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WARING’S PROBLEM
W. J. ELLISON, University of Michigan

1. Introduction. Edward Waring in his book Meditationes Algebraicae (1770
edition, pages 203-204) makes the following statement: “Omnis integer numerus
vel est cubus; vel e duobus, tribus, 4, 5, 6, 7, 8, vel novem cubus compositus: est
etiam quadratoquadratus; vel e duobus, tribus &c. usque ad novemdecim compositus
&sic deinceps.” In the 1782 edition, page 349, he adds guardedly “. .. con-
similia etiam affirmari possunt (exceptis excipiendis) de eodem numero quantita-
tum earundem dimensionum.”

It has become traditional to interpret these assertions as: “Can every posi-

W. J. Ellison took his B.A. at Cambridge University and is continuing work there for a Ph.D.
under Prof. J. W. S. Cassels. He spent 1969-70 at the University of Michigan with D. J. Lewis.
Evidently he is a promising young number theorist. Editor.



1971] WARING'S PROBLEM 11

tive integer be expressed as a sum of at most g(k) kth powers of positive inte-
gers, where g(k) depends only on %, not on the number being represented?” and
to call the resulting problem “Waring’s problem.” There seems little doubt that
Waring had only limited numerical evidence in favor of his assertions and no
shadow of a proof.

The case k=2 had been stated by Fermat in 1640 and was attacked unsuc-
cessfully by Euler for a very long time. It was finally proved by Lagrange in
1770, who showed that each positive integer could be expressed as a sum of at
most four squares of positive integers. During the next 139 years, special cases
of the problem were solved for k=3, 4, 5, 6, 7, 8, 10. It was in 1909 that Hilbert
solved the problem in the affirmative for all k. His proof was extremely compli-
cated in its detailed arguments. The key result was a proof of the following
lemma.

LemMA 1.1. For each pair of positive integers k and n there are: an integer
M=Q2k+1) - - - 2k+n—1)/(n—1)!, positive rationals No, - + - , Aar, and inte-
gersouy, ¢ ¢ ¢, Qi Oty ¢t ¢, Olang SUCh that

M
@it -+ o) = 2 A+ -+ anm)
=0

The reader may wish to test his ingenuity by proving the lemma in the
following special cases: #=2, k=2; and n=3, k=3. In section 5 of this survey
we shall give a complete, short, elementary version of Hilbert’s solution of
Waring’s problem.

Once one knows that the answer to Waring’s problem is “yes!” it is natural
to ask “How big is g(k)?” We can easily see that g(k) = [(3/2)%]+2*—2 because
the integer n=2%[(3/2)¥] —1 is less than 3*, and its minimal expression as a sum
of kth powers isa sum of ([(3/2)¥]—1) kth powers of 2 and (2*—1) kth powers of
1. We shall see later that [(3/2)%]+2¢—2 is probably the correct value of g()
for all 2. Obtaining an upper bound looks (and is) very much harder.

Hilbert’s proof, as it stood in 1909, was not very amenable to giving an ex-
plicit upper bound for g(%). Stridsberg [13] however, gave an explicit proof of
Lemma 1.1 and the way was open for obtaining an explicit upper bound for
g(k). Strangely enough nobody took it until 1953 when Rieger [11] worked out
the details and showed that

g(B) £ (2k + 1)moa+n D,

In the intervening period Hardy and Littlewood published a series of papers
during the 1920’s in which they used a powerful new analytic technique to re-
solve Waring’s problem and to show that g(k) =0(k2%+1). This upper bound,
though large compared to the trivial lower bound for g(%), heralded the begin-
ning of an era in the theory of numbers.

From the work of Hardy and Littlewood it became apparent that a more
fundamental number than g(k) was G(k), which is defined to be the least posi-
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tive integer such that all sufficiently large integers can be represented as a sum
of at most G(k) kth powers of positive integers. That is, there are infinitely
many integers which actually need G(k) kth powers. For example, each integer
of the form 8n47 really does need 4 squares in its representation as a sum of
squares. For the squares modulo 8 are congruent to 0, 1 or 4, so if =7 (mod 8),
then »# cannot be written as a sum of three squares; hence G(2)=4. As G(2)
<g(2)=4 we have 4=g(2) =G(4). As a further illustration, it was proved by
Dickson [35] that g(3) =9, but 23 and 239 are the only integers which actually
need 9 cubes; each integer greater than 239 can be written as a sum of at most 8
cubes. But only a finite number of integers really need 8 cubes, from some point
on 7 cubes suffice. The tables seem to indicate that the point is 8042. The pre-
cise value of G(3) is not known; the best result that I know is4<G(3) 7.

Hardy and Littlewood did much more than obtain an upper bound for G(%);
they obtained an asymptotic formula for the number of integral solutions of the
equationx+ - -+ - +4¥=N, %, =0, - - -, x,20. Insection 3 I shall show how the
following theorem is proved.

THEOREM 1.2, If s=2*1, then the number ry,.(IN) of solutions in integers of

it - Fab=N, %20 - - -, x,20, satisfies
NG 1/k))*
fk,a(N) - _L__F_(_Q N(a/k)—l@(N) _I.. o(N(B/k)—l) as N —_ w’
T'(s/k)

where S(N) = c>01s a certain arithmetical function of N.

Vinogradov made great technical improvements to the Hardy-Littlewood
method, and he was able to show that the conclusion of Theorem 1.2 holds if
s> cik?log k, where ¢y is a positive real number. For large values of £ this is a
much weaker condition than s 2*4-1. Vinogradov also obtained upper bounds
for G(%). In [62] he proved G(k) <6k log k-+k log 216. No substantial improve-
ments on this estimate have been made, though in recent years the numerical
factors have been reduced slightly.

Before going on to describe the Hardy-Littlewood-Vinogradov method in
detail, I shall discuss Linnik’s solution [17] of Waring’s problem. Though his
proof is strictly arithmetical, it was clearly very much influenced by the analyt-
ic method. Linnik’s proof uses methods from the general theory of sequences.
For a beautiful introduction to this fascinating branch of number theory one
cannot do better than to read Halberstam and Roth’s book Sequences.

2. Linnik’s method. If ¥ is a sequence of positive integers the Schnirelmann
density o(¥) is defined by o () =greatest lower bound of A4 (x)/x for x=1, where
A (x) is the counting function of ¥, that is 4 (x) is the number of elements of
less than or equal to x. Clearly 0=<¢(¥) <1. If () >0 then 1EY. If ¢(A) =1
then A = Z+, the set of positive integers.

Let ¥ and B be two sequences of positive integers, then A DY is to consist
of all positive integers which are either @ or b or a+b, where a €% and bES,
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each counted only once. For example, if = {1, 2,5, 8} and §= {3, 7, 10, 11},
then Y BB = {1, 2,3,4,5,7,8,9,10,11,12,13, 14, 15,16, 18, 19}.

TrEOREM 2.1. For any sequences N and B,
cA D B) = o) + a(B) — c(W)a(B).

Proof. Without any loss of generality, we can assume o () >0; thus 1E.
Let1,as, + + - ,a,=<x be the part of A up to x. Whenever a;+1 <a;;; we note that
ADY contains a;+>b for all bEY satisfying 1 =0 =a;1—a;—1. Similarly if
a,<x, then A DY contains a,+b for all bEP satisfying 1 b <x—a,. Hence if
C(x) and B(x) are the counting functions for 2 @B and B respectively, we have
the following inequality:

r—1
C(x) =r+ Z B(d,‘+1 - a5 — 1) + B(x - dr).
f=1

If we write B=0(8) and a=d(), we have B(y) =By and 4(y)Zay for y=0.
Thus

C) = r+ X Blaw — ai — 1) + B — a) = (1 — B)r + pw.

=1
Now r=A4(x) Zax, hence we have the inequality

%ﬂ;u—ﬁ)am.

Therefore
cA D B) =) + o(B) — e W) (V).

In fact ¢ +B) = min(1, o(A)+0B)), but this is much harder to prove. The
reader should attempt a proof of it though, as a challenge.

THEOREM 2.2. If o(N) +0(B) > 1, then A DB consists of all the positive integers.

Proof. Suppose nEA+B, so in particular #EA. Consider the integers n—a;,
where ¢;E and 1=a;<n—1. The number of such integers is 4A(n) Zan>n
—Bn=n—B(xn). The integers n—a; lie between 1 and #»—1 inclusive. The num-
ber of elements of B in this range is B(zn—1). So the total number of integers of
the form #—a; and the number of members of ¥ in the range 1 to (z—1) is

An) + B(n — 1) >n— B(n) +B(n —1) =2 n— 1.
Thus at least one member of the set of integers {#—a;} must belong to B, so
we have n=0a;+bEA DY, a contradiction.

A sequence ¥ is called a basis of order £ if AD - - - OU, taken h times,
consists of all the positive integers. That is, each positive integer can be ex-
pressed in the form a;,+ - - -+ +ay with £=h, and the a’s all belonging to ¥.



14 W. J. ELLISON [January

THEOREM 2.3. If () >0, then A is a basis.

Proof. Define Ao =AY and A1 =A@ for = 2. By Theorem 2.1, we have
o) 22a—a?=1—(1—a)? by induction we easily prove that o(¥,)=1
—(1—a)". We choose 7 so that (1—a)" <%, hence ¢(,) >%. Then by Theorem
2.2 we see Ay, = A, G Y. consists of all the positive integers.

We shall take as our sequence AP = {nt:n=1,2,3, - - - }. Now ¢ (A®) =0,
but if we can show that for some integer s the sequence AP =Y® @ - . . GY®,
taken s times, has positive density, then by Theorem 2.3 we can find an integer
r such that %3, is the sequence of positive integers. This will imply that g(k)
<2rs.

Let us now see how Linnik proved () >0 for some s. Denote by 7,(N)
the number of integral solutions of the equation

mit o+ m=N withe;Z0,---,2 20,
and by R;(N) the number of integral solutions of the inequalities

O<wm+ - +2 <N withey20,---,x 2 0.

Thus, Ri(N)=r,0)+ - - - +7,(N) and Linnik’s fundamental result is the fol-
lowing lemma.

LEMMA 2.4. There exists s=s(k) such that rs(n) ScNCP-1 for 0<n < N, where
¢>0 depends only on k.

Unfortunately, I do not know a proof of this lemma that is not long and com-
plicated. However, one can prove quite easily that on average the value of 7,(n)
is O(n/™=1), The hard part is to prove that if ¢ is sufficiently large, then 7.() does
not differ from the average value. As an exercise show that Z,,N,l 7¢(n) =R,(N)
=<c(k, t)N*%. (Hint: How is the volume of the ¢ dimensional solid defined by
W oo FaFSN, %20, - - -, x:=0related to the number of integral solutions
of the inequalities and to the sum Z,’Ll ri(n)?)

It is now straightforward to show that ¢ (A®) >0, where s is as in Lemma 2.4.
By Theorem 2.3 this is sufficient to solve Waring’s problem. We shall suppose
o(UP) =0 and deduce a contradiction. This assumption implies that for any
€>0 there are an infinity of N such that A®(N)<eN, where A®(X) is the
counting function of the sequence %*. Now we have:

(s/k)—1 (k)

RS(N)=78(O)+"‘+78(N)§1+CN A4, (N),

since each 7,(n) ScN®/®-1 and the number of nonzero terms is 4% (). Thus
R,(N) S1+4cN@W—1eN <2ceN*/* if N is large enough, 2ceN*/k* < (N/s)** if € is
small enough. Thus we have R,(N) <(N/s)** if N is large enough. But it is
trivial that R,(V) = (V/s)*/* for all NV, this is a contradiction. Consequently,
a(A*) >0 and this solves Waring’s problem.

Linnik did not give an explicit estimate for g(k). This was done later by
Rieger [20], who proved that g(k) §22'1°k("+1)’.
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Schnirelmann took the sequence P = { p, primes}, which also has () =0,
and proved the analogue of Lemma 2.4. From this he was able to deduce, as
above, that each integer can be expressed as a sum of a bounded number of
primes. (An estimate for the number of primes needed is £2X10!0.) This was
the first step towards a proof of Goldbach’s conjecture. The last step has not
been taken yet!

As a generalization of Waring’s problem, Rieger [21] proved that if ¥ is a
monotone sequence of positive integers with ¢(%) >0, then the sequence A ® =
{ ak, aEQI}, k& Zt, forms a basis for Z+. The classical Waring problem is the
special case A =Z+.

3. The Hardy-Littlewood-Vinogradov method. It is not possible in a short
space to give a detailed account, with full proofs, of the method. I propose there-
fore to give the skeleton structure, indicating how all the bits fit together and
refer the reader to Davenport [1] for the proofs. Many of the proofs are straight-
forward manipulations and applications of standard analytic and number-
theoretic arguments. Enthusiastic readers are urged to attempt proofs of all the
lemmas for themselves, before looking at Davenport to see how it should be
done.

For convenience we introduce the notation e() =e2*®. Consider the func-
tion f(a) = D_L., e(x*a), where a is any real number. Then

s Pk
{f@} = X Re(N)e(Na),
N=1
where Rp(N) is the number of integral solutions of the equation ¥+ - « « 4-aF

=N, with0=x;<Pand 1=7=s.
If P> [NV*], then Rp(N)=R(N), the number of integral solutions of the

equation xf+ - - - +x¥=N with ;,=20, - - -, x,=0. By elementary calculus we
have:
1
3.1) Ro(N) = f [ (@)} 'e(— Na)da.
0

The idea of the method is to show that if s, depending only on &, is chosen
sufficiently large, then the integral is positive for all N = N,(k). This means that
the equation #¥+ - - - &%=V has at least one solution for all N = N,. Since all
integers less than N, can be written as a sum of at most Ny 1’s we shall have
solved Waring’s problem. To show that Rp(N) is positive if s is large enough, we
shall obtain an asymptotic formula for Rp(V) of the shape

Rp(N) = I‘(l——l_(l/i)?_ P—*G(N) + o(P+*) provided s= 2¢+ 1.
T(s/k)
Thus, if we take P=[NV*], then Rp(N)=R(N); and if N is sufficiently large,
then the first term is always larger than the error term, so R(V) > 0.
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Unfortunately the integral (3.1) is extremely complicated, and we can do
nothing with it as it stands. What we are going to do is to divide the range of
integration into two disjoint sets M and m, called the major and minor sets re-
spectively. In the major set we shall make a series of approximations to f(a).
It will turn out that the approximating functions are comparatively easy to
handle, and we can explicitly evaluate the integrals which arise. On the minor
set we shall show that the integral

f {f(@)} e(—Na)da
is comparatively small, and it can be absorbed into the error term of the asymp-
totic formula.

The details are as follows. Consider the rational numbers a¢/q with (e, g) =1,
1<a<gq, and ¢<P'?; there are only a finite number of them. Take intervals
M, centered on a/q of the form

a
o — —

1
=< —
ps 2kqPF1,

The set M =UM,,, is called the major set. The minor set is its complement m
=[0, 1]\ M. So we have

(3.2) Rp(N) = fM{ f(@)} e(— Na)da + f {f(@)} e(— Na)da

In each of the intervals M,,, we find a “good” function which approximates
to f(a). These are given by our next lemma.

LemMmA 3.1. If aEM,, then fla)=01/9)S:JPB)+0(q) where S,
=24 1e(axt/q), I(B) =[5 e(Bx*)dx.
The proof of this lemma is a straightforward substitution; write a=a/q+8

and use a partial summation argument.
We can now estimate the first integral in (3.2), for we have

J @) e=Naaa = [ (1) e~ Na)ia,

and using our approximations for f(c) in each of the M,,, we obtain the following
result.

LEMMA 3.2. If s= 4k then [u {f(@)}® e(— Na)do=JS(N)+O0(P**1), where
J=[2. I(B)e(—NB)dB and

s =3 3 <q-lsa.q>'e(—zv i).
q=1 a=1 q
(a,g)=1
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The proof is quite routine; the estimation of the error term accounts for the
condition s=4k and requires a little care.

The integral J can be evaluated by good, hard, nineteenth century integral
calculus (it requires Fourier’s integral theorem and a careful justification for the
interchange of limits of integration). When one does this the result is as follows:

Lemma 3.3.

ra+/my o
]=—I‘(_s/7)__—P ) 'LfP;[N/].

To summarize what we have done so far; we have shown that if s=4%, then

. DA+ /Ry . .
fM {f(oz)} e(—Na)da = —-—IW— P @(N) + O(P ), as P .

There are two further steps to take. First, we must show that

[ (@} e(~Neyia = oP) a5 P o

m

if 5 is large enough. This will ensure that the integral over the minor set can be
absorbed into the error term. Second, we must show that &(V) =¢>0, where ¢
depends only on k. This will ensure that the expression we have actually written
down as a main term 4s the leading term in an asymptotic expansion for R(N).

The estimation of the integral on the minor set is the hardest part of the
whole argument. The key results are due to Weyl and Hua. They are our next
two lemmas.

LemMA 3.4 (Weyl). For aEm, | f(a)| = O(P—1#+e),
Lemma 3.5 (Hua). For vEZ*, [} | f(@)| Pda=0(P?—+),

These hold for any €>0, the implied ‘O’ constants depend only on ¢, &, ».
The proofs are by induction on % and » respectively and they are by no means
easy. Readers should try and prove the cases when £ =1 and »=1 respectively.

We can now easily deduce our next result.

LEMMA 3.6. If s22k+1, then [ {f(@)}%e(— Na)da=O0(P*%) where §>0.
Proof.

= J V@ e s ma 172 [ s e

= O(P@=tha=arth+e pi-ite) = O(pet-b)

where 6= (s/2*) —e(s —2%+1) >0, if e is sufficiently small.
Now it only remains to show that &(IV) =¢> 0 for all N. We recall that

f {f(a)}'e(—Na)da
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e =3 X (¢Suqe(—Ne/g),

g=1 a=1
(a,9)=1

where S,,,= D 2., e(ax*/q). We simplify this rather complicated expression by
defining

A = Y (¢ Sege(—Na/g)
a=1,(a,q)=1
and
x(#) = 1+ Z AQp),

where p is a prime number. It is now easy to check that

&) = IIx),

the product being over all the primes. One now proves the following lemma.

LemMA 3.7. (i) &(N) is an absolutely convergent series. (ii) For any positive g
there is a prime number Do, depending only on n, such that

1—9< JIx(®» <1+n

2>p0

The truth of part (ii) follows easily from part (i), but the proof of part (i) is
difficult and we omit it. If we prove that x(p) =c(p) >0 for each prime number
p, then we can quickly show that &(V) =¢> 0 for all NV, since

W) = JIx® IIx@

b £ ) 2<pg

=(1—n Hc({))=c>0.

p<po

I

To show that x(p) > c(p) for all prime numbers p, we define M (g) to be the num-
ber of solutions of the congruence ¥+ - - - 4+ =N (mod ¢) and then note the
following lemma.

LEMmMmA 3.8.

x(#) = lim {M“’”)}.

y— 0 p"(‘—l)

The proof is straightforward; one merely notes that

1 g [ q k E
Mg =—222 - et/ + -+ - +m)),

g tel zy=0 Zy=0
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and one then verifies that

M) 2
pV(f-l) = Z A(p*) = x(p) asy — .
p=0

LEMMA 3.9. If for any prime p the congruence i+ - - + +xF =N(p7) is soluble
with not all the x;=0 (mod p), then x(p) =c(p) >0. Here v s defined as follows: if
p’”k, then y=7+14f p>2, y=1+214f p=2.

From one solution of the congruence x}+ - - - +x¥=N (mod p) it is possible
to derive many solutions of the congruence x4 - - - +a¥*=N(mod p*) for v>~.
In particular one can show M(p*) =p¢™ 6D so by Lemma 3.8 we have c¢(p)
=p7e=D >,

The final link in the chain is the next lemma which tells us when the con-
gruence &+ + - - +a¥=N (mod p) does have solutions with not all the x;
=0 (mod p).

LemMMA 3.10. The congruence xi+ - - - +xf=N (mod p7) is soluble with
X1, + - -, %Xs not all congruent to 0 (mod p) provided s = 2k if k is odd or s= 4k if k is
even.

The proof of this lemma is just an exercise in the theory of congruences.

Thus, the final link in the chain of arguments leading to a proof of Theorem
1.2 is completed. The reader is once again urged to read Professor Davenport’s
book so that all the details of the argument can be filled in.

The result which we now go on to discuss is Vinogradov's estimate for G(k).
The theorem we shall prove is the following.

TueoreM 3.11. G(k) k(6 log k+4-log 216).

In order to get this estimate Vinogradov solves the following, apparently
harder, problem. Let (V) denote the number of solutions of the equation

x:+---+xfk+u+u1+vyk=N,

where 1<5x;<P, 0Su, ;4 <1P+, 0SSy PY% 0=Zv=%1P*'? and u, w3, v can
all be expressed as the sum of at most ! kth powers of positive integers. We
shall choose  as a function of % later. If we can show that #(N)>0 for all NV
> No(%), then we shall have shown that G(k) <4k--31.

Just as before we have an expression for #(IV) as an integral:

@ = [ U@ V@) e~ Nadda,

where
P

fl@ = Xelarr), U@ =2 elaw), and V() = 2 e(e).

Tl % v
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We divide the interval [0, 1] into the major and minor sets M and 7 and so
obtain:

(V) = f {/(@}*{U(@)}V(a)e(— Na)da + f {{(@}*{U@)}*V(@)e(— Na)de,

= Iy + In, say.

The basic idea is to show that if / is chosen appropriately, then (V) >0 for
all sufficiently large N. We do this by showing that limy..., | Im| /Z2 =0, for this
means that from a certain point on Ip> | In| and so 7(N) = Iys+In>0.

Of course one cannot evaluate the integrals Iy and I,, directly. What we are
going to do is obtain a lower bound By for I3 and an upper bound b, for II,,.I ,
and then prove that d,/B—0 as N— if [ is chosen appropriately. This is
sufficient because

| 2. gﬁ”_.

In =~ By

LeMMA 3.12. Iy > P*U(0)2V(0), where c1 is a positive real number depending
only on k.

Proof. By direct substitution we see that

Ip= Y, fu{f(a)}4ke(—N1a)da,

U ULV Y

where Ny=N—u—u;—vy* and $P*< N; = P*. From Lemma 3.2 we know that
f {f(&) }#e(— N1a)da = T(N)S(N1) + O(P¥*-).
M

Now

T 1/k))%* —
T(N) = ( ':((4)/ )) Nf% 1)/k > 62P3k,

where ca=c3(k) >0, and by Lemmas 3.7-3.10 & (V) 2 ¢; >0, with ¢; depending
only on k. Hence
Iy Z ca P* Y, = ¢ P®U(0)2V(0).

%,%1,9,¥

We now investigate the integral over the minor set:

| | = f { ()} () 2V (@) e( = Na)der

< [ 1@ U6 | Ve | do

Now |f(a)| =I >F, e(ozx")| =>F, e(ozx")l =P, so we can give an upper
bound for the last expression:
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flf(a)l“lU(a)]2|V(a)]daéP“"m::lV(a)lf | U(a) |2da

< P¥max | V(a) | U(0)2
aSm

To investigate maxX,emn | V(e)| we need the following two lemmas:

LeMMA 3.13. Let Dy(X) denote the number of distinct numbers up to X that can
be represented as sums of | positive kth powers. Then Di(X)>caX'8, where &
=(1—(1/k))%, ¢;>0 depends only on .

Proof. We use induction on I. For =1, D;(x) = [xV/*]>¢;xV/*. Consider the
numbers x*-+2, where

Go)k < < (3x)'* and 0 < g < Lat-1/k,

and z is a sum of /—1 positive integral kth powers. The integers x*+z are sums
of I positive kth powers, and they are all distinct. Hence

Di(%) = 52Dy (Rt~ ) = cptb,
by the induction hypothesis on D;_; (3x1—(/®),

LeMMA 3.14. Suppose x runs through X, distinct integer values in an interval
of length X, and Y runs through Y distinct integer values in a set of length V. Sup-
pose further that = (a/q) +0(1/q?), where (a,q) =1. Then

2 1
25 eary) (log 9

= XY, (9+X)(9+ Y).

This lemma was proved by Vinogradov and applied by him in several im-
portant investigations in number theory, such as his proof that each sufficiently
large odd number can be expressed as a sum of at most three primes. However,
the lemma does occur in the book Inequalities by Hardy, Littlewood and Polya,
page 205. They seem to have missed its applications in number theory.

We now return to our investigation of maxaen | V()| . Since aEm we have
|e—(a/g)| £1/(2kgP*1) with PV2<g<2kP*1, in particular |a—)a/q)| <1/¢%
We apply Lemma 3.14 to V(a) with

Xo = Dy3P+1%), Vo= PU% X =3}P-12 and ¥ = P
to get

2 lo
< 61X0P1/2k g4

| V(o) |? = | 22 2 e(ay™) (¢ + 31P+12)(q + P12)

=_<_ 62X0P1/2k 10g g

. iPk—1/2q é ConP“'H,

where p=k+1/2k—1/2 and €>0, since log ¢<c.P* for any €>0. Therefore
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max | V()| S el P4,
a€m
| In| = esXy - U(0)- P4/,
Thus
| I | 5 ceX;MU(O) prru/De
In — P3*2(0)V(0)
Now V(0) =1 X oPV%* and U(0) =D,(}- P¥), so we have
I Pl (u/2)+e—1/2%
(3.3) [l e :

Le © XPDGPY

Now Xo=D,;}P:12) 2¢,(3P*?)1—% and D,(:P*) =c,(3P*)'-%. On substituting
these lower bounds into (3.3) we obtain
| 7|
In
where A=k/2—1k—34et+k(1—(1/k))'—3(—3)(A—-(1—(1/k)). We now
choose / so that A <0; this will ensure that | I,,.] /Iy—0. Simplify the expression
for A; it becomes

S ¢ PA,

A=1—(1/k))(CBk/2) — 1) — ik + e
Thus A 'will be negative if (1—(1/k))*3k/2 <%k, i.e., if
(1 — (1/k))! < exp(—6 log %?).
Now (1—(1/k))’=exp{l log(1—(1/k))} <e Uk, so it suffices to take —I/
> —log 6k? i.e., I<2k log k+% log 6. In this case 7(IN) >0 for all sufficiently

large values of N, and the number of kth powers required is 4k+3/<4k+6%
log k4% log 216. Therefore

G(k) < 6k log k + k(4 + log 216).

Since Vinogradov’s proof appeared, a great deal of work has been done in
trying to improve the estimates for G(k). This work is exceedingly complicated
involving intricate analysis and very delicate estimations of trigonometric
sums. The best known results are the following:

G(2)=4; GR=T7; G@=16; GO6) =23  G(6) = 36;

G(T) £52; G@B) <73; GO =99 G(10) = 122.
Chen [52] showed that G(&) k(3 log £+5.2) and Vinogradov [63 ] showed that

G(k) <k(2 log k+4log log k+2 log log log k+13) for all “large” &, (here “large”
means in excess of 170,000). Full references are in the bibliography.

4, The determination of g(k). The estimates for G(k) obtained by Vinogradov
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lead to a determination of the precise value of g(k) for any given k= 6. In princi-
ple the method of proof is quite simple. Once one has an upper bound for G(k)
which is less than our lower bound [(3/2)%]42%—2 for g(k), then from some
integer c(k) (which can be calculated in terms of & by carrying out Vinogradov's
proof and estimating all the constants and error terms explicitly in terms of k)
each integer is a sum of fewer than g(k) kth powers. It is then a finite calculation
to check that each integer less than c¢(k) can be expressed as a sum of at most
g(k) kth powers.

The detailed work was carried out in a series of papers by Dickson, Pillai,
Rubugunday, and Niven. Their final conclusions are summed up in the follow-
ing theorem:

THEOREM 4.1. If k= 6 and if the following inequality holds

@) 3k — 2k 4 2 < (28 — 1)[(3/2)],
then g(k)=[(3/2)%]+2%—2. However, if
(ii) 3k — 20422 (26 — 1)[(3/2)4],

then we define N(k) by N(k)=[(3/2)%]- [(4/3)*]+ [(3/2)*]+ [(4/3)*] and the

conclusion is now

g(B) = [B/2)*] + [(4/3)}] + 2 =3 if 2 < N(k),
or

g(&) = [(B/2)*] + [(4/3)¥] + 2* — 2  if 2* = N (k).

It has been verified by Stemmler [48] that condition (i) holds for all & in the
range 6 <k =200,000, and (i) is conjectured to hold for every 2= 6. Evidence in
favour of this conjecture was provided by Mahler [40] who proved, using deep
theorems from the theory of diophantine approximations, that there were at
most only a finite number of values of & for which condition (i) does %ot hold.
Unfortunately Mahler’s method of proof does not enable us to find this set of
integers, if indeed the set is nonempty.

Chen [22] using extremely detailed arguments, showed that g(5) = 37, Dick-
son [24] showed that g(3) =9, and Auluck [51] showed that each integer =¢
can be written as a sum of at most 19 4th powers, where logi, logi ¢ <88.39.
Thus, in principle, g(4) can be calculated.

5. Proof of Hilbert’s theorem. We give a complete proof of Hilbert’s theorem.

THEOREM 5.1. Each positive integer can be expressed as a sum of at most g(k)
kth powers of positive integers, for k=1, 2, 3, - - - . Moreover g(k) depends only
on k, not on the integer being represented.

Our method of proof is based on Hilbert’s method, but the arguments have
been much simplified, mainly by Hausdorff, Stridsberg, and Ellison. It will turn
out to be easier to prove the following theorem, which is equivalent to Theorem:
5.1,
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THEOREM 5.2. There are integers A>0, M>0 and positive rationals
A, ¢ - o, N, depending only on k, such that each integer N=A can be written in
the form

M
N = Ani, where i€ Z" for 15i<M.
i=1
We now show that Theorems 5.1 and 5.2 are equivalent. Obviously if

Theorem 5.1 is true, it implies that Theorem 5.2 is true with 4 =1, M =g(k),
and M= - - - =Ay=1. Now suppose Theorem 5.2 is true. Let ¢ be the least
common multiple of the denominators of the ;. Then o\;=0;EZ+. If X is a
positive integer and X =04, then X =No-+6, where 0<0<¢ and N=4. By
Theorem 5.2 we have

M k
N = Exini)

t=1

sO

M
k
X=No+0=2 om +o.
=1
Now =) 1¥<g, so each integer X 204 can be expressed as a sum of at most
{a'—1+ M, a'z} kth powers of positive integers. Hence each positive integer
can be expressed as a sum of at most

M
g(k) = {Aa'—i-a'- 1+ Za;}
=1
kth powers of positive integers, which is Theorem 5.1.
It is Theorem 5.2 which we shall actually prove. The key result is Hilbert’s
lemma.

LemMmA 5.3. For each positive integer k there are positive rational numbers
Aoy ++, Ny, where N=(2k+1) - - - (2k+4)/24, and integers ouy, - - -, opu,
oug, * * *, Ong Such that

N
(14 - 4w = > Nty + - - - aggme)
=0

Proof. To prove this lemma we use some elementary properties of convex
bodies in R¥. The properties which we need are very intuitive, so we put their
proofs (Propositions 5.4 and 5.5) into an appendix, so as not to interrupt the
main argument.

It is immediate that the set of homogeneous forms of degree 2% in 5 vari-
ables with real coefficients forms a vector space V of dimension N = (2k+1) - - -
(2k+4)/24 over R. Here N is just the number of coefficients in the general
form of degree 2k in x4, * -+, 5.
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Consider now the set of vectors S of V given by the forms L=L(x)
= (%1 + + + +asxs)? for all sets of ey, + + -+, sE @, the rational numbers. Let
k(S) be the convex hull of S (i.e., £(S) is the smallest convex set in V that con-
tains .S). We now need our first geometric result.

PRroPOSITION 5.4. If S is any subset of a real vector space V, then any vector
a&h(S) can be written in the form a= Zﬁlo Niss, where N=dim V, s;ES, M;ER,
> Ni=1, and \;=0 for i=0, - - -, N.

Moreover if a is a rational vector, i.e., all its coordinates are rational, and all
the vectors in S are rational, then all the numbers Nq, - + -, A\x can be chosen to be
rationals.

Thus, to prove the lemma it will suffice to show that a rational multiple of
the vector (x?+ - - - +x2)* is in A(S). For if it is, then Proposition 5.4 tells us
that we can write (x?+ - - - +x2)* as Z?Lo Ni(oaxr+ « -+ Fousxs)?* where
Ao, - - -, AwEQtandan, - - -, N, - ¢, ansEQ.

To show that (x34 - - - +x2)*Ch(S) we need our second geometric result.

PROPOSITION 5.5. The centre of gravity of a conttnuous mass distribution in o
bounded subset S of a real vector space V always lies in the interior of the convex hull
of the set.

Let T be the set of vectors in V given by the forms L= (ayx:+ - - - +oxs)2®
with o;ER for 1=<4=<5 and o2+ - - - +a2<1. Then T Ch(T)Ch(S). So the
centre of gravity of the mass distribution of unit density throughout 7 and
zero elsewhere certainly lies in %(S). The centre of gravity of such a mass dis-
tribution is given by

g=f(a1x1+ --~+a5x5)2"da1-~-da5/fda1--~da5,
B R

where R is the region of R® defined by o5+ - - - +aZ <1. To evaluate the inte-
gral we change the variables as follows. Put

bt = PBuos+ -+ -+ Busas

ts = Bsiar + -« - -+ Bssas,
where Bu=x;x?+ - - - +x2)~Y2 for 1<¢<5. The remaining entries in the
matrix (B8:;) which defines the transformation are chosen in such a way that the
matrix (8;;) is orthogonal. The expression for g now becomes:

2 2.k 2k

g=c(x+ - +x5)ft1dt1- -« dts,
R

where ¢;'= [z dt - - - dts>0. Thus we have,

g=clri+ -+ a5,
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where c=c, [z £i'dty - - - dtz>0.

Since OEL(S) and k(S) is convex, therefore N EL(S), where N is any num-
ber in the range [0, 1]. In particular we take A=7/c, where 7 is a positive ra-
tional in the range 0<7<c¢. Hence r(x}+ - - - +x2)*, a rational vector, is in
k(S). Thus, Lemma 5.3 follows from Proposition 5.4.

We shall need the following three corollaries of Lemma 5.3:

COROLLARY 1. For any positive integers k and y there are integers a, + + - , an’
Bi, * - -, By and positive rationals No, - + - , Ny, with N and the \; depending only
on k, such that (x2+y)e= DX o Ni(oaer+B:) 2.

Proof. This follows immediately from the lemma and Lagrange's four
squares theorem.

COROLLARY 2. If Theorem 5.2 is true for k=m, then it is true for k =2m.

Proof. This follows immediately from Corollary 1 on putting x; =0. For if each
integer P=A4 can be written as P= Zfio wiyf, where the u;EQ@+ for 0Zi<M
depend only on 2 and the y,&2Z* for 0=¢=< M depend on P, then P can be
written as

M N ok MN ok
P=2 w2 Ning = 20 vimy
=0 J=0 =0

where the »; depend only on k.

Before going on to Corollary 3 we shall introduce a convenient shorthand
notation. If we have a sum of the form n= > X, \;nf, where M and the \;E @+
depend only on k not on n, then we denote it by #= 2 (k). With this notation
ifa=2, (k) and b= (k) thena+b= Y (k) andifa= ), (2k) thena= D (k).
If the reader prefers he can always write out the expressions in full. (Warning:
Have a large sheet of paper ready.)

CoOROLLARY 3. If r, m, x, TEZ* and r <m, x> < T, then there is an equality of
the form

r—1
Z Bw- x2 T + g2 m—r = Z (m).
=1

The B,, are positive integers and are explicit functions of m and r only.

Proof. Put k=mr in Corollary 1 and then differentiate with respect to x;
27 times to get:

=1 2y i ¥ r m
v+ N+ 3 Buar (@) = 2o hi(@m 4 20) ! o (s + B/ (20) !

y=1 =0

= 2. (2m) = 22 (m).

Put x;=x and y=T—x? to obtain the result.
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Proof of Theorem 5.2. The basic idea of the proof is to show that we can find
integers A, N, depending only on %, such that if 7= N, is an integer then each
integer in the range AT*<n<A4 (T+1)’° can be written in the form n= ) (%).
Since every integer greater than 4 Ny is contained in such an interval by making
a suitable choice of T, this will show that each integer greater than 4 N¥ can be
written in the form Z (k). This is just Theorem 5.2, which as we have already
seen implies Theorem 5.1.

LemMA 5.6. If T'> Ny(k), then each integer in the range AT*<n <A(T+1)*
can be written in the form

n=ATF 4+ 0, T% 1+ -« - 4 b 4T + by,
where by, - - -, b are integers satisfying 0<b,<T,1<i<Zk.

Proof. It is only necessary to show that if T is large enough, then A4 T*
+(T—=1)(T*1+ - - - +T)>A(T+1)% for we then have the result by writing
n in the scale of 7. The inequality is

ATt + TF — T > A(T + 1)%,

and this is certainly satisfied if T is large enough, say 7'= N;.

We now go on to show that if T is Jarge enough, then each integer of the
form AT*+b,T% 1+ - - - +bT, where the b; are integers in the range 0=<b;
< T—1, can be written in the form ) (%). The proof is by induction on %. For
k=1 the result is trivial and for £=2 the result is contained in Lagrange’s four
squares theorem.

Lagrange’s theorem asserts that each positive integer can be expressed as
a sum of at most four squares of integers. A proof can be found in almost any
elementary book on number theory. There is a very neat geometrical proof in
J. W. S. Cassels’s book Geometry of Numbers, page 99.

Suppose that Theorem 5.2 is true for all integers £ <m — 1. Then by Corollary
2 of Lemma 5.5, Theorem 5.2 is true for all even integers less than 2m. As
Theorem 5.2 is equivalent to Theorem 5.1, our hypothesis implies that Waring’s
theorem holds for all even integers less than 2m.

LetT, Np, =1, 2, , m—1) be positive integers with N,_, < 7T, which
will be chosen explicitly later By our induction hypothesis there is an 1nteger 7,
depending only on m, and integers x;=0 such that

(1) S =Nuy forj=1,2---,m—1.
=1

We can take r=max(g(2k), 1=k <m—1). Substitute these values of x;; for x
in the identity of Corollary 3. Add the resulting equalities. We obtain

Eimd m—y L » m—j
) Y BT Y a4 NayT™ = 3 (m),

=0 t=1



28 W. J. ELLISON [January

for j=1, -+, m—1, Let ¢, ;=B,; > 4., #i, and sum (2) over all j, to obtain
m—1 1 )

® S { Searr+ Nuitmi} = .
i=1 y=0

Write (3) as a polynomial in T, say

(4) anT™+ -+ -+ aT = ) (m),

where a1=Ni, ai=Ni+ D ol cmamj for i=2,-+-+-, m—1 and am=r

-(Boa+ -+ - +Boma) =41—1 say. Note that 4, depends only on , since r
depends only on m.

As D 5.1 22 <T we have x;; < TU¢m=9 for all 7 and j. Hence we certainly
have

Sag <™ for1<vEm—2 and 1SjSm—1.
t=1
Consequently

m—1
E €vj = Br(m — 1)Tm=2)/(m—1)

i=1
where B =max B,,;. We now assume that
T > Br(m — 1)Tm2Im=D_ je T > {Br(m — 1)}n1,
This means that T>a;—N;=0 for 1 Zi<m.

If we are now given any integers b; (for 1 7<) in the range 0 <b;< T, then
we successively choose the Ny, - - -, N,,_; as follows:

Gm-1 = bp_1 (mod T), 0= Npi=T.
If an1=T with this choice of N,_;, then we find N, such that 14am_o

=byo(mod T) and 0= N,_o=<T. However, if an_1<T, then we find N, such
that @m—1=bm_s(mod T) and 0N, =T. Continuing in this way we choose

Nm—g, * * +, N, and in the final step we choose N; so that a; = T. We have now
shown that for all choices of by, « + + , b in the range 050, <T for 1 S <m—1,
5) AT 5T+ o oo - bpiT = Z (m)

it 7> {Br(m—1)}m1,
The proof of Theorem 5.2 now follows easily. We replace T by (T+1) and
have the particular result:

(6) AT+ )"+ en(T +1) = 32 (m),
where ¢, is any integer in the range 0=cn,<7. If &1, * - -, cm are given integers
in the range 0=¢;<T for 1 <7 =<m, then by choosing the integers by, * * - , bm—

in (5) suitably and adding to (6) we obtain
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) QA+ DT+ eI+ - - -+ euaT + om = 3, (m).

Thus, if T>No=max{{Br(m—1)}m, Ny;(24:+1)}, we have shown that
each integer # in the range AT <n<A(T+1)™ can be written in the form
n= Y, (m). Since every integer n>A N lies in such an interval, by an appropri-
ate choice of T"we have proved Theorem 5.2 and hence Theorem 5.1.

Appendix on Convexity: The best general reference is H. G. Eggleston, Con-
vexity, Cambridge Tract number 47. We refer to this book for the proofs of the
following plausible assertions.

When thinking of a convex body C in R* it is usually convenient to consider
it as a subset of the “smallest” linear variety containing it; for example we
always think of a circle as lying in a plane rather than as a subset of R® or
R®, etc. It is then a theorem that a convex body has an interior with respect to
this space (see H. G. E. page 13). A support hyperplane to a convex body C is a
hyperplane which intersects the closure of C but does not intersect the interior
of C. It is an easy lemma that through each point of the frontier of C there
passes at least one support hyperplane (see H. G. E. page 20). If S is any point
setin R®), the convex hull, h(S), of Sis the intersection of all convex sets .S which
contain S. Carathéodory’s theorem asserts that if y ©k(S), then y can be ex-
pressed in the form y = D> 7, \is;, where s;&.5 and \;E R+ for 0<7<#. In addi-
tion Y #_oN;=1. (See H. G. E. page 35.)

Proposition 5.4 is a trivial consequence of Carathéodory’s theorem, for if y
and all the elements of .S are rational vectors in R then we have a set of linear
equations for Ao, - - -, N, with rational coefficients, hence Ny, - - -, N, are posi-
tive rationals. Our second geometrical result, Proposition 5.5, is also easy to
prove. For if the centre of gravity g of the mass distribution lies in the exterior
of 2(S) or on the frontier of 4(S), then in the first case we can pass a hyperplane
between g and %(S) and in the second case we can pass a support hyperplane
through g. Taking moments about the hyperplane leads to a contradiction in
either case.

6. Generalizations of Waring’s problem. The problems which one could say
are generalizations of the original Waring problem are legion. There just is not
enough space here to describe them. Consequently, I shall confine myself to
just a few chosen more or less at random.

The first may be called the prime Waring problem it is just like the classical
problem only we restrict the integers x; in »_~, x¥ to be prime numbers. The
analytic method can be used to solve this problem and a good account of its
solution, together with its many ramifications is to be found in the book by Hua
[111].

A fairly natural generalization is to ask: “If f(x) is an integral valued poly-
nomial which takes the value 1, then can each positive integer be expressed as
a sum of a bounded number of values of f(x)?” The classical Waring’s problem
corresponds to the case f(x) =x*. In a sense this problem goes back to Fermat,
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who in 1640 characteristically asserted: “A positive integer is triangular or the
sum of 2 or 3 triangular numbers; square or the sum of 2, 3, or 4 squares; pentag-
onal or the sum of 2, 3, 4, 5 pentagonal numbers; etc.”

The expression for the nth r-gonal number is

P(n)=3(r—2)(n*—mn) +n forr > 2.

This assertion also occurs in Waring’s book, just preceding ‘Waring’s problem’!
Fermat’s problem was solved by Cauchy, the proof is quite elementary. Kamke
[104] gave a solution of the more general problem, his argument being based on
Hilbert’s method. Later, the analytic machinery was brought to bear on the
problem and a number analogous to G(k) appeared. Hua [97] gives upper
bounds for this number, similar in character to Vinogradov’s estimates for G(%).

Perhaps the most natural generalization of Waring’s problem is to ask the
question about algebraic number fields or even about arbitrary fields. Siegel
[77] and [78] tackled the problem for number fields. He showed that if 4 is the
set of algebraic integers of the number field K which can be written as a sum of
kth powers of algebraic integers, then there is a bound g(k, K) depending on &
and K such that each integer #& Ay can be written in the form 6= Zfil o,
where N=g(k, K) and o4, *+ - -, @, are algebraic integers.

In general A; does not consist of all the algebraic integers of the field K.
For example take K= @(~/2) and look at As. The integers of K are all of the
form a-4-b+/2, a, bE Z; the square of an integer is of the form a24-2b%-+2ab~/2
so if a=u-+v+/2 is an integer and v5#0 (mod 2) then & cannot be written as a
sum of squares of integers in K. Siegel also obtained an asymptotic formula of
the number of solutions of the equation 8= Y_~., of analogous to Theorem 1.2.
He also conjectured that the bound g(k, K) was independent of the number field
K, a result subsequently proved by Birch, [69] and [81].

Waring's problem for general fields did not receive much treatment in the
literature until recently when Ellison [86 ] showed by very elementary methods
the following two theorems:

THEOREM 6.1. Let k be a fixed positive integer. Suppose that K is a real field
with the following properties:

(1) Each totally positive element in K can be expressed as a sum of s squares in
K, where s depends only on K.

(2) For each totally positive element o in K, there exists a B, depending on «,
such that sa/ (s+2k)<pB*<a for all orderings < of K.

Then each totally positive o in K can be wrilten in the form a= Zf’;l af, where
a;EK for 1 SIS Nand NSg(k,K) < .

TaEOREM 6.2. If K is a non-real field of characteristic 0, and —1 is a sum of
squares in K, then Waring's theorem is true for all exponents.

As a generalization of Waring’s problem in an entirely different direction, one
can take a sequence #;=#;< - - - of positive integers and ask whether every
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positive integer NV can be written in the form N= > 7_; x%¥, where  is less than

some bound depending only on the sequence { n,-} .
It turns out that there is a very nice characterization of such sequences

proved by Scourfield [127]:

A mnecessary and sufficient condition that such a bound exists is Y oq 1/n;
= 00,

There is a simpler problem in a similar vein. Let 7(z) denote the least integer
r such that the equation N=u;+ - - - +u,, s=r, is soluble for every positive
integer NV, where each %; is an integer of the form x}* with m=#. Pillai [125]
showed that 7(n) <2+ k—1 for all = 32, where k = [log I/log 2] and I = [(3/2)*].

Another problem, known as the “easier” Waring problem, considers the
representation of an integer # in the form n= +xf+ - - - +x%. Itis easy enough
to prove that the analogue of g(k) exists, but obtaining more precise information
is largely an unsolved problem.
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