,

o andifmasi]of~ M and m ere.equai.

A similar procedure to tnis is used in many modern

c:ftexts to define the Riemann 1ntegra1

Darboux was also able to glve a completely valid oroof

’v-that a continuous function was integrable It is difficult to

'Isay for certain but this seems to be one of the earliest proofs

v'f{of.this result (Heine [23] (18(2) had considered the idea of

"5iffuniform continuitv and had shown tnat a continuous function

[a b] is uniformly continuous ‘ This could have led to}vs'

-iearlier,proofs of this-result)_.

v During the 1atter part of the nineteenth century‘ap;.

.ifnarentlv many integrals were devised for unbounded functions
”@([44], ‘p. 230) These 1ntegrals were extensions of'the‘Riemennb
'_integral They'did nOt‘acnieve lasting imnortance but heve.somei

‘v[;historical interest. We will consider one example to{iilustfate

"'theltypezof-procedure.

A Harnack (1884) [10] devised an integral for unbound—

J wned functlons whose set of Singularities can be enclosed in a fin—
“wite number of 1ntervals With total lengtn as small as one would |
iiwish (By=modetn terminology.the set of singularitieswhas;content

tffzero.)d'Anfoutline of his pfocedure.([l6],co.'220)-is'eS'foiiowsf



'Let f be the function and enclose the
_:singularity points in a set E consistlng
Vh?:of a finite number of 1ntervals of total length
pgig.; Let -fif be equal to C)in'E ‘and
to fo everywhere else and suppose ;f l(x)dx
exists. If this 1ntegral approaches a finite
C1imit as € approaches O “this limit is_

tfsaid to be the 1ntegral of £ from atob

In 1004 T. J. Stieltjes [40] introduced a completely
new idea 1nto the history of 1ntegration, an idea which was,
;unrelated to other developments in the field While working on -
7?questions involVing the distribution of mass along a line,

ﬁfStieltJes suggested the 1dea of an integral 1nvolving two func—

‘ftions.”-:"

He began by cons1der1ng a monotone :ncrea81ng function .
-rgo defined on the pos1t1ve x ax1s w1tn m(o) > . The func—
'*tion could be v1sualized as representing a distribution of mass

- ith the pOints of discontinuitv representing the p01nts of -

':;;condensation of mass._ With this interpretation an increasing

t'Afffunction represents a phySical example of a measure

'Stieltjes then oonsidered the moment ahout'theforigin»
"ﬁof sucn a diStribution in Ta,b] and proteeded as followse

"f_([;uo_],- . 71

Let aQXé ,Ah=xh R and place between' yo and

X, the n-1 values x < Xl< Xy e < Xn .

€

Next pieh n numbers €15 €55 - € 'suoh



N
ay

that Xy £ & £ X

Then“fofm‘thevSum

e Lo(xy) ) -0 x,) e Le( %) —o( %) ] re lo(x,) - w(xn D1
_ The 1imit of the sum (eé max'(x —xl]} approaches 0)
"'is by definition the moment oOf the distribution
o about tne origin '

B -vfddStleltJes then generalized this procedure by consider-' ‘
Img the sum f(el)[cp(x ) =%, ) 1+£(e )[m(xg) ~p(x. )]+ .f'(€ )[cp(l&,)-qo=.(>§ii1)1'-
'dwherev f i= any continuous function This sum will have a
{:limit as max (x .—: i;_l_l)‘- aporoaches 0. This_limic_is desiéheté'
':ff}ed by I £(x dw( ) and 1s now called the Stieltjesdinteéféli?f»'

'fff with respect to 'm"}

StieTtJes did not extend this integral beyond the case
ﬂi'where if '1s continuous and ©, iq monotone Tne,only-property_

"ehe proved was - the following ‘
. SN B
| j"f(x)dm<x>=f(b>,cp<b>_-f(a)m(a)-jéw(x)df(x)-

- a



'CHAPTER THREE .ThebDevelohment“of Measures ?fTheiiebesdue'lntegﬁﬂ'

As we have seen, the concept of the 1ntegral is close—

'_r?lv related to the concept of" area. Area, along w1th length and

stvolume, were historically amongst the first examples of the -
’,-general idea of measure‘_ Tnese examples all have the character?

fistic property of being non negative and additive

From antiquity until tne nineteenth century, these

:'ﬁmeasures were calculated only for very regular geometric sets
-Tsuch as the set of points under a continuous curve. The pro— '
fcedure, as. we have noted 1n the case of area, was to approximate-.

rthe sets from the inside and/or “the out51de by a’ finite number

"f”,of simple figures ’ For example, Arcnimedes, in calculating the

";volume of a paraboloid used aoproximations bv rectilinear solids,

rboth from the ins1de and from the outside

The advances in analvs1s in the nineteenth century

“seemed to motivate a more intensive study of measures As we

’rghave seen Riemann's condition for the integrabilitv of a func—

_-tion (that tne sum of the lengths of the intervals on. wnich the
[oscillation >0 ‘can be made as small as we like) suggeﬂm the
‘,-idea of a measure for certain new subsets ([4],,L, 244). With
'.:the develooment of set tneory, many more sets were considered
Z_The problem then presented (according to some sources ([l}],gxlSO»
,Was how tovassociate a measure ‘not only with the regular sets

but also with arbitrary subsets.
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I The first methods introduced by Stolz, ([41], p 151),
":wHarnack ([17], p 241), and Cantor,([?], pp. 473- 475L (1084 1885)

viall used the same basic idea A set E in Rl ,‘ for example, was -

'i*ifcovered bv a finite number of intervals. The measure,_m(E), was'

| fdefined as tne limit of the sum of the lengths as the 1ongest of
f';tne intervals approacned zero This measure, however,»was,unf
‘4ﬁfsatisfactory because it did not have the additive property even_"

i;for commonly used sets : For example, if A 1is tne set of-

- frraticn&1° in [Osl] A" is the complement of A s m ic the

Vdmeasure, thenvrm(Ai) l m(A) =1, m(AUA')'—,l‘.' Hence
- m(AUAT) b m() + m(A'_) | |

Probably to overcome these dlfficultlec, c. Jordan |

: JF[BO] (1094) suggested a more reflned approach to the problem of

t-measures.--Hedfirst of all cons1dered apprOXimating a set not

'dar nly from the'outside but also from the inside, using in eacn

rfncase a_finite number of elementary figures. He then calculated
’ftlimits_as:the size of tne figures approached zero | He illustratf"

'hiedlhistprocedure-by cons1deringca set E in the plane;

Decompose this olane by oarallels to the
coordinate axes, into squares of s1des r

The set of those squares whicn are.
'fiinterior to E form a domain . 8 1nterior to
.E'f The set of those which are 1nterior to E
'or which meet ite boundary form a new domain
S+ 8! to wnich E 1is interlor . We can
i;represent the areas of tnese domains by S
- and S + S" '



Let us now varv our decomp081tion 1nto snuares 3 »
1n suchn a way that r tends to zero: 'tne areas
'S ,and S+S" will tend to some flxed 1imits.

(1201, p. 26)

These.linitslhﬁ-,and a are called respectively the

1'1nterlor area and exterior area of E . If these two numbers

af;are equal the set E ;s called o quarrable | and has area or .

,rmeesure : aA Jordan:then”restricted himself to theSe quarrable;

sets end'snowed_thet the:meesure has the edditive“propertya

Tnis was probably the flrst time tnat in order to

’af“tachleve this addltlve property, the measure was restricted to a :

f;ffamlly’of.snbsetsvratner than being calculated for'all_subsetSJ i

Jordan also mentloned tnat tnls procednre can be adoptet
ed for sets of any number of dlmenslons The 1nterlor and exter~f
ior "content" (etendue) can be determ1ned and 1f these two RS
,_numbers,ere egual'the set 1s_celled meesurable Tne measure‘is

B edditivé-onﬂthese'meesnrable sets.

Apparent‘y G Peano ([4],, : 249)o,datfapproximetelyje'
 ‘the same tlme, developed.slmllar ideas of measure and;meaéuraaa

.f blllty.

7These'ideaS,Of”jorden and Peano, however, had limited
cabnlicability because too many'commonly used sets were not mea-
'vsurable- For exemple, the set of 1rratlonals in -[O l] has

inner content equal to zero and outer content equal to -one and.
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'1s therefore not measurable.

A]l of these preViously mentioned measures, using
'Vfinite aoproximations from the outmde,were very coarse. Theyf-

'”3,would:not,lin fact, distinguisn»between_a set'and its;closure.’

E Borel (1096); apparently ([12], p. 342) while

'fdstudying series of functlons, found the need for a measure W1th

" the property tnat the measure of countable sets was zero vTo .

’.j?fulfill this need he introduced ([3],» pp. L4E- 50) a new oro—

'5nperty for a measure and a new. method for calculating the measure

‘.fjof certain sets Tne new,property was_countablevadditively,,ie..

‘fsV}the measure of tne union of'a countable nunber 5f'disjéiht7§é£é

*ﬁlis equal to the sum of their measures . ' The new method involved

afgonsidering now certain sets were constructed and deducing wnat |
'*ftneiheaSure-should be. Restricting himself to subsetsvof‘the-"
'7fih£é}v£i [O l] Borellbeganrby'considering anbinterual'withiorl
:ifW1thout end p01nts rThe neacure snould bevits lengtnbl siﬁ¢é°éh
'aifopen qet G can be expressed as the union of a countable number

‘d:fof disgoint intervals .Ei’ i =1,2, ...,the measure of G m(G),

'“cfshould be equal to tne sum of tne mea.sures m(E ) 1_1 2

' ﬁiA closed set 'F is the complement of an open set Gf Its mea;

'lssure 'm(F);'should_tnerefore'be 'lén(G)'.

Borel continued to calculate the’ measure of a set by

‘thlS step by step procedure, using the following two orooerties'-

t
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'(l): countable additiv1ty -

(2) if E®E' and m(E) =5, m(E') = §', then
o 'n(E—E')j-S-S' | |
Those sets which had a measure defined by this oroce-

:7dure Were called measurable sets. BV a transfinite orocedure,

fBorel constructed all tne sets which belong to what we now call

:,the~Borel 0‘— ring He then showed that tne measure defined on“

ilfthese setq was a non negative countably additive set function.

In 1902 Henri Lebesgue 1ntroduced _1n hie thesiq [34],

‘%fsome powerful new ideas on measure and 1ntegration. vHis-work .

'“1ijarks;the_beginning_of a new era in these'flelds,

Lebesgue was 1nterested in the problems of finding a

-f?ffunction knOW1ng 1ts derivative ' ThiS»led nimlquite naturally

”f.to a~cons1deration ofvarea under the curve, nence to area in the

'V?{r?olane and to the more general nroblem of measures. He 1ntro—'

luduced a new anproacn to measure and a more general class.of

*:ﬁgmeasurable sets; Tnese ideas led directly to a definition of

Ttﬁttne 1ntegral for a wider class of functlons.» His integral pos—

essed some 1mportant new prooerties and ‘was used in tne solution
‘"~of the originel problem of finding a function'knowing 1ts_deri—_

vative, . . o T

Lebesgue began n1Q work on measures by stioulating the
‘Iconditions Borel had apparently suggested a measure must catisfy

_:([34], p 232) tne measure being restricted to- bounded set~
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) fﬂfWe prooose to attach to each bounded set a numben _
‘.oos1tive or zero, which we will call 1ts measure
| "_and which will satisfy the following conditions-_ ,:
"iif(l) There eXists some sets for which the measure o
L dvﬁ_is not - zero, S -
,”irﬁﬁéjfZTwo equal sets have the same measure (sets :
'_ fﬂéare equal 1f they can be made to coincide
o by displacement )y
'_'_(3)_’Tne measure of the sum of a finite or
””:fﬁicountable number of dis301nt sets 1is the . L
”3erum of the ‘measures of the sets ([34],p 23b)

In order to achieve this goal Lebesgue used a much {'

':”f]simpler and, as it turned out more general approach than had

't§jBorel He amended the procedure of Jordan by aoprox1mating sets

nwith countable covers rather than Just finite ones. AThis_idea;’

'Tis Lebesgue's key contribution to measure theorV.,

He considered bounded sets E first on. the*realcline
'iriand covered E With a. countable number of interval ;:fTheSe-'
) 1ntervals formed a set E1 . He defined tne measure of an 1n-‘r.v

»terval as itc length and defined m(El) as the sum of the lengths_

' fffof the component intervals. He tnen defined tne outer measure-_

";hof E m (E)», as the inf of the numbers m(E )_ taken over all
f-OOSS1ble countable covers by 1ntervals To get the inner mea—
o Sure of E he 1et I represent an interval containingv E;,and

ffdefined the inner measure‘ mi(E) by mi(E):e m(l)f—‘mé(I}E)

: 'The~innortant'sets'considered were those for which the -

 two measures were equal:
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We call sets measurable if the outer measure_ _
and the inner measure are equal ([34],p‘ 236)

 Lebesgue showed that this classfof“measurable sets
--j;,;was closed under»countableeunions and interseCtions”and‘includedf'
.;;lthe classes of Jordan and Borel measurable sets. He élédféﬁbwed-'

'ufjfflthat the measure restricted to these sets had the desired pro— o

'-uvoertles for a measure.,

Lebesgue tnen stated that these considerations could
'Jffeas1ly be extended to bounded sets E  of any dimension : He
-f.f‘contented himself however, W1th cons1der1ng only dimension ‘

',f;two and suggested a procedure which was completely analogous to

"tne procedure for dimens1on one. It is 1nteresting»to:note"

'5;:4;that he used triangles to cover the plane sets. ‘They would be

ﬁ]'more useful 1n the extension to surface area

Hav1ng settled the problem of measures, Lebesgue was
’gr;led quite naturallv to the following definition of tne 1ntegral i
cgfor bounded functions ([34], o 250) f.,(This.is:a‘paranfibf}

:fohrase of the actual definition)

dﬁiLet £ be a bounded function defined on [a;b];;_
'1let' m  be the olane ‘measure, and let B
El S {(xyy) { a < x<b. o <y < f(x)}
E, = {(x,y) | & < x<b f(x) < y < o} o
- If El and E? are measurable sets then the.
integral of . £ iq defined as the quantity

m(El) .m(E ), and the function f - is called
- summable. '



. The next step wathb‘frv:to'defihé the integral for

-unbounded functions. One orocedure, Wthh Lebesgue acknowledged.

- but did not follow, was to extend tne measure to unbounded qets

b"‘fchnstead he used a new procedure which 1nvolved subdividing the

.»,t:y ax1s.jg"'

His 1nsp1ratlon for this. orocedure came from consider—

j~ing a continuous monotone 1ncreaS1ng function - defined on

f;[a,a] with range [a_b] (a<b) . Corresponding to. adSubdivisiall
-b;dﬁ; XO < xl < x2'-;- = B i [aaﬁ] was a subdiV1sionv:v
»1; an“.a < al < a o <%1 , of [a b] . Lebesgue noted that

bfthe class1ca1 1ntegral of the function wnich was. usually defin—“

»,ged as tne common limit of the two sums

'n . n ST e
o R LI CAEE Ve o
Las max» (x ,; I 1) approached zero could also be defined as

'j{the common Timit as max (a ay_ 1) approached zero.} Gener—

'-*alizing this 1dea ne ass001ated the folloW1ng sums witn an

‘ﬁ,arbitrarv bounded function £ and any subdivision ,a 3;0‘»'.-'.<

nf a < a2 ft;’<a"f#'b-' of" an intervai la, b] containing the
‘range: R | L
T : S n o ' n]. o
g=ga m(e Y T2y m(e vy

. n o oona :
T = 2 a m(el) +z al+1m(el )
r'where e = {x:-f( ) :{ai}
o L e v '
op'm ey < 2(x) <y

‘'m  is the measure’dn the line.
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3 'Tnese sums will ‘be defined only if m(e ) and m(e' ) are de-

;fined Consequently, Lebesgue concidered the sums only for the
v'ifunctions for whicn, given any a and b, . the set v
’:f{ ag f( ) < b} is measurable ~This condition; 1t burned
-f;out is eduivalent to the condition that the function is summ-
ﬁb{able ' Tnerefore, for these functions the sums ¢ and z arevl

fodefined and as Lebesgue showed theygnave tne same'iimit es»

'u,-max ( i“’ s - 1) approacnes zero. - This limit is”eduel fodtne

-ugintegral of the function

This orocedure thus suggested anotner definition of

| 5summable function and 1ntegral Wthh is applicable to unbounded :

”‘Vﬁkfunctions as well’

:df A (bounded or unbounded) function £ is called j'
d'summabie if for any 4 and b the set .. _ b
’7{x: a <-f(X);< b} is meesurable ([34], . 256)

Tnuc Lebesgue'q conceot of a summable function lS

“j”'GQUIValent to our present concept of a measurable function.
To define the integral he considered a subdivision
i;*?mm2°<im~l'< mo'< ml < m2 s of the y axis, varying be—.'

tween - and ‘+¢-_and such tnat m, - mi;i is bounded,mand

. he let:

a
I

i 2'm’m(e )'+ T m, m(é.v)

N m m(e ) +z ml+1

™
il

m(e f)



= He-then shoWed'thet if one:ofbthese sums 18 finite then both
,fW111 converge to the same finite 1im1te as.max (m -'m 1) api_'

fproaches zero ThiQ limit if it eXists, is defined as the in—'

' 97jtegral of tne function f Lebesgue~noted however, that the inte—

-'foﬂgral does not necessarily eXist for unbounded summable function

"ffhence the reason for our use of the term measurable 1nstead
o ddfsThisfintegrelfof:Lebesguthes some.interesting‘proper- '
Although it is a generallzation of the proper Riemann
g,'integral it is not a generalization of the imorooer one Fér[,_

s;texample, the function f(x)- ( 1? for- r 1 < X < T r-~ l 2.m -

fﬂfhas an improoer Riemann intecral but 1= not Lebesgue integrable

However, unlike any Otner 1ntegra1 considered before,T'”'”

»f;ilt possesses the follow1ng 1mportant property whicn is of oara—n;

b;f*mount 1nterest in ana1y51cs ([3%}, P 259)

_:”If a sequence of summable functions ‘

| s .'..fh 'fjf-.., having integrals, hasa]:lmit f aniif '
.§]f3;_f'|u< M, ¥n, ‘where M- is some fixed o

";-numbér, then :f: has an integral which 1s

tj;tne 1imit of the 1ntegra1Q of functions fh.h

Moreover, the integral can be usedhto.find primitivest

"unfor;e‘wider“cless of functions than those_COnsidered heretofore.
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CHAPTER FOUR A Modern Glimpse

in'thié part of the'thesis, we will. give some indice*v

'njtion of the deveiopments in. 1ntegration in the oerlod after

r“f~Leoesgue Tne amount of materlal on th1Q oerlod is tremendous;

we will confine ourselveq to a verv brlef coverage

Tne notlons of measure and integral are 1nt1mately
{”connected Measure as51gns numbers to sets whlle the integral
"assigns numbers to functlons, that is, it 1s a functional

-7Given a measure,‘one can deflne an 1ntegra1 by a“procedure 1ike.

xl,Lebesguevs or one dev1sed by W. H Yonng (1905)'which nses'

’ftDarboux sums Slmllarlv, glven an integral,:one'can.assign ai

measure‘to a set by considerlng thevintegral_of its:characteristic

f»function if it is'integrable These points‘of view are reflected,‘
1in deveTopmentﬂ along two broad lines, a set theoretic approach

: ,and a functlonal approach

| Tne work of Radon (1413), Frechet (1915), and
*Carathécdory (lu14 1916);stressed the measure theory aoproacn.
Tnelr’work“representsﬁa'natural_generallzat;on-of tnegworks_of 
'.Lebesgue‘and‘Stieltjes._ | |

: Raqon suggested replacing thevn4dinensiona1 Lebesgue
.-'ﬁeaSure'bj-any comnleteiy'additive set’fnnction.defineduon the

" Lebesgue measurable sets.
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Fréchet generalized thie idea by eonsiderihg'anyveom—
pletely additive set fUnction'defined‘oh theveubeets of ehy ab-
- stract spéce,- He’pOStulated thelmeeeuréble subeete‘to'be a

g-field.

o The eorreépondiﬁg’integrals:ineboﬁh these cases are

defined in any of the usual ways using sums.

.Caratneodorv hext dev1eed e procedure for generatlng
_ea meesure rarner Than assuming its- ex1stence on a o—fleldL
StaxtlnOr w1th anv'nonnegative function defined on a giveh class
lef‘seﬁs, he determlned an outer measure deflned on all sgets ef
,the space. concldered ;Tnls_outer meaqure; 1n‘general iﬂbeﬂlv
”}subaddltlve He tnen is51A£éd cetc called meacurable Wthh form
a,'o fler and on wnicn tne outer meacure is completeWV addltlve
' thét is, it‘iQ a meaquve In the deflnltlon of the 1ntegra1
‘]Caratneodorj continued nls sffese on meaqureq by pursulng the
:1dea of area under the curve. lTodthis end, he'defined prdduct
dmeaSQfe”(te takeithedpléce“of aféa in.the piané)‘and'defined the
integral in terms of tnis product measure. |
'» The idea ef thetintegral asea funetional? specifically

a linear functional, was stressed by F. Riesz (1909) and Daniell '
(1915). Their work estabiiehed fundamental coﬁnections_between

integration and functional analysis.

o Rlesz solved a problem po ed previousiv by J. ‘Hadamard

when he showed tnat the Stleltgec 1nLegral ff g  was the moct



}'general linear contlnuous functlonal on the - space C(I) of

'.,continuous functlons on [a b] That 1s, glven a llnear con-=

5fftinuous functlonal S on C(I), he Qnowed there ex1sts a functlon

VJ;g of bounded varlatiOn such that S(f f f dg ;¥ f € C(I) ;

7ctherebv establlshlng a fundarnenta1 connection between linear

;-continuous functiona]s and measures

Daniell dlsassoclated the 1ntegra1 from its denendence

'?on a measure by abstracting tne es sentlal propertleQ of tne

””ffLebesgue 1ntegral ' He began by oostulatlng a functlonal I

'ffdefined on a certaln class of functlons'rF', for examole the

%_,'v,contlnuouQ :cunctlonQ or step functlons Tnis functional is asé

ﬁ:f}sumed-to be 11near‘ (jaf + bg ff + bfg) s nonnegatlve;A

(f > O

> Jf > o) and to nave tne monotone convergence propertyv

“ca}(f ?:f‘; > Jf - Jf . Danlell then deV1sed a proc edure'for

"Zf*extendlng thls functlona] to a larger class of functlonq in such

'bfa way tnat 1t stlll satisfleq tne glven condltlons If the cla

- Fp 1s the contlnuous functLons and J"ls the Rlemann 1ntegra1
sutnen tne extenslon procedure will yleld tne Lebesgue 1ntegra1

.Tfor the Lebesgue 1ntegrab1e functlonq

Tne idea of the 1ntegra1 as a llnear functlonal wa.s
| ,further extended beginnlng in the. 1030' with the studv of in-
'tegrals of functlons with valuesvln a Banach space. The integral

i
i

. . . L . . . ) . . 1 . '
. now maps functions into a more general space than the real line,



A tnird post Lebesgue approach to 1ntegrat10n was’ toward.
*;:the uniflcatlon of the ideaQ of antiderivatlve and limit of a sum.

'”'f*‘The Lebesgue 1ntegra1 did not comp‘etely comblne these two 1deas
.“example, the derivatjve of x2-sin —é' has an antlderivative
not integrable 1n the Lebesgue sense To:overcome_such

di ficulties DenJov (1912) and Perron (1914) deVised‘hewAinfegfaisf
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