Group C*-algebras

A K.

Recall' that if G is a nonempty set, the linear space

Coo(G) ={f : G — C : supp f finite }

has a Hamel basis consisting of the functions {d; : t € G} where

5t(3):{ (1): j;i

Thus every f € c,,(G) is a finite sum

f=>_Ft).

teG

The Hilbert space ¢*(G) is the completion of ¢,,(G) with respect to the scalar
product

(f.9)=>_ ft)g(t)

teG

and then {0, : t € G} becomes an orthonormal basis of *(G).
In case G is a group, the group operations (s,t) — st and t — ¢!

extend linearly to make c,,(G) into a *-algebra: we define d, x §; = dg and
(04)* = 04-1, so that

frg= (Z f(s)c%) « (Z g(t)@) = f(s)9(t)d
and

fr= (Z f<s><5s) = f(s)ds
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in other words (setting r = st)
> (z s ) =Y (z f(rtl)g(t)> 5

and (changing s to r = s71)
=
Thus

(f*g)(r Zf ) =) frtet)  (re@)

and
(f)r)=fr"1)  (redq).

We may also complete c,,(G) with respect to the ¢! norm

Il =D 1f®)

to obtain the Banach space £*(G). Note that because of the relations

1F = glly < (171, gl
and |/, = Iy

(the proof of the first one is easy? and the second one is obvious) the multi-
plication and the involution extend continuously to £*(G), which becomes a
Banach algebra with isometric involution, although rarely a C*-algebra.

For example if e, s and s? are different elements of G and f = 0,-1 +6, — s
then ||f|l, =1+ 1+1 and

f* * f = (68 + 66 - 55*1)(53*1 + 56 - 55) = _55*2 + 356 - 552
hence ||f** f|l, =1+ 3+ 1.

In order to equip ¢,,(G) with a suitable C*-norm, we study its *-representations
on Hilbert space.

P fesTin| < L S )Tl = S f6) (s =
SN2 g™ =2, [F () 2 1g()]
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The left regular representation Let H = (*(G). Each t € G defines a
unitary operator \; on H by the formula

MO Es)8) =D Es)ds (€= &(s)0s € (G)).

For example, if G = 7Z then A\, = U™ where U is the bilateral shift, U(4,) =
Oni1, on F2(Z).
Making the change of variable r = ts, we find

(Ag)(r) =¢&(t'r) (r€G).

Note that ); is a well-defined linear isometry, because
XI5 = Z 1P =D 1EG) = lI€ll3

Also A, = I (the identity operator) and
/\t>\s = )\ts

because

>\t()\35r) - )\t(ésr) - 5tsr - 6(ts)r - Ats(ér)

for each r € GG. Since the operators involved are bounded and linear and the
{6;} span £*(G) the claim follows.

In particular it follows that each ); is invertible with inverse (A;) ™' = A1
and so it is an onto isometry, i.e. a unitary, with (A\;)* = A;—1. Thus we have
a group homomorphism

G —U(B(H))

into the group of unitary operators on H = ¢*(G). This is called a unitary
representation of G on H.

The unitary representation A immediately extends to a *-representation,
also denoted by A, of the *-algebra c,,(G) on ¢*(G). More precisely, given
[ =22 f(t)ds € coo(G) we define

:Zf(t))\t
ie. Zf ') (€ € A(Q)).



This is a bounded operator because

< D@D =Y 1@ =11f1,

since each \; is unitary. In fact this inequality shows that A extends to a
(contractive) map ¢*(G) — B((*(G)).

The fact that \ is a *-representation immediately follows from the prop-
erties of its restriction to G-

A ((Z f(t)5t> * (;«xs)és)) =\ (Zf 5ts> Zf $)Mrs

—Zf $)AiAs = (Zf ) (Z (s>A5> = \f)A(9)

and X ((Z f(t)5t> ) = A (Zﬁ(m) => fHAn
-SR-S son)

The above calculations can be carried out for any unitary representation of
G. The details are left as an exercise.

IACS

Proposition 1 There is a bijective correspondence between unitary repre-
sentations of G and *-representations of c,o(G):
Ifm: G — U(B(H)) is any unitary representation of the group G, the formula

@ (Z f(t)5t> = f)m(t)

defines a unital *-representation of co,(G) (and of 1(G)) on the same Hilbert
space H which is ||-||,-contractive.

Conversely, every unital ||-||,-contractive *-representation p of coo(G) (
of (1(G)) defines a unitary representation m by ‘restriction’: w(t) = p(d
satisfying ™ = p.

We usually use the symbol  for .

) (or
p(61)



Definition 1 Let X be the set of all||-||,-contractive *-representations (m, H)

of coo(G) (equivalently, of (*(G)).
The C*-norm on c,o(G) (or (1(QG)) is defined by the formula

/]I, = sup{ll= ()] - = e X}

The group C*-algebra C*(G) is defined to be the completion of coo(G) (or
equivalently of (*(GQ)) with respect to this norm.

Remarks 2 First of all, the set ¥ is non-empty: it contains the left regular
representation.

Clearly |||, is a seminorm on ¢,,(G), being the supremum of seminorms,
all of which are (by definition) bounded by ||-||;, hence so is ||-||,. Also, |-,
satisfies the C*-identity, because all the seminorms f — ||7(f)]| satisfy it.?

But why is |||, a norm? In other words, why is it true that || f]|, > 0
whenever f € ¢,,(G) is nonzero?

The reason is that the left regular representation is faithful on c,,(G) and
(Y(@); thus if f € £1(G) is nonzero then A(f) # 0 and so || f]|, > [|A(f)]| > 0.

Indeed if f =3, f(t)d; € (*(G) is nonzero then there exists s € G with
f(s) # 0 and then?

oo )z 6 <Zf (£) A6 > Zf (6:,05) = f(s)

because the d, are orthonormal in £2(G). Thus A(f) # 0.

The usefulness of C*(G) comes from the following property, whose proof
is an immediate consequence of the previous proposition and the fact that
Coo(G) is a dense *-subalgebra of C*(G).

Proposition 3 There is a bijective correspondence between unitary repre-
sentations of G and unital *-representations of the group C*-algebra C*(Q).

In particular, the left regular representation A extends to a *-representation
of C*(G) on £*(G). However, the fact that A is faithful on c,,(G) does NOT
mean that its extension remains faithful on C*(G)!

S (f = Hll = () (D = (£
since >, |f(t)] < oo, the sum Y, f(t)A+ converges (absolutely) in the norm of
B(*(@)).




The image A\(C*(G)) in B(¢*(G)) is a C*-algebra,; it equals the closure of
A(Coo(@)) in the norm of B(¢%(G)) and is called the reduced C*-algebra C*(G)
of G.

In many cases, for example when G is abelian, A is faithful on C*(G),
so that C¥(G) ~ C*(G) (isometrically and *-isomorphically). In general,
however, C¥(G) is a quotient of C*(G) and does not ‘contain’ all unitary
representations of G.

Example 4 Let G = FF5 be the free group in two generators a and b; that is,
any element of G is a (finite) ‘word’ of the form a"b™a*V/ where n,m,k,j € Z
and there are no relations between a and b. It is known that the reduced
C*-algebra C*(F,) is simple, i.e. it has no nontrivial closed two-sided ideals.
Thus all of its representations are isomorphisms; Since C(F3) is obviously
infinite-dimensional, it cannot have finite dimensional representations. On
the other hand, the group Fy does have unitary representations on finite-
dimensional spaces: Just take any two unitary n x n matrices U and V
and define m(a) = U and 7w(b) = V. Since there are no relations between
a and b, this extends to a unitary representation of Fy on C™; for exam-
ple w(a"b™makt?) = UMV™U*VI. Hence C*(Fy) does have nontrivial finite-
dimensional representations: therefore it cannot be isomorphic to C*(Fa).
Thus, C}(F3) is a proper quotient of C*(IFy).

Example 5 Let G = Z. If we represent each n € Z by the function (,(z) =
2" z € T, the convolution product (,*(, = (uam becomes pointwise product,
involution becomes complex conjugation, and the elements of ¢,,(G) become
trigonometric polynomials. Hence if P C C(T) is the set of trigonometric
polynomials we have a *-isomorphism

Coo(Z) — P : Zf(n)én — py, where pg(z) = Zf(n)z"

Note that, as observed earlier, the left regular representation A is generated
by A(1) = U, the bilateral shift on ¢*(Z), which is unitarily equivalent to
multiplication by ¢ on L*(T). Therefore, for each f € c,o(Z), M(f) = ps(U)
is unitarily equivalent to the multiplication operator M,  acting on LA(T)
and so

INOI = || My, || = llpsll o = sup{lps(2)] : 2 € T}

It follows that the closure C}(Z) of A(coo(Z) is isometrically isomorphic to
the sup-norm closure of the trigonometric polynomials, namely C(T).
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We will show that C*(Z) is isometrically *-isomorphic with C(T).

Since ¢oo(Z) is ||-||,-dense in C*(Z) and P is ||-|| . -dense in C(T) (Stone-
Weierstrass) it suffices to show that the norm || f||, on c,,(Z) coincides with
the sup norm ||ps|| . of C(T). For this, since we just proved that ||ps|| =
IACHI < IIfIl,, it is enough to prove the reverse inequality, namely that if 7
is any unitary representation of Z on some Hilbert space, then

I (NI < sl

for any f =3 f(n)d, € coo(Z).
Indeed let V' = 7(1); this is a unitary operator and

7(f) =Y fn)w(n) =D f(n)V" =py(V).

Now ps(V) is a normal operator and hence its norm equals its spectral radius.
By the spectral mapping theorem,

a(pr(V)) ={ps(2) : 2 € a(V)} C {ps(2) : 2 € T}

because V' is unitary and so o(V) C T. Thus

[ (NN = llpr(V)IF < sup{lps(2)] - 2 € T} = |Ipsll -

Abelian groups The situation of this last example generalizes to arbitrary
abelian groups. Briefly, if G is an abelian group, then of course c,,(G) is
abelian, and hence so is C*(G). Thus C*(G) ~ C(K), where K is the
compact space of multiplicative linear functionals on C*(G) with the weak*
topology. We identify the space K:

Define the set of characters of G

G=TI= {7:G — T : homomorphism}.

With the topology of pointwise convergence, it is not hard to see that this is
a compact space (a closed subspace of the Cartesian product T¢) and it is a
group with pointwise operations. In fact it can be shown to be a topological
group (the group operations are continuous). It is called the dual group of
G.

Any v € T is a *representation of G on the Hilbert space C (since

Y(t)y(s) = y(ts) and y(t ') = (y(¢t))~* = v(¢)) and thus extends (Proposition
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3) to a *-representation 4 of C*(G) on C, i.e. a multiplicative linear functional
on C*(@G). Conversely, any multiplicative linear functional on C*(G) restricts
to a character on G. Thus there is a bijection between the set I' of characters
of G and the set K of multiplicative linear functionals on C*(G). We claim
that this bijection is a homeomorphism; since both spaces are compact and
Hausdorff, it suffices to prove that it is continuous.

Let v; — v in I'; this means 7;(t) — v(t) for each t € G. To prove that
¥; — 4 in K, we need to prove that 3;(a) — ¥(a) for all a € C*(G). Fix such
an a. Since ¢,,(G) is dense in C*(G), given € > 0 there exists f € co0(G)
with [ja — f||, < e. Now each 4; and 4 has norm 1, and so

Fila = f) = 3la = Pl < 2]a = fll, < 2

On the other hand, if f is a finite sum ), f(¢)d;, we have

F:f) =3 = D FOOE) =3 < DI OL1a(t) = 2(@)]-

Now since v;(t) — v(t) for each ¢t € G, there is i, such that |y;(t) — ()| < e
for each ¢ > i, and each ¢ in the finite support of f. Combining with the
previous inequality we conclude that

Fi(a) = (@) < 2+ [I£]l))e

whenever i > i,; thus 4; — 7 in the weak*-topology.

This concludes the proof that I' and K are homeomorphic; we henceforth
identify K with I and now we can conclude by Gelfand theory that C*(G) ~
C(T"). In fact the *-isomorphism is given by a — a, where

a(y) =4(a), a€C*(G)
and in particular

FO)=>_F$)1(s), € col@).

Haar measure on I' We now wish to equip I" with a suitable probability
measure 1 and form L*(T, ). We first define a state:

W Coo(G) = C: f— f(e)
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Clearly this is linear® and w(1) = w(d.) = d.(e) = 1. We check positivity:
w(f* = f) = Z fi(s Z f(s7)
D TP Z Fs)P =0 (1)

for all f =73, f(5)0s € coo(G).
Note also that w is continuous in the norm of C*(G) ~ C(I'): Indeed

W] = £ = [A 8 | < IS = INHI < 1AL = | ]

when f € ¢,0(G). Therefore w extends to a continuous linear form on the
completion C'(I') and the extension is a state. By the Riesz representation
theorem, there exists a unique Borel probability measure p on the compact
space I' such that

w(a) = /F&(fy)du(’y) for all a € C*(G). (2)

Lemma 6 The measure

(i) is left invariant, i.e. pu(yE) = u(E) for every Borel subset of I' and any
g €T (where yE = {~vy' : v € E}), and

(7) has full support, i.e. u(U) > 0 for every nonempty open set U C T.

Proof (i) Fix v € I'. We claim that
/f7 Y )dp(y /f Ydp(v")  for all f € c,o(G).

Indeed, seting g( ) = ~(s) )f( ) We casily find that §(v/) = f(y19') and so

[ T day) = [ 97 duy) = gle) = 1{e)f(e) = f(e).

Since cOO(G) is dense in C ( ) it follows that

et = [[atruty) toralt a e or)

This is not multiplicative: the product on c,,(G) is not pointwise multiplication, it is
convolution



By uniqueness of p this implies
[t du) = [ xel)dutr) tor every Borel set E CT.
r r

But since xg(v ') = xy£(7'), claim (i) follows.

(ii) Let U C I" be a nonempty open set. Observe that {yU : v € I'} is an
open cover of I' (the map v/ — 79 is a homeomorphism) and so there is a
finite subcover {y,U : i =1,...,n}. Now u(+,U) = p(U) by left invariance,

hence
u(l) = p (U %U> < Zu(%U) = nu(U).

Since p(I") > 0 it follows that p(U) > 0. O

The Fourier transform It follows from (2) that for f € ¢, (G) (remem-

—

bering that the Gelfand transform is a *-morphism, so that g f = ¢ f ) we
have

“wf)= [ Frefdu= | Fidu= | fidu= [ 1F(v)Pduty).
ol f) = [ Foddu= [ Fhau= [Fan= [\FPaut). @
Combine this with (1) to conclude that

/F FOdu() = ST forall f € cu(G).

This equality shows (if we write L*(T") for L*(T', 1)) that the linear map
(Coo(G), H'Hﬁ(c)) — (C(T), ”'HL?(F)) f—=f
is isometric and has dense range, and thus extends to a unitary bijection
F:3(G) — L*T)

which is called the Fourier transform.
Finally, if f € coo(G) and € € c,o(G) C £2(G) we have

FONf)E) = F(f+€) =[x &= f€ = M = M;F¢

10



where M, denotes multiplication by g on L?(T"). The operators FA(f) and
M;F are both bounded operators on ¢*(@) and coincide on the dense sub-
space ¢,o(G); therefore they are equal:

FA(f) = M;F or FA(f)F* = M;

(F is unitary). It follows that [|A(f)|| = [|M{[|. But, since z has full support,°
1M = [ Fllno. Thus finally

IO = [ fllo for all f € coo(G)

so that the left regular representation is isometric on ¢,,(G). Therefore its
extension to C*(G) ~ C(I') is also isometric, hence injective, and implements
a *-isomorphism between C*(G) and C!(G). We summarize:

Theorem 7 If G is an abelian group and T' = G, then C*(G) ~ C(I") and
the Fourier transform F : (*(G) — L*(T) implements a unitary equivalence
between the left reqular representation X of C*(G) on ¢*(G) and the multipli-
cation representation g — M, of C(I') on L*(T'). Hence X is isometric and

so C*(G) = C*(Q).

SIf U is an open set on which |f| > || f|lec — €, then £ = xp is a nonzero element of
L2(T) and [|M][lIg]l2 = Mgl = ([ flloo = €)lIE]l2-
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