
1 C*-algebras

1.1 C*-algebras

Definition 1.1 A C*-algebra A is a complex algebra equiped with an invo-
lution1 a → a∗ and a complete submultiplicative norm (i.e. ‖ab‖ ≤ ‖a‖ ‖b‖)
satisfying the C*-condition

‖a∗a‖ = ‖a‖2 for all a ∈ A.

If A has a unit 1 then necessarily 1∗ = 1 and ‖1‖ = 1.

Definition 1.2 A morphism φ : A → B between C*-algebras is a linear
map that preserves products and the involution.

We will see later that morphisms are automatically contractive, and 1-1 mor-
phisms are isometric (algebra forces topology).

Basic Examples:

• C

• C(K) : K compact Hausdorff, f ∗(t) = f(t): abelian, unital.

• C0(X) : X locally compact Hausdorff, f ∗(t) = f(t): abelian, nonunital
(iff X non-compact).

• Mn(C) : A∗ = conjugate transpose,
‖A‖ = sup{‖Ax‖2 : x ∈ `2(n), ‖x‖2 = 1}: non-abelian, unital.

• B(H): involution defined by 〈T ∗x, y〉 = 〈x, Ty〉 ∀x, y ∈ H;
‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ = 1}: non-abelian, unital.

Nonexamples:

• A(D) = {f ∈ C(T) : f extends to f̃ : D → C s.t. f̃ |D holomorphic}
(D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1})
A closed subalgebra of the C*-algebra C(T) but not a *-subalgebra,
because if f ∈ A(D) then f̃ ∗ is not holomorphic unless it is constant:
A(D) ∩ A(D)∗ = C1: antisymmetric algebra.

1that is, a map on A such that (a + λb)∗ = a∗ + λ̄b∗, (ab)∗ = b∗a∗, a∗∗ = a for all
a, b ∈ A and λ ∈ C
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• Tn = {(aij) ∈ Mn(C) : aij = 0 for i > j}.
A closed subalgebra of the C*-algebra Mn(C) but not a *-subalgebra.
Here Tn∩T ∗

n = Dn, the diagonal matrices: a maximal abelian selfadjoint
algebra (masa) in Mn.

• Moo(C): infinite matrices with finite support.

To define norm (and operations), consider its elements as operators
acting on `2(N) with its usual basis. This is a selfadjoint algebra, but
not complete.

Its completion is K, the set of compact operators on `2: a non-unital,
non-abelian C*-algebra.

1.2 Von Neumann algebras

B(H) has other natural topologies:

Say Ti
SOT−→ T iff ‖Tix− Tx‖ → 0 ∀x ∈ H. A von Neumann algebra M is a

selfadjoint unital subalgebra of B(H) which is SOT-closed.
C*-algebras : “Non-commutative topology”
von Neumann algebras: “Non-commutative measure theory”.

1.3 Units

Every nonunital C*-algebra A embeds as a C*-algebra (i.e. isometrically and
*-homomorphically) in the unital C*-algebra A∼ = {a + λ1 : a ∈ A, λ ∈ C}
(norm: later) so that A is an ideal of codimension 1 in A∼.

For example if A = C0(X), then A∼ ' C(X ∪ {∞}) (where X ∪ {∞} is
the one-point compactification of X). The map

C0(X)∼ → C(X ∪ {∞}) : (f, λ) → f + λ1

is an isomorphism.
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2 Spectral Theory

2.1 The spectrum

Definition 2.1 If A is a unital C*-algebra and A−1 denotes the group of
invertible elements of A, the spectrum of an element a ∈ A is

σ(a) = σA(a) = {λ ∈ C : λ1− a /∈ A−1}.

If A is non-unital, the spectrum of a ∈ A is defined by

σ(a) = σA∼(a).

In this case, necessarily 0 ∈ σ(a).

In a unital C*-algebra , if ‖1 − x‖ < 1 then
∑

n≥0(1 − x)n converges
to an element y such that xy = yx = 1. The proof is the same as the case
A = C. Hence if |λ| > ‖a‖ then

∥∥1− (1− a
λ
)
∥∥ < 1 so λ /∈ σ(a): the spectrum

is bounded. Also the spectrum is closed (to prove this, prove that A−1 is
open): hence the spectrum is compact.

Lemma 2.1 The set A−1 is open in A and the map x → x−1 is continuous
(hence a homeomorphism) on A−1.

Proof We have seen that if ‖1− x‖ < 1 then x ∈ A−1. Thus 1 is an interior
point of A−1. To show that every y ∈ A−1 is interior, just notice that the
map x → yx is a homeomorphism of A−1 (with inverse z → y−1z) and it
maps 1 to y.2

To show that inversion is continuous, let a, b ∈ A−1. Then∥∥a−1 − b−1
∥∥ =

∥∥b−1(b− a)a−1
∥∥ =

∥∥(b−1 − a−1)(b− a)a−1 + a−1(b− a)a−1
∥∥

≤
∥∥b−1 − a−1

∥∥ ‖b− a‖
∥∥a−1

∥∥ +
∥∥a−1

∥∥2 ‖b− a‖

hence ∥∥a−1 − b−1
∥∥ (1− ‖b− a‖

∥∥a−1
∥∥) ≤

∥∥a−1
∥∥2 ‖b− a‖ .

It follows that
lim
b→a

∥∥b−1 − a−1
∥∥ = 0. 2

2In fact the ball {x ∈ A : ‖x− y‖ < 1
‖y−1‖} is in A−1.
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The fact that the spectrum is nonempty is proved by contradiction: the
function λ → (λ1− a)−1 is ‘analytic’ on its domain C \σ(a) and is bounded;
so if σ(a) = ∅, it would be ‘entire’ and bounded, hence constant (‘Liouville’)

The spectral radius

ρ(a) = sup{|λ| : λ ∈ σ(a)}

satisfies ρ(a) ≤ ‖a‖. The Gelfand-Beurling formula is

ρ(a) = lim
n
‖an‖1/n ≤ ‖a‖ .

Exercise 2.2 Any morphism φ : A → B between C*-algebras extends uniquely
to a unital morphism φ̃ : Ã → B̃ by φ̃(a, λ) = (φ(a), λ).

If φ : A → B is a unital morphism between unital algebras, then
σ(φ(a)) ⊆ σ(a) for all a ∈ A.

If A and B are unital and φ(1) 6= 1, then σ(φ(a)) ⊆ σ(a) ∪ {0}.

Proposition 2.3
(i) a = a∗ =⇒ σ(a) ⊆ R
(ii) a = b∗b =⇒ σ(a) ⊆ R+

(iii) u∗u = 1 = uu∗ =⇒ σ(u) ⊆ T

Proof of (iii) We have ρ(u) ≤ ‖u‖ = 1 so σ(u) ⊆ D. Also u−1 is unitary so
σ(u−1) ⊆ D. Thus if |λ| < 1 the element x = (λ−1 − u−1) is invertible. But
then (λ−u)u−1 = λ(u−1−λ−1) is invertible and hence so is λ−u. Therefore
λ /∈ σ(u) so σ(u) ⊆ {λ : |λ| = 1}.
Proof of (i) Let u(t) = exp(ita) (t ∈ R) (power series). Note that u(t)∗ =
exp(−ita) because a = a∗. Show that u′(t) = au(t) = u(t)a as in Calculus. It
follows that if f(t) = u(t)u(−t) then f ′(t) = 0 for all t ∈ R so f(t) = f(0) = 1
hence u(t)u(t)∗ = u(t)∗u(t) = 1. Thus by (iii) we have σ(exp ita) ⊆ T.

Let λ ∈ σ(a). Then

exp(ia)− exp(iλ) = eiλ(exp i(a− λ)− 1) = eiλ

∞∑
n=1

in

n!
(a− λ)n

= eil(a− λ)b

where b ∈ A commutes with a − λ. Thus exp(ia) − exp(iλ) cannot be
invertible. Therefore eiλ ∈ σ(exp(ia)) ⊆ T and so λ ∈ R.
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Second proof Let a = a∗. If λ + iµ ∈ σ(a) for some λ, µ ∈ R with
µ 6= 0, then the element a − (λ + iµ)1 = −µ(λ1−a

µ
+ i1) is not invertible.

Thus, replacing a by the selfadjoint element b = λ1−a
µ

, it suffices to show that

−i /∈ σ(b). So suppose that −i ∈ σ(b) and let n ∈ N. Then n+1 ∈ σ(n1+ib)
because (n+1)1−(n1+ib) = i(−i1+b) is not invertible. Therefore |n+1| ≤
‖n1 + ib‖ hence

(n+1)2 ≤ ‖n1 + ib‖2 (c∗)
= ‖(n1 + ib)∗(n1 + ib)‖ (b=b∗)

=
∥∥n21 + b2

∥∥ ≤ n2+
∥∥b2

∥∥ .

Thus 2n + 1 ≤ ‖b2‖ for all n, a contradiction.
The proof of (ii) is non-trivial: see later.

Lemma 2.4 If aa∗ = a∗a (we say a is normal) then ρ(a) = ‖a‖. This is
not true in general: consider any a 6= 0 with a2 = 0.

Proof
‖a‖4 = ‖a∗a‖2 = ‖(a∗a)∗(a∗a)‖ =

∥∥(a2)∗a2
∥∥ = ‖a2‖2

hence ‖a‖2 = ‖a2‖ and inductively ‖a‖2n
= ‖a2n‖ for all n. Thus ρ(a) =

lim
∥∥a2n

∥∥2−n

= ‖a‖. 2

Proposition 2.5 There is at most one norm on a *-algebra making it a
C*-algebra.

Proof The norm is defined algebraically:

‖a‖2 = ‖a∗a‖ = ρ(a∗a).

Dependence of spectrum on the algebra If A is a unital C*-algebra
and B is a closed subalgebra of A containing the identity, then every b ∈ B
satisfies

σA(b) ⊆ σB(b).

Indeed if λ /∈ σB(b) then λ1 − b has an inverse in B hence also in A. But
equality need not hold:

For example suppose A = C(T), the continuous functions on the unit
circle. Let B be the disk algebra and b ∈ B be the function b(z) = z. The
function b−1 given by b−1(z) = 1

z
is continuous on T, but does not have an

extension to D which is holomorphic in D. It is remarkable that if B is a
C*-subalgebra this cannot happen:

5



Proposition 2.6 (Permanence of spectrum) If A is a unital C*-algebra
and B is a C*-subalgebra of A containing the identity, then every b ∈ B
satisfies

σA(b) = σB(b).

Proof It is enough to show that if b has an inverse in A, then this inverse is
contained in B.

Suppose first that b = b∗ ∈ A−1. Since σB(b) ⊆ R, for each n ∈ N we
have i

n
/∈ σB(b). Thus if xn = b− i

n
1, all x−1

n belong to B. But since xn → b
and inversion is continuous on the space A−1, x−1

n → b−1. Since x−1
n ∈ B and

B is closed, it follows that b−1 ∈ B as required.
For the general case, if b ∈ B is invertible in A, so is b∗ (verify) and hence

so is x = b∗b. But x is selfadjoint, so by the previous paragraph x ∈ B−1. If
y = x−1, we have yb∗b = yx = 1 and so

b−1 = (yb∗b)b−1 = (yb∗)(bb−1) = yb∗

hence b−1 ∈ B−1, which completes the proof.

2.2 Commutative C*-algebras

Theorem 2.7 (Gelfand-Naimark 1) Every commutative C*-algebra A is
isometrically *-isomorphic to C0(Â) where Â is the set of nonzero morphisms
φ : A → C with the topology of pointwise convergence. The map is the
Gelfand transform: a → â where â(φ) = φ(a) (φ ∈ Â). The algebra A is
unital iff Â is compact.

In more detail: Â is the set of all nonzero multiplicative linear forms
(characters) φ : A → C, (necessarily ‖φ‖ ≤ 1 and, when A is unital, ‖φ‖ =
φ(1) = 1) equipped with the w*-topology: φi → φ iff φi(a) → φ(a) for all
a ∈ A.

When A is non-abelian there may be no characters (consider M2(C) or
B(H), for example).

When A is abelian there are ‘many’ characters: for each a ∈ A there
exists φ ∈ Â such that ‖a‖ = |φ(a)|.

When A is unital Â is compact and A is isometrically *-isomorphic to
C(Â).
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When A is abelian but non-unital every φ ∈ Â extends uniquely to a
character φ̃ ∈ Â∼ by φ̃(1) = 1, and there is exactly one φ∞ ∈ Â∼ that van-
ishes on A. Thus A is *-isomorphic to C0(Â), the algebra of those continuous
functions on the ‘one-point compactification’ Â ∪ {φ∞} which vanish at φ∞.

2.3 Positivity

Definition 2.2 An element a ∈ A is positive if a = a∗ and σ(a) ⊆ R+.
We write A+ = {a ∈ A : a ≥ 0}. If a, b are selfadjoint, we define a ≤ b by
b− a ∈ A+.

Examples 2.8 In C(K): f ≥ 0 iff f(t) ∈ R+ for all t ∈ K because σ(f) =
f(K).

In B(H): T ≥ 0 iff 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H.

Remark 2.9 Any morphism π : A → B between C*-algebras preserves or-
der:

a ≥ 0 ⇒ π(a) ≥ 0.

Proof If a = a∗ and σ(a) ⊆ [0, +∞) then π(a)∗ = π(a∗) and

σ(π(a)) ⊆ σ(a) ∪ {0} ⊆ [0, +∞)

so π(a) ≥ 0.

Remark 2.10 If a = a∗ then −‖a‖1 ≤ a ≤ ‖a‖1.

Proof For ‖a‖1− a ≥ 0 observe that ‖a‖1 is selfadjoint and

σ(‖a‖1) = {‖a‖ − λ : λ ∈ σ(a)} ⊆ R+

because λ ∈ R and λ ≤ ‖a‖ for λ ∈ σ(a).

Proposition 2.11 Every positive element has a unique positive square root.
In fact

a ∈ A+ ⇐⇒ there exists b ∈ A+ such that a = b2.
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Proof If a ≥ 0, consider the C*-subalgebra C = C∗(a) of A generated by a;
it is (*-isomorphic to) the algebra Co(X) for some X. Note that a ∈ C+ since
σC(a) = σA(a). The *-isomorphism and its preserve order. Since a ≥ 0, we
have â ≥ 0. Look at the function

√
â ∈ Co(X). This is the image of some

b ∈ A, which must be positive because
√

â ≥ 0, and (b̂)2 = â, so b2 = a.
Conversely if a = b2, look at the C*-subalgebra C∗(b) of A generated by

b; it is (*-isomorphic to) the algebra Co(Y ) for some Y . Since b ≥ 0, we have

b̂ ≥ 0, so â = b̂2 ≥ 0 and so a ≥ 0.
Uniqueness: If a, b are as above and c ≥ 0 satisfies c2 = a then observe

that ac = ca. Since b is in C∗(a) it follows that bc = cb. Now consider the
C*-algebra C∗(b, c): it is abelian and contains a, so we may view b, c, a as
continuous functions on the same space and then it is clear that b = c.

Proposition 2.12 For any C*-algebra the set A+ is a cone:

a, b ∈ A+, λ ≥ 0 ⇒ λa ∈ A+, a + b ∈ A+.

Proof The first assertion is immediate from the definition. Hence, for the
second one, it is enough to assume that ‖a‖ ≤ 1 and ‖b‖ ≤ 1 and prove that
a+b
2
≥ 0. Also, there is no loss in assuming that A is unital.
But we have the following characterization:

Lemma 2.13 In a unital C*-algebra if x = x∗ and ‖x‖ ≤ 1, then

x ≥ 0 ⇐⇒ ‖1− x‖ ≤ 1.

Thus if a and b are positive contractions then a+b
2

is a selfadjoint contraction
and ∥∥∥∥1− a + b

2

∥∥∥∥ =
1

2
‖(1− a) + (1− b)‖ < 1

so that a+b
2
≥ 0.

Proof of the Lemma Considering the C*-algebra generated by x and 1,
there is no loss in assuming that x is a continuous function on a compact
set. Then the Lemma is just an application of the triangle inequality: The
assumption is that −1 ≤ x(t) ≤ 1 for all t and we need to conclude that

x(t) ≥ 0 ⇐⇒ |1− x(t)| ≤ 1.

But this is obvious!
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Theorem 2.14 In any C*-algebra a∗a is positive.

Proof Of course a∗a is selfadjoint. So it can be written

a∗a = b− c where b, c ≥ 0, bc = 0

(to see this, consider a∗a as a function and let b and c be its positive and
negative parts).

Let x = ca∗. Observe that

xx∗ = ca∗ac = c(b− c)c = −c3

and so, since c ≥ 0,
−xx∗ ∈ A+.

On the other hand, if we write x = u + iv with u, v selfadjoint, we find

xx∗ + x∗x = 2u2 + 2v2 ∈ A+

since A+ is a cone. Adding the last two relations

x∗x = −xx∗ + (xx∗ + x∗x) ∈ A+

again since A+ is a cone. Thus we have

σ(x∗x) ⊆ R+ and σ(xx∗) ⊆ R−.

But in any unital algebra we have σ(kh) ⊆ σ(hk) ∪ {0}. Indeed if λ /∈
σ(hk) is nonzero then the element

y = λ−11 + λ−1k(λ1− hk)−1h

satisfies y(λ1− kh) = (λ1− kh)y = 1 and so λ /∈ σ(kh).
It follows that σ(xx∗) = {0}. Thus ‖xx∗‖ = 0 (xx∗ is selfadjoint) showing

that −c3 = xx∗ = 0 and so c = 0. 2

Remark 2.15 If a ≤ b then for all c ∈ A

c∗ac ≤ c∗bc ≤ ‖c‖2 b

at ≤ bt (when a ≥ 0 and t ∈ (0, 1)).

But if 0 ≤ a ≤ b ⇒ a2 ≤ b2, then A is commutative.

Proof Omitted
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2.4 Approximate units

Every C*-algebra has an approximate unit, namely a net {uλ} such that
‖uλx− x‖ → 0 and ‖xuλ − x‖ → 0. In fact {uλ} can be chosen contractive
(‖uλ‖ ≤ 1), positive (uλ ≥ 0) and increasing (λ ≤ µ ⇒ uµ − uλ ≥ 0).

If the algebra is separable, then the approximate unit may be chosen to
be a sequence.

The general result is the following:

Theorem 2.16 For any C*-algebra A, the set

Λ = {u ∈ A+ : ‖u‖ < 1}

is upward directed3 and an approximate unit.4

But in special cases we can choose the approximate unit to have additional
properties:

Examples 2.17 In C0(R), we may choose {un}n∈N where un is any contin-
uous function such that 0 ≤ un ≤ 1, un(t) = 1 for t ∈ [−n, n] and un(t) = 0
for |t| > n+1. In particular we may choose the approximate unit to be in the
ideal of functions of compact support, we can choose it to consist of piecewise
linear, or infinitely differentiable functions.

In c0(N), we may choose un to be the characteristic function of {0, 1, . . . , n}.
In c0(Γ), we can choose uλ to be the characteristic function of a finite subset
λ ⊆ Γ (the indexing is by inclusion).

In K(`2) (the ‘non-commutative analogue of c0’) we may choose un to
be the projection onto the subspace spanned by {e0, e1, . . . , en}. Here the
approximate unit may be chosen in the ideal of finite rank oeprators.

3i.e. if u1, u2 ∈ Λ there is u3 ∈ Λ with u3 ≥ uj for j = 1, 2
4i.e. given a ∈ A and ε > 0 there is uo ∈ Λ such that for all u ∈ Λ with u ≥ uo we have

‖ua− a‖ < ε and ‖au− a‖ < ε
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