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Simple linear regression

Background.

We all know what a straight line is.  Along with the simple way of drawing a line (e.g., by using a

ruler), there is a mathematical way to draw a line.  This involves specifying the relationship between

two coordinates x (measured on the horizontal or x axis) and y (measured on the vertical or y axis).

By doing so, each point on the line is “drawn” by specification of the point’s coordinates (xi,yi).

The equation relating the xi to the yi is as follows:

y=βo+β1x

βo is called the intercept of the line (because if xi=0 the line “intercepts” the y axis at βo), and β1 is

called the slope of the line.
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I. Both lines have the same intercept.
II. Both lines have the same slope (they are parallel) but different intercept.
III. Both lines have the same intercept but different negative slopes
IV. Both lines have the same (negative) slope but different intercepts.
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The appeal of a linear relationship is the constant slope.  This means that for a fixed increase D x  in

x, there will be a fixed change D y  (=βoD x ).  This is going to be a fixed increase if the slope is

positive, or a fixed decrease if the slope is negative, regardless of the value of x.  This is in contrast

to a non-linear relationship, such a quadratic or polynomial, where for some values of x, y will be

increasing, and for some other values y will be decreasing (or vice versa).
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Consider the following scatter plot
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Even though it seems upon inspection that y may be increasing for increasing x, the relationship is

not a perfect line.  If we want to draw a line through the plotted observations that we think best

describes the trends in our data we may be confronted with many candidate lines.
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Determining the Best-fitting straight line: The least squares method

Consider the following figure (taken from fitting a regression line to the systolic blood pressure –

SBP- data of Table 5-1 in the text):
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The least-squares method

The regression line (whatever it is) will not pass through all data points Yi.  Thus, in most cases, for

each point Xi the line will produce an estimated point $ $ $Yi Xi= +β β
o 1

 and most probably, $Y
i

Y
i

π .  In

fact, as we see in the previous figure, Yi Yi ei= +$ .   For each choice of $ $β β
o
 and 

1
 (note that each pair

$ $β β
o
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1
 completely defines the line) we get a new line, and a whole new set of deviation terms e

i
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The “best-fitting line” according to the least-squares method is the one that minimizes the sum of
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The least-squares method (continued):

The solution is derived by use of calculus.  That is, we set the last part of the above equation to zero

and take partial derivatives with respect to βo and β1.

The resulting least-squares estimates of βo and β1 are given by the following expressions:
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Note that since $ $β βo = -Y X1 , then $ $ $ $Y X Y X Xi i i
= + = + -β β βo 1 1e j.  This implies that if $β1 is close to

zero, our best guess for Y is the mean Y .



ANOVA/Regression I 8

Explaining variability

Statistical modeling is an attempt to “explain” why not all data points are equal.  In other words, we

are trying to account for the variability in the data.

The total variability in the data is given by
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as we can see by inspection of the previous figure.  It also turns out that
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This is because, the cross-product term 2 0
1

$ $Y Y Y Y
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=
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Proof (Draper and Smith, p.18):
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Explaining variability (continued)

This means that there are two parts to the total variability SST Y Y
i

i

n
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i YYSSY
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the data: one part that is explained or accounted for due to the regression SSR Y Y
i

i

n
= -FH IK
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Â $ 2

1
, and

another that is left unexplained.  That is, the regression cannot explain why there are still distances

SSE Y Y
i i

i

n
= -FH IK

=
Â $ 2

1
between the estimated points and the data (this is called error sum of squares).

Since our goal is to reduce the part of the total variability that is unexplained, the regression line will

be more useful as the variability due to regression is increasing compared to the unexplained

variability.  That is, the ratio R SSR
SSY

SSY SSE
SSY

2 = = −  is as large as possible.
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Degrees of freedom

We define the following quantities
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Note that each of the sums of squares that we consider is comprised by a number of terms.  For

example, the total sum of squares, SSY is made up of n terms of the form Y Y
i
-e j

2
.  Notice however,

that once the mean Y  has been estimated, only n-1 terms are needed to compute SSY.  The nth term is

known since SSY Y Y
ii

n
= − =FH IK

=
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1
 for all Yi , i=1,…,n-1.  The degrees of freedom of SSY are then n-1.

On the other hand, the sum of squares due to regression, SSR, is computed from a single function

involving the Yi (the estimated slope $β1), that is, SSR Y Y X X
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only one degree of freedom associated with it.  Finally, SSE has n-2 degrees of freedom.
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The Analysis of Variance Table

Source of
variability

Sums of squares
(SS) Df

Mean squares
(MS) F Prob > F

Model SSR X X
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Assumptions of the linear regression model

1.  The deviations ε
i

Y
i

Y= - $  have zero mean and variance σ2 which is unknown

 2.  The εis are uncorrelated, that is, for any i and j with i≠j, cov(ei,ej)=0

Two immediate implications of these assumptions are that the mean of each data observation is

E Y
i

X
iY X( ) |= = +µ β βo 1 , with common variance σ2, and that Yi and Yj  are uncorrelated for i≠j.

A final assumption that allows us to perform statistical tests is as follows:

        3.  The deviations εi are distributed according to the normal distribution, with mean 0 and

variance σ2 that is, εi ~N(0, σ2).

This final assumption implies that the εi are not only uncorrelated but also independent.
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Inference in simple linear regression

Tests involving the slope of the regression line

Recall that
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Test of hypothesis for zero slope

In these models, y is our target (or dependent variable, the outcome of interest, or a factor that we

cannot control but want to explain) and x is the explanatory (or independent variable).

Within each regression the primary interest is the assessment of the existence of the linear

relationship between x and y.  If such an association exists, then x provides information about y.

Inference on the existence of the linear association is accomplished via tests of hypotheses, and

confidence intervals.  Both of these center around the estimate of the slope β, since it is clear, that if

the slope is zero, then changing x will have no impact on y, thus there is no association between x

and y.
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Hypothesis testing for zero slope (continued)

The test of hypothesis of no linear association is defined as follows:

1.  Ho: No linear association between x and y: β1=0..

2.  Ha: A linear association exists between x and y:
 a. β1≠0(two-sided test)

b. β1>0
c. β1<0

3.  Tests are carried out at the (1-α)% level of significance

4.  The test statistic is T = F
HG

I
KJ

$

$

β

β
1

1
s.e.

 distributed as a t distribution with n-2 degrees of freedom

5.  Rejection rule: Reject Ho, in favor of the three alternatives respectively, if
a.  t<tn-2;α/2, or t>tn-2;(1-α/2)

b.  t>tn-2;(1-α)

c.  t<tn-2;α

Confidence intervals

}(one-sided tests)
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Confidence intervals of β1 are constructed as usual, and are based on the standard error of $β1, the

estimator, and the t statistic discussed above.

A (1-α)% confidence interval is as follows:

$ $ , $ $
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Inference involving the intercept

In some rare occasions, tests involving the intercept are carried out.  Both hypothesis tests and

confidence intervals are based on the variance S
n
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. The derivation is again left

as an exercise.  (hint. Consider the fact that $ $β βo 1= -Y X  and that Y  and $β1 have zero covariance as

it is proven below).  The statistic,T tn= F
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A (1-α)% confidence interval is as follows:

$ $ , $ $
;( / ) ;( / )β β β βα αo o o os.e. s.e.- +

- -
F
HG

I
KJ - -

F
HG

I
KJ

L
NM

O
QPt tn n2 1 2 2 1 2



ANOVA/Regression I 20

Inference about the regression line

Recall that $ $ $ $Y X Y X Xi i i
= + = + -β β βo 1 1e j . Thus, the variability of a specific point $Yo at Xo is given by
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Inference about a particular value $Yo is based on the statistic

T
Y

Y
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.  Notice that the estimated variability (of the regression line)

increases as values of X are considered that are farther from the mean.

Inference about the regression line mainly involves construction of confidence intervals.

A (1-α)% confidence interval is as follows:
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This interval is wider away from the mean of the X’s, and narrower closer to that mean.
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An F test of overall linear association

Recall that Y Y Y Y Y Y
i

i

n

i
i

n

i i
i

n
- = -Â -Â

=
Â

F
H

I
K

=

+ F
H

I
K

=
e j

2

1

2

1

2

1

$ $ .  That is, the total variation in the data is broken up

into two parts.  One due to regression and one left unexplained (error) respectively.

It can be shown that SSE/σ2 or equivalently 
( ) |n SY X- 2 2

2σ
 follows a chi-square distribution with n-2

degrees of freedom.  On the other hand, if ββ1=0, SSR/σ2 follows a chi-square distribution with 1

degree of freedom, and is independent of SSE.

Their ratio F MSR

MSE
F n=

-
~ ,1 2 is distributed according to an F distribution with 1 and n-2 degrees of

freedom.
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An F test of overall linear association (continued)

The F test of linear association, that is, the test of whether a line (other than the horizontal one going

through the sample mean of the Y’s) is useful in explaining some of the variability of the data is

based on the observation that the expected value E MSR X Xid i e j= + -Âσ β2
1
2 2

while

E SSE E S
Y Xd i = =FH IK|
2 2σ  when the regression model is correctly specified (we will see what happens

when this is not the case).  If the population regression slope β1≈0, that is, if the regression does not

add anything new to our understanding of the data (does not explain a substantial part of the

variability), the two mean square errors MSR and MSE are estimating a common quantity (the

population variance σ2).

Thus the ratio should be close to 1 if the hypothesis of no linear association between X and Y is

present.  On the other hand, if a linear relationship exists, (β1 is far from zero) then SSR>SSE and

the ratio will deviate significantly from 1.
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The F test of linear association

The F test of hypothesis of no linear association is defined as follows:

1. Ho: No linear association exists between X and Y

2. Ha: A linear association exists between X and Y

3. Tests are carried out at the (1-α)% level of significance

4. The test statistic is F MSR

MSE
= .

5. Rejection rule: Reject Ho, if F>F1, n-2;α.  This will happen if F is far from 1.0.

In simple linear regression, the F test is equivalent to the t test for zero slope described earlier.  In

fact, T F2 =  where T2 is distributed according to a tn-2 and F according to an F1,n-2.



ANOVA/Regression I 25

Analysis of the systolic blood pressure example

In this example, the relationship between systolic blood pressure (SBP) and age is explored.  The

data are listed below.

. list
           sbp        age            sbp        age
  1.       144         39    16. 130         4
  2.       220         47    17. 135         45
  3.       138         45    18. 114         17
  4.       145         47    19.     116         20
  5.       162         65    20.     124         19
  6.       142         46    21. 136         36
  7.       170         67    22.     142         50
  8.       124         42    23. 120         39
  9.       158         67    24.     120         21
 10.       154         56    25.     160         44
 11.       162         64    26.     158         53                        
 12.       150         56    27.     144         63
 13.       140         59    28.     130         29
 14.       110         34    29.     125         25                          
 15.       128         42    30.     175         69
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. label var sbp "Systolic Blood Pressure"

. graph sbp age, xlab ylab
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. reg sbp age

  Source |       SS       df       MS                  Number of obs =      30

---------+------------------------------               F(  1,    28) =   21.33

   Model |  6394.02269     1  6394.02269               Prob > F      =  0.0001

Residual |  8393.44398    28  299.765856               R-squared     =  0.4324

---------+------------------------------               Adj R-squared =  0.4121

   Total |  14787.4667    29  509.912644               Root MSE      =  17.314

------------------------------------------------------------------------------

     sbp |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

     age |   .9708704   .2102157      4.618   0.000       .5402629    1.401478

   _cons |   98.71472   10.00047      9.871   0.000       78.22969    119.1997

------------------------------------------------------------------------------
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Conclusions

1. MSR=6394.02269

2. MSE=299.765856, which is the best estimate of σ2 if the model is correct.

3. F=21.33 which is much larger than the tail of F1,28;0.95.  We thus reject the null hypothesis of no

linear association between blood pressure and age.

4. The t statistic of zero slope is T=4.618.  This is much larger than a t28;0.975.  Alternatively, the p

value of the test is 0.000<0.05=α.  Thus, we again reject the hypothesis of no linear association

between systolic blood pressure and age.  In fact, the positive estimate of the regression slope

$ .β1 0 9709=  means that blood pressure increases with age (about one unit for every year of life).

5. The R2 =0.4324.  This means that approximately 43% of the variability (in the subjects’ blood

pressure) was explained by the regression model (i.e., age).   Note the entry for adjusted R2.  This

is a quantity such that adj. R SSE n
SSY n

R
n
n

2 22
1

1 1 1
2

0 4121= −
−

= − − −
−

=F
HG

I
KJ
F
H
GG

I
K
JJ

( )
( )

( )
( )

. .  The adjusted R2 is

supposed to be used to compare between several models of varying complexity.  It is not used

often.
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Predicted values

To produce the fitted values $ , ,Y i
i

=1 30L  we use the predict command as follows:

. predict sbphat

. graph sbphat sbp age, c(l.) s(io) xlab ylab

The option c(l.) means that the sbphat points should be connected by a line, while the sbp
points should be left unconnected (a scatter plot) respectively while the option s(io)means that no
symbol should be used for sbphat points while a small circle should be used for sbp points.

S
y
s
to

lic
 B

lo
o

d
 P

re
s
s
u

re

age
20 40 60 80

100

150

200

250



ANOVA/Regression I 30

Confidence intervals about the regression line

Since STATA does not automatically produce 95% confidence intervals about the regression line
these must be generated manually.  To do this, we must first calculate the standard error of each

estimated value, s.e.
o

o$Y s
n

X X

X X
i

FH IK
-Â

= +
-1

2

2

e j
e j

 .  This is computed by the option stdp after the

predict command

. predict s, stdp

Then, the 95% upper and lower limits in each case are produced as follows:

. gen ul=sbphat+invt(28,0.95)*s

. gen ll=sbphat-invt(28,0.95)*s

In each case, invt(28,0.95)is the two-sided 95% tail of a t28 distribution (i.e., the inverse t).
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Confidence intervals about the regression line (continued)

. sort ul

. graph sbphat ul ll sbp age, c(lll.) s(iiio) xlab ylab

Notice that the confidence “bands” open wider at the edges of the age interval.
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Additional topic: Prediction

Statistical modeling does not only attempt to explain variability in the data, but predict a future

observation $Y
X

o

at X
o
.  In doing so, it is critical to consider the sources of possible variability that

enter into this prediction.
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Notice that the variability of the new observation is larger than that of existing observations.
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Prediction intervals

When talking about future observations, we cannot construct “confidence intervals” in the strict

sense (since the new observation is not a population parameter).  The similar concept is called a

“prediction interval”.  A (1-α)% such interval is based on the estimated standard deviation

s.e. o

o
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X X
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Prediction intervals of a new observations $Y
X

o

Since STATA does not automatically produce 95% prediction intervals about the regression line

these must be generated manually.  To do this, we must first calculate the standard error of each

estimated value, s.e. o

o
o

$Y s
n

X X

X X
X
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= + +
-

-
1 1

2

2
 .  This is computed by the option stdf after the

predict command

. predict sr, stdf

Then, the 95% upper and lower limits in each case are produced as follows:

. gen ulpred=sbphat+invt(28,0.95)*sr

. gen llpred=sbphat-invt(28,0.95)*sr

In each case, invt(28,0.95)is the two-sided 95% tail of a t28 distribution (i.e., the inverse t).
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Prediction intervals of a new observation $Y
X

o

. graph sbphat ul ll ulpred llpred sbp age, c(lllll.) s(iiiiio) xlab ylab
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