Checking model assumptions 1

Checking the validity of the regression model

Checking the validity of the model is done through inspection of the residuas (e =Y, - \A(I the

deviations of fitted from observed values). Evaluation of the model involves two issues:

1. Checking the model assumptions

2. Checking the model fit
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1. Checking the model assumptions.

Recall what the model assumptions for the regression are:

I.  The observations are independent

li.  The variance of Y is the same for any combination of the predictors Xi, X,,..., X
(homoskedacity).

iii. Theresiduals are distributed independently with each of them e ~Nf0,s2},i=1,2,...,n.

We would thus expect that the residuals e should behave consistently with these assumptions.

2. Detecting “influential” observations

The residuals are also used to detect observations that are behaving inconsistently with the overall
model. For example, very large residuals may reflect an unusual observation, or simply a poor fit.
On the other hand, an observation may be worth considering even though its associated residual is

small, because it exerts an inordinate “influence” on the fitted regression line.




Checking model assumptions 3

Characteristics of theresiduals

n
Yy e=0. Thisis adirect consequence of the least-squares procedure. |f the fitted modd is

Y =b,+ b, X; +b,X,+-+b, X + €, i=1,...,n, then minimizing s e’involves the partial

~ n
i=1 i=1 [

n - - ~ . n
derivative, -2y ﬁYI - b0+ b, X, + b2X2.+---+kaki‘Q = 0, which reduces to ¥ ﬁYI - Yﬁl =y

Thisimplies that the residuals are not independent!
1

T hn-k-1
3. If $ does estimate the variance of the residuals, then we would expect the standardized residual
Vie| ¢ i

£ &£

Is large, these residuals should behave like approximate normal random variables (approximate t

2. S 5 € = MSE, if the model involving k+1 parameters is correct.

1). Ifn

S e
Z = —é to have zero mean and unit variance (the latter since Vﬁzlk - Vé_éé _

iIf nisnot large). Since g are not independent, when n is small, these statements are suspect.
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Characteristics of theresiduals (continued)

4. An dternative form of standardized residuals is the studentized residual = where h; is

e

|
S /1- h ’
thei™ diagonal element (called leverage) of the hat matrix. Thisis because (see proof below) the

exact variance of the residualsis Viel = (Il - H|s2. Ther;~ ty..1 approximately.

5. An additional residual that we can consider is

in- k- ]J 1
TRl

Thisis called the jackknife residual. The quantity S(_i) is the residual variance computed with the i"

observation deleted. Jackknife residuals are distributed exactly according to at distribution with (n-
k-2) degrees of freedom.

Under the usua assumptions, the standardized, studentized and jackknife residuals should behave
smilarly. Especialy if n>30, they should exhibit behavior consistent to a normally distributed
variable.
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Optional topic: The covariance matrix of theresduals

The covariance matrix (the matrix containing variances on the diagonal, and covariances in its off-

diagonal elements) of the residuals is Viel= (I - HIs2. This implies that the variance of the i™

residual isveelj _s2m- }“ i=1,2,...,n, thei™ diagonal element of the covariance matrix.

Proof (Draper & Smith, p.151):
Consider that the vector of residualse= Y -Y =Y - Xb=Y - XIX'X|"*X'Y = (I - H]Y. Then,

e- Elef - {1 - HiY - 01 - HIEdYi - fl - HiY - i - HiXb - fi - HifY - XB] - 0 - Hie. Now the variance
Viel - Effe- Etel]e- Edel] 't = (I - HIEleg|ll - HI'. Since E(€)=0, Viel = (I - HIs2I(l - HI = I - HIs 2.
The latter statement depends on the fact that (I - HIjl - HI'= (I - H].

Thisisbecause I - Hf = {I'-H'| - I'—MXdX'Xi‘1X'H B MXdX'Xi‘1X'H: ll-Hi,ie, Hisa
symmetric matrix, and HH - deX' xi‘1X'EdeX' xi‘1><'g = xix Xi ™ Ixe xdxe xiIxe = xixe xiixe.

Then (I -HIll - HI={l - HIll -Hl= 1 -H-H+ HH =1 - H. That is|-H is an idempotent matrix.
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Graphical analysis of residuals

A very effective way to detect problems with the model or observations requiring further attention, is

through plotting the residuals against the fitted values and observe the patterns that emerge.

We plot the residuals against the fitted values (instead of the observed values). This is because, the
residuals are correlated with the observed values but not with the fitted values. In fact, the dope of

the regression line through the residuals plotted against the fitted values is b-1- R? (see optiond

proof below). Problems that can be detected by these residual plots are as follows:

1. Variance is not constant. In these cases, the plot will look like the residuals are “funneling” out
with increasing Y, .

2. Data depart from linearity. There is a systematic pattern in the residuals that indicates the need
for inclusion of additional (curvilinear or polynomial) termsin the regression model

3. Trends against time or genera dependence patterns. The residuals should be roughly
independent. When time trends or other dependencies in the data exist, the model is inadequate.
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Optional topic: The correlation between residuals and observed values

The correlation between eand Y is (1-R?) and zero between e and Y.
~ ylg-edly-V
U3 le-d's v - v

model (the sums of squares are “corrected” then €= 0) then y (e - dly, - ¥l= v ely - Yl-eY-ee. This

Proof: (i) The correlation betweeneand Y isr,, . If an intercept term by isin the

iIssincey eY-Yy e -0. Also, ee= Y'dl - HI'dl - HIY = Y'di - HIY - ¢ Y because (I-H) isidempotent.

Then, r,, - €e . $ SE wﬂz _u- RI"2. Thus, the slope of the regression between e and Y will
Jees (v -v° TTCSS
S zcei_éhz gﬁwm 212 212 2
beb1= re\(§= re\(Z CY,—VhZ = Ty TCSS = ml— R r ml— R r =1-R QED

(i) The correlation between e and Y is shown by similar methods to be zero. Thisis because, the

numerator of the fraction s (e - apy - \_?j -y eY-€eV=Vl- Y < vl - vy - v0H - 12y - 0. Herewe' ve

used the fact that ¥ - xdx xI*x' Y = Hy, and that H-H*= H-H=0 because H is idempotent. QED.
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Studentized residuals

Studentized residuals

Typical plots of jackknife' residuals against fitted values

o
Fitted values

(A) Data satisfy assumptions

o
Fitted values

(C) Non-constant variance
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! Note that STATA calls jackknife residuals “ studentized residuals”
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Studentized residuals

Fitted values

Thisisthe same plot of Figure (D) previously. Notice the visible correlation between the residuals

Studentized residuals

Lag-1 studentized residuals

and theresiduals lag 1 indicating a possible “autocorrelation” structure (right).
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Other graphical methods of residual analyses
Most other graphical methods of visually analyzing residuals are again trying to assess any
departures from the model assumptions. With respect to the residuals all these plots will be
assessing departures of the residuals from normality. Given changes in scale, it is advisable that we
consider standardized residuals and out of those, the jackknife residuals due to their attractive

distributional properties.

There are several methods for assessing departures from a given distribution. A number of these
plots are based on comparing the observed ranks of the observations in the data to similar rankings

of observations that follow a known theoretical distribution such as normal, t, chi-square or others.
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Quantile-quantile or Q-Q plots

To create a Q-Q plot we proceed as follows:

1. Thevariable of interest is sorted.

2. The empirical quantiles are determined. For example, if there are 10 observations, the 5 largest
residual will be associated with the 50" percentile.

3. The values of the inverse of the distribution of interest are then plotted against the sorted
observations in the data. For example, in the case of a normal Q-Q plot, the median value in the
data (the one associated with the 50% percentile) is plotted (on the y axis) against the value

F (0.5) (on the x axis).

2 Actually, every i/n quantile will be plotted against F [i/(n+1)] or F[(i—1/2)/n] to avoid having to plot F[n/n] = F[1] =
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Standar dized Probability-Probability or P-P plots
To create a P-P plot we proceed as follows:
1. The variable of interest is sorted.
2. The empirical quantiles are determined. For example, if there are 10 observations, the 5" largest
residual will be associated with the 50™ percentile.

3. The vaues of the inverse of the distribution of interest associated with the standardized data

‘ 2 . For example,

S
X

points are then plotted against their empirical quantiles. That is we plot F

in the case of a standardized normal P-P plot, the inverse-normal of the median value in the data

F (m) is plotted (on the y axis) against the 50% percentile (on the x axis).
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Symmetry plots

To create a symmetry plot we proceed as follows:

1. The variable of interest is sorted.

2. Two new variables are created. The first contains variablesi (from small to large), i=1,2,...,n/2
if niseven, ori=1,2,...,(n+1)/2 if n is odd. The second contains the ordered variables n-i+1
(from large to small), wherei is defined as before.

3. The distances of each variable from the median of the data are computed, and these distances are
plotted. If the empirical distribution of the observations is symmetric then the plotted curve
should approximately lie on aline.

The idea behind symmetry plots is that each pair of ordered observation from each end of the data,
should be at approximately equal distances from the median (the median is a the center of the
distribution) if the distribution is symmetric. If the plotted points are above the line, then this is
evidence of a distribution skewed to the right, while if the points are below the line, this is evidence
of adistribution that is skewed to the | eft.
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Example: The exponential case
The STATA commands that will be used are as follows:

set obs 100 Sets number of observationsto 100

gen u=uni formn() Generates 100 uniform random numbers
in theinterval [0,1]

gen c=invchi (2, (1-u)) Generates 100 c,-distributed (or equivalently
exponentially distributed) random variables.

Alternatively we could have written
gen c=invchi (2, (1-uniform)))

| abel var c¢ “Exp. distributed

vari abl e”
graph c, nornmal Plot a histogram of ¢, overlay a normal plot
xlab(- 20, -10, 0, 10, 20) for comparison, then definethe x and y axes
yl ab bi n(50) and the number of histogram bars (50)
gnormc, xlab ylab Produce a normal Q-Q plot for ¢
pnorm c Produce a normal P-P plot for ¢

synplot ¢, xlab ylab Produce a symmetry plot for ¢
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1.00
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Fl(c-m)/s]
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0.00

Four graphical views of an exponential variable

2 Exp. distributed variatfe :
(A) Histogram of observations

0.50
Empirical P[i] = i/(N+1)

(C) Normal P-P plot

Distance above median
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Inverse Normal

(B) Normal Q-Q plot
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Distance below median

(D) Symmetry plot
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The exponential case

Comments:

(A)

(B)

©)

(D)

Note that the exponential distribution is not defined in the negative real line. The empirical
distribution (histogram) of the exponentially distributed variable is compared to the
(theoretical) normal distribution with the same mean and variance.

Thus, the Q-Q plot of variable ¢ against a normal distribution exhibits shorter tails among the
lower (negative) values, and thicker tails among the larger values (as a result of the right-
skewness of the exponential distribution; see (D))

Similarly, the P-P plot shows the deviations at the tails. P-P plots aso emphasize the
differences in the middle of the distribution, while Q-Q plots are more sensitive to
discrepancies in the tails of the distribution (this has to do with the arrangement of the
percentiles p; =i/(n+1) versus the inverse normal percentiles F (p))).

The symmetry plot shows that the distribution of the variable of interest is skewed to the right
(asindicated by the deviations of the plotted points above the line).
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Example: The case of the Cauchy distribution
The STATA commands that will be used are as follows:

set obs 1000 Sets number of observationsto 100

gen u=2*uniforn()-1 Generates 1,000 uniform random numbers
in theinterval [-1,1]

gen tl=invt(1,u) if u>=0 Generatesthe positive half of the Cauchy-
distributed random variables’.

replace tl1=-invt(1l,-u) if u<0O Generatesthenegative half of thevariables
| abel var t1 “Cauchy-distributed
vari abl e”

graph t1 if abs(t1)<50, normal Plotahistogram oft 1, overlay anormal plot
xl ab yl ab bi n(50) for comparison, and limit the plot to |t,|<50
(toavoid outliersthat interfere with the plot)

gnormtl, xlab ylab Produceanormal Q-Q plotfort 1
pnormt1l Produce a normal P-P plot for t 1
synplot t1, xlab ylab Produce a symmetry plot for t 1

3 We have to generate u~U[-1,1] becausein STATA i nvt (df , q) givesthet value that corresponds to the quantile g=Pr(T>[t]). Thus, we can obtain the
negative values by generating negative u's. Notice however, that only positive quantiles (u's) gointoi nvt ( df , q) , so we must use —u in the function.
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The case of t; (Cauchy) distribution

Comments:

(A) Note that the empirical distribution (histogram) of the Cauchy-distributed variable has much
“thicker” tails compared to the standard distribution.

(B) Thus, the Q-Q plot of this variable exhibits serious discrepancies in both tails compared to the
normal distribution, as the plotted points drop below the line or rise above the line in the lower
and higher ends of the distribution respectively.

(C) Similarly, the P-P plot shows the deviations at both tails.

(D) The symmetry plot does not show marked deviations from the line, reflecting the symmetric

shape of the Cauchy distribution.




Checking model assumptions

20

Fraction

F[(t15-m)/s]
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Four graphical views of atys variable
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(D) Symmetry plot
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The case of ti5 distribution
Comments:
(A) Note that the empirical distribution (histogram) of the variable that is distributed as at;s almost

coincides with the standard normal distribution. Recall that t__ = N{0,1].

(B) Thus, the Q-Q plot of this variable no longer exhibits serious discrepancies in the tails
compared to the normal distribution, compared to the case of the Cauchy distribution. Notice
how the Q-Q plot picks up the discrepancy of the (thicker) tails better than the P-P plot

(C) Similarly, the P-P plot shows the agreement between the two distributions.

(D) The symmetry plot does not show marked deviations from the line, again reflecting the

symmetric shape of thet distribution.
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The above plots are illustrated by use of a data set on the weight of 12 female rats on a high protein

diet (Snedecor & Cochran, 1980).

i X p=il(n+1) F{p] Flix -X 5
I
1 83 077 -1.426 0.0418
2 97 154 -1.020 0.1141
3 104 231 -0.736 0.2272
4 107 .308 -0.502 0.2717
5 113 385 -0.293 0.3717
6 119 462 -0.097 0.4813
7 123 .538 0.097 0.5558
8 124 615 0.293 0.5742
9 129 .692 0.502 0.6630
10 134 .769 0.736 0.7436
11 146 .846 1.020 0.8879
12 161 923 1.426 0.9724
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Fraction

Normal F[(x-m)/s]

Four graphical views of therat data
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(A) Histogram of rat weights
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(B) Q-Q plot of rat weights
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(D) Symmetry plot of rat weights
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Significance tests

In addition to the visual (graphical) inspection of the residuals, there are quantitative tests that are

based on statistical tests that can be applied. These are:

1. Kolmogorov-Smirnov-typetests. These are goodness-of-fit tests based on the chi-square
distribution (derived from aggregating deviations of observed values from their expected values).

2. A common test of normality is the Shapiro-Wilkstest. Thisisvery useful in cases of small
sample sizes (n<50)

3. The possibility of autocorrelation or serial correlation among the observationsis tested viathe
Durbin-Watson test. Autocorrelation is a factor sometimes when measurements are taken serially
over time and refersto r(Y;, Yi.1), i.€., the measurement at time t versus the previous measurement.

The decision for the DW test isasfollows:

I Autocorrelation is present if d<d, or d>4-d,

ii.  No-autocorrelation, if d<d, and d>4-d

ii. Test inconclusive
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Detecting outliersand influential observations

Anoutlier isan unusual value that does not conform to the pattern established by the rest of the data.
An influential observation may be an outlying observation, but it may aso be one that does conform

to the data pattern, but has a large contribution in the nature of the regression line.




Checking model assumptions 26

The jackknife residual

From the definition of the jackknife residual My = - jﬁ, we see that there are three parts
(i) I
that contribute in identifying outliers (large residuals) in the data.
These are:
I The magnitude of the raw residual e that indicates the distance of the fitted from the observed
value for that specific point

ii.  The residual variance 8(2_ iy which is the residua variance with the i observation excluded.

This will be smaller than S if the i™ point exhibits greater variability than expected, further
increasing the value of the jackknife residual
iii. Theleverage h isthei™ diagona element of the hat matrix. Outliers will have large leverage
values, which will tend to reduce the quantity (1-h;) and increase the size of the residual.
Usually, values of the jackknifed residual |r)[>t«-2:1-ar2n Should be scrutinized further (note that the

size of thet tail has been adjusted to account for multiple comparisons among n residuals).
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The leverage values { hi}

Consider the simple linear regression case. There, the leverage of the i™ observation has the form,

h - 18X _sz 1 Z
" n(n-0¢ n(n-1)

distance of the value of thei™ value of the predictor, from its mean.

. This means that the leverage is proportionate to the standardized squared

The size of each leverage value is 0 < hi<l. When there is an intercept in the model then 1/n< hi<1.

A value of 1 means that the regression line has been “levered” (pulled) to pass through the point.

In general, in a regression model with k parameters (k+1 including the intercept) ¥ hI = k+1, and

k+1

thus, h= - It has been suggested that we should check every observation with leverage that is

larger than 2(k+1)/n. A quantitative test is based on the approximate ¢ distribution of the leverages.

_ -k
Then F, - ol hlj/dn— k_1] Fk,(n—k—l)'

Thus, any Fi>Fy (nk-iy:1-a/m 1S Worth examining (Appendix 9).
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Cook'’ s distance

Cook’ s distance measures the influence of an observation in the model. This statistic measures the

change in the regression coefficients b; when the i™ observation is removed from the data.

In general the statistic is proportional to aweighted average of the squared differences of b; and by .;),

and can be expressed in terms of leverages and studentized residuals

d.:ﬁ 1 -Ar.z
: k+ 1R !

The suggestion has been to check values with d, >1, but recent research has suggested that more

" eh
1-h{ (k+1S%1- h]

sensitive approximations are necessary (see Table A-10 in the textbook).
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Example: Calibration data
These ideas are illustrated with the following example from 17 concentrations of a pollutant (X) and

the related readings of an instrument (Y).

The data are as follows:

list x vy
1. 0 10.7
2. .5 14. 2
3. 1 16.7
4. 1.5 19.1
5. 2 24.9
6. 2.5 25. 4
7. 3 32.3
8. 3.5 30.8
9. 4 39.6
10. 4.5 30.3
11. 5 37.2
12. 5.5 37.8
13. 6 37.5
14. 6.5 38.6
15. 7 42. 6
16. 7.5 44. 3
17. 8 37.2
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The regression model is as follows:

reg y X
Source | SS df VB
_________ o o e e e m e e m m e e e e e e e e e e e e e ==
Model | 1462.63781 1 1462.63781
Resi dual | 253.543259 15 16.9028839
_________ o o e et e e o m e e m e e e e e e e e e e e e e m ==
Total | 1716.18107 16 107.261317
y | Coef Std. Err. t P>| t |
_________ o o e o e e o e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e m ==
X | 3. 786765 . 4070805 9.302 0.000
_cons | 15. 39412 1.909377 8.062 0.000

Nunmber of obs = 17
F( 1, 15) = 86. 53
Prob > F = 0.0000
R- squar ed = 0.8523
Adj R-squared = 0.8424
Root MSE = 4.1113

[ 95% Conf. Interval]

2. 919093 4.654436
11. 32438 19. 46386
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We determine the residuals and the fitted values by the commands

pr edi
predi
pr edi
pr edi
pr edi

pr edi

ct

ct

ct

ct

ct

ct

yhat

r, resid
rstan, rstan
rstud, rstud
d, cooksd

h, hat

Fitted values Y
Residuals e
Standardized residuals
Jackkniferesiduals
Cook’sdistance

L everage (hat) values h;
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gen zer 0=0

graph rstud

Studentized residuals

zero yhat,

c(.1) s(oi) xlab ylab

\
20 30
Fitted values
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graph rstud,

Fraction

bin(7) xlab ylab

nor nal
.6 7
4
2
o
4

[
0]

Studentized residuals
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gnor m r st ud,

Studentized residuals

xlab yl ab

\ \
-1 0]
Inverse Normal
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pnorm r st ud

Normal F[(rstud-m)/s]
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synpl ot rstud,

Distance above median

xlab yl ab

Studentized residuals

I
1 2

Distance below median
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Normality tests

sunmari ze rstud
Vari abl e | Qos Mean Std. Dev. M n Max

rstud | 17 -. 0247949 1.175543 - 2. 82039 2.708857

ksm rnov rstud=nornprob((rstud-(-.0247949))/ 1.175543)

One- Sanpl e Kol onbgorov-Sm rnov test against theoretical distribution
nor nprob( (rstud-(-.0247949))/ 1.175543)

Smal | er group D P-val ue Corrected
rstud: 0.1478 0.476
Cunul ati ve: -0.1318 0. 554
Conbi ned K- S: 0.1478 0. 852 0. 781

swilk rstud
Shapiro-WIk Wtest for normal data

Vari abl e | Qbs w Vv z Pr > z

rstud | 17 0. 94660 1.128 0.240 0.40505
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Test for autocorrelation.
The Durbin-Watson statistic is (from the command regdw) d=1.37065. The upper and lower limits

from the tables are given by d,.=1.13 and dy=1.38. Thetest isinconclusive. A graphica depiction

of the jackknife residual versus the residual lag-1 and the STATA commands are as follows:

gen rstud_1=rstud[ _n-1]

quietly reg rstud rstud_1

| abel var rstud_1 *“Jackknife residual |ag-1"
predi ct rhat

graph rstud rhat rstud_ 1, c(.l) s(oi) xlab ylab

Studentized residuals

o

|

o
\ |
o
R B
o
o

Jackknife residual lag 1
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Comments:

1. The regression model is highly significant (p<0.001).

2. There is somewhat of a dependence between residuals (with residuals in the middle being more
likely above the reference line (zero line) than at the ends

3. The normality plots show good agreement with normality. This is reaffirmed by both the
Kolmogorov-Smirnov test and the Shapiro-Wilks test

4. The Durbin-Watson test isinconclusive

5. The plot of the jackknife residuals versus the residuas lag-1 shows no evidence of

autocorrel ation.
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dist yor

COoNOORLONE

rstan rstud cooksd h

10.
14.
16.
19.
24.
25.
32.
30.
39.
30.
37.
37.
37.
38.
42.
44.
37.

NWOOUIOONWOOOWr,OERL NN <

r

-4.694118
-3.0875
-2.480881
-1. 974264
1. 932353
. 5389705
5. 545588
2. 152205
9. 058823
-2.134559
2.87206
1. 578676
-. 6147053
-1.408089
. 6985285
. 505147

- 8. 488234

rstan

-1. 289225
-. 8287705
-. 6533803
-. 5119266
. 494894
. 1367411
1.397673
. 5402988
2.271202
-. 5358688
. 71238547
. 4005227
-. 1574319
-. 3651175
. 1839688
. 1355954
-2.331267

rstud

-1. 320836
-. 8196545
-.6404042
-. 4989459
. 4820648
. 1321869
1. 447846
. 5271329
2.708857
-. 5227261
. 7118535
. 3890275
-. 1522195
-. 354315
. 1779316
. 131078
-2.82039

d

. 2285388

. 074837

. 0368022
. 0178849
. 0133109
. 0008227
. 0719706
. 0095275
. 1611987
. 0093719

. 019304

. 0070584

. 001347

. 0090978
. 0029176
. 0020033
. 7472858

h

. 2156863
. 1789216
. 1470588

. 120098

. 0980392
. 0808824
. 0686275
. 0612745
. 0588235
. 0612745
. 0686275
. 0808824
. 0980392

. 120098

. 1470588
. 1789216
. 2156863
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Comments:
1. From Table A-8(a), the critical value for the jackknife residuals and a=0.05, k=1, and n=17 is
between 3.65 (n=15) and 3.54 (n=20). Since the absolute value of the largest jackknife residual

is |-2.82039|=2.82039, there does not seem to be any problematic valuesin the data.

2. From Table A-8(b), the critical value for the studentized residuals and a=0.05, k=1, and n=17 is
between 2.61 (n=15) and 2.77 (n=20). As the largest studentized residual is -2.331267, it does
not appear to be any suspicious observation in the data.

3. No Cook’s distance is larger than the critical value calculated from Table A-10. If we divide the
critical values for a=0.05, k=1, and n-k-1=15, by n-k-1, we see that the distances listed in the
previous dataset must not be larger than 1.037 (=15.55/15). Asthe largest distance is 0.747, there
are no suspiciously influential observations in the data.

4. Finally, the leverage values should not be larger than 2(2)/17=0.235. Again, the largest leverage

1s0.216 which is not larger than would be expected.




