Μια ασκηση σχετικα με το Φασματικο Θεωρημα

Let $A = A^* \in \mathcal{B}(H)$. Recall the functional calculus¹

$$\Phi: C(\sigma(A)) \to \mathcal{B}(H): f \mapsto f(A)$$

which is an isometric *-homomorphism given by $f(A) = \lim_n p_n(A)$ where (p_n) is any sequence of polynomials converging to f uniformly on $\sigma(A)$.

• If $H_1 \subseteq H$ is a (closed) A-invariant subspace of H, and $A_1 := A|_{H_1} \in \mathcal{B}(H_1)$, show that $\sigma(A_1) \subseteq \sigma(A)$. Consider the corresponding functional calculus

$$\Phi_1: C(\sigma(A_1)) \to \mathcal{B}(H_1): g \mapsto g(A_1).$$

• For $f \in C(\sigma(A))$, write $f_1 := f|_{\sigma(A_1)}$, so that $f \mapsto f_1 : C(\sigma(A)) \to C(\sigma(A_1))$ is the restriction map. Show that $f_1(A_1) = f(A)|_{H_1}$.

Conclude that if the function $f \in C(\sigma(A))$ vanishes on $\sigma(A_1)$, then the operator f(A) vanishes on H_1 .

Given a unit vector $x \in H$, let $H_x := \overline{\operatorname{span}\{A^nx : n \in \mathbb{Z}_+\}}$ be the cyclic subspace of x for A. Recall that the Riesz representation theorem shows the existence of a unique (positive regular) Borel measure μ_x on $\sigma(A)$ such that

$$\int_{\sigma(A)} f d\mu_x = \langle f(A)x, x \rangle_H \quad \text{for all } f \in C(\sigma(A)) \, .$$

• Show that the support of μ_x (i.e. the complement of the largest open set on which μ_x vanishes) is contained in $\sigma(A_1)$ (here $A_1 := A|_{H_x}$).

This shows that $L^p(\sigma(A), \mu_x) = L^p(\sigma(A_1), \mu_x)$ for any p.

¹ funspec modifed 25 Μαΐου 2025