
Discrete crossed products

A.K.

Classical dynamical systems The motion1 2 of a classical mechanical system is
presumed to be described by a differential equation

dx

dt
= F (x) (DE)

where F : Rn → Rn governs the dynamics. Under suitable smoothness conditions on
F (locally Lipschitz?) given any ‘initial’ point y ∈ Rn there exists a unique solution
x : R → Rn of (DE) satisfying the initial condition

x(0) = y. (IC)

To emphasize dependence on the initial condition, we change notation and consider
the solution to be a function

x : R1+n → Rn : (t, y) → x(t, y)

such that t → x(t, y) satisfies (DE) and x(0, y) = y for all y ∈ Rn. Moreover this
function is continuous, that is, it depends continuously on time as well as the initial
conditions.

Now fix s ∈ R and the initial point y ∈ Rn and consider the function

z : t→ x(s+ t, y).

This also satisfies (DE) and also z(0) = x(s, y). But there is a unique solution
satisfying these two conditions, namely t→ x(t, z(0)). Therefore we have

z(t) = x(t, z(0)), that is x(s+ t, y) = x(t, x(s, y)) for all t ∈ R. (1)

Changing point of view, we consider time t ∈ R as a parameter: for each t ∈ R,
(DE) defines a map

φt : Rn → Rn : y → x(t, y)

mapping any ‘initial’ point y to its location at time t.
Then equation (1) becomes

φt+s(y) =φt(φs(y)) for all y ∈ Rn

i.e. φt+s =φt ◦ φs.

1This section is based on [1].
2semcrsd, 15/4/07
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Therefore we have an action of the group R by continuous maps (in fact homeomor-
phisms) of Rn: the dynamical system is (Rn, φ,R) where φ : R → Homeo(Rn) is a
homomorphism from the group R into the group of homeomorphisms Rn → Rn.

In some cases there are ‘integrals’ of (DE), namely functionsH : Rn → R satisfying

n∑
i=1

∂H

∂xi

Fi = 0 where F = (F1, F2, . . . , Fn)

is the function in (DE). It follows (chain rule) that H is constant along solution
curves:

d

dt
H(x(t, y)) = 0.

This means that any hypersurface Sc = {x ∈ Rn : H(x) = c}, where H takes
the constant value c, has the property that if the initial point y is in Sc (i.e. if
H(x(0, y)) = c) then the solution x(t, y) remains on Sc for all time t. Thus the
transformation group {φt : t ∈ R} leaves Sc (globally) invariant, so one may study
the (restricted) dynamical system (Sc, φ,R).

Sometimes one studies the ‘continuous’ dynamical system (Sc, φ,R) by replacing
the ‘continuous’ family {φt : t ∈ R} with a ‘discrete sampling’ {φnT : n ∈ Z} (where T
is the ‘scale’). This is the same as {ψn : n ∈ Z} where ψ = φT and ψ2 = ψ ◦ψ = φ2T ,
ψ−2 = ψ−1 ◦ ψ−1 etc. This gives an action of the group Z by the iterates of ψ and
ψ−1. One denotes this ‘discrete’ dynamical system by (Sc, ψ).

A priori, there is no mathematical reason to consider only the groups R and Z:

Definition 1 A (classical) dynamical system is a triple (X,φ,G) where X is a
set, G is a group and φ is a group homomorphism into the group of bijections of X.
One is generally interested in the following two cases:

A topological dynamical system is (X,φ,G) where X is a topological space
(usually locally compact, Hausdorff) and φ(G) a group of homeomorphisms of X.

A measure preserving dynamical system is (X,φ,G) where X = (X,S, µ)
is a measure space and φ(G) a group of measurable bijections of X which preserve
the measure µ.

When G has a (non-discrete) topology, some continuity restriction on the action is
usually imposed. For instance when G is locally compact Hausdorff, for a topological
dynamical system (X,φ,G) one usually assumes that the map G×X → X : (t, x) →
φt(x) is continuous; or one may assume continuity of the map G→ X : t→ φt(x) for
each fixed x ∈ X.

Alternatively, X could be a differentiable manifold and φ(G) a group of diffeo-
morphisms, or X could be an analytic manifold and φ(G) a group of holomorphic
maps.

C*-dynamical systems The study of a classical dynamical system (X,ψ) is equiv-
alent to the study of the pair (C,α), where C is the commutative C*-algebra Co(X) and
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α is the *-automorphism3 of C defined by α(a) = a◦ψ−1 (a ∈ C). More generally, if G
is a group of homeomorphisms of X (so that for g, h ∈ G we have g(h(x)) = (gh)(x)
for all x ∈ X) then the map α : G→ Aut(C) from G to the group of *-automorphisms
of C given by αg(a) = a ◦ g−1 (a ∈ C, g ∈ G) is a group homomorphism.

A classical dynamical system is supposed to describe the dynamical behaviour of a
classical mechanical system, in which the observable quantities are functions on phase
space. In a quantum mechanical system, the observables are operators on a Hilbert
space, or just elements of an abstract C*-algebra: they are non-commuting objects.
The dynamical behaviour is described by the action of a group (or semigroup, when
the action is not ‘reversible’) of automorphisms of the algebra of observables.

Definition 2 A (discrete) C*-dynamical system is a triple (C, α,G) where C is
a C*-algebra, G is a group and α : G → Aut(C) is a homomorphism of G into the
group of *-automorphisms of C.

Example 1 Let g → Ug be a unitary representation of a group G on a Hilbert space
H. Then letting adg(A) = UgAU

∗
g (A ∈ B(H)) we obtain a C*-dynamical system

(B(H), ad, G). Moreover if C ⊆ B(H) is any subalgebra which is invariant under
{adg : g ∈ G}, then denoting by αg the restriction of adg to C we obtain a quantum
dynamical system (C, α,G).

Thus a unitary representation U of G on H gives rise to a dynamical system
(C, α,G) for every algebra C ⊆ B(H) which is normalized4 by the group {Ug : g ∈ G}.
Conversely, given a dynamical system (C, α,G) one may ask whether it is of the above
form, in other words whether the automorphism α is implemented by a unitary group.

Definition 3 Let C ⊆ B(H) be a C*-algebra, G a group. A unitary representation
U of G on H is said to implement an action α of G on C if

αg(A) = UgAU
∗
g (A ∈ C, g ∈ G).

Failing that, one may ask whether it is possible to ‘change Hilbert space’ so as to
achieve unitary implementation. We will show that this is always possible, provided
one is willing to enlarge H to a direct sum of |G| copies of itself.

Covariant representations

Definition 4 A covariant representation of a C*-dynamical system (C, α,G) on
a Hilbert space H is a pair (π, U) where π is a *-representation of C on H, U is
a unitary representation of G on (the same) H and π and U are connected by the
covariance condition:

π(αg(a)) = Ugπ(a)U∗
g (a ∈ C, g ∈ G). (C)

3A *-automorphism of C is a linear bijection α : C → C which preserves the product and the
involution. Recall that a *-automorphism of a C*-algebra is automatically isometric.

4A unitary U normalizes C when UCU∗ ⊆ C.
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Example 2 Let Ω be a compact Hausdorff space, G a group of homeomorphisms of
Ω, let µ be a G-invariant Borel probability measure on Ω (that is µ(gE) = µ(E) for
all g ∈ G and E ⊆ Ω Borel). Let A = C(Ω) and αg(a) = a ◦ g−1.

Represent A on H = L2(Ω, µ) as multiplication operators:

π(a)ξ = aξ (a ∈ A, ξ ∈ H).

Represent G on H by composition:

Ugξ = ξ ◦ g−1

(the fact that each Ug is unitary follows from the fact that µ is G-invariant).

We verify condition (C): for all ξ ∈ H,

Ugπ(a)ξ = Ug(aξ) = (a ◦ g−1).(ξ ◦ g−1),

π(αg(a))Ugξ = π(a ◦ g−1)(ξ ◦ g−1) = (a ◦ g−1).(ξ ◦ g−1)

so Ugπ(a) = π(αg(a))Ug.

We say that G acts ergodically on Ω if the only G-invariant Borel sets are the
null and co-null sets. More precisely, G acts ergodically if, whenever E ⊆ Ω is a Borel
set such that µ(E M (gE)) = 0 for all g ∈ G (M denotes symmetric difference), we
have µ(E) = 0 or µ(Ω\E) = 0.

Proposition 3 If G acts ergodically, then the pair (π, U) is irreducible, that is the
only closed subspaces of H which are invariant under all π(a) (a ∈ A) and all Ug

(g ∈ G) are {0} and H.

Proof. Let P ∈ B(H) be invariant under both π and U . Then, first P must commute
with all π(a). We claim that P commutes with multiplication operators π(χE) by
characteristic functions of Borel sets E ⊆ Ω.

Indeed, given E ⊆ Ω, by Lusin5 (or regularity of µ) for each n ∈ N we can find
fn ∈ C(Ω) with ‖fn‖∞ ≤ 1 such that µ({ω : |χE(ω)− fn(ω)|}) < 1

n
. It is then easily

verified that for all ξ ∈ L2(Ω, µ) one has limn ‖fnξ − χEξ‖2 = 0 and therefore

Pπ(χE)ξ = P (χEξ) = lim
n
P (fnξ) = lim

n
Pπ(fn)ξ

= lim
n
π(fn)(Pξ) = lim

n
fnP (ξ) = χEP (ξ) = π(χE)Pξ

and so Pπ(χE) = π(χE)P .
Now let g = P (1) ∈ L2(Ω, µ). Note that for every Borel set E ⊆ Ω,

gχE = χEg = π(χE)P1 = Pπ(χE)1 = P (χE1) = P (χE). (2)

5thanks, George
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We claim that |g| ≤ 1 a.e. For this, we suppose that the set E = {ω : |g(ω)| > r} has
positive measure and we show that r ≤ 1; it will follow that µ({ω : |g(ω)| > r}) = 0
for all r > 1 as claimed. Indeed, since 0 ≤ rχE ≤ |g|χE by definition of E we have

r‖χE‖2 ≤‖gχE‖2 = ‖P (χE)‖2 ≤ ‖χE‖2

using (2) and the fact that ‖P‖ = 1. This shows that |g| ≤ 1 a.e. Thus g defines a
bounded multiplication operator Mg and now (2) shows that MgχE = PχE for every
Borel set E ⊆ Ω, hence Mgf = Pf for all f ∈ L2(Ω, µ).

Thus P is a multiplication operator; since it is a projection, it corresponds to
multiplication by the characteristic function of some Borel set F ⊆ Ω. Since P is also
invariant under all Ug, F must be invariant under the action of G, so that F is null
or co-null, that is, P = 0 or 1. 2

Existence of covariant representations Let (C, α,G) be a C*-dynamical sys-
tem. Given any representation πo of C on a Hilbert space Ho, we will construct a
covariant representation (π,Λ) of (C, α,G) on a different (larger) Hilbert space H.

Define H = `2(G,Ho) =

{
ξ : G→ Ho : ‖ξ‖2

2 =
∑
s∈G

‖ξ(s)‖Ho
<∞

}
.

We may think of H as the Hilbert space direct sum ⊕s∈GHo of |G| copies of Ho. It is
the completion of the linear space

coo(G,Ho) = {ξ : G→ Ho : supp ξ finite}

with respect to the scalar product

〈ξ, η〉 =
∑

s

〈ξ(s), η(s)〉Ho
.

Elements of H will be written

ξ =
∑

s

ξ(s)δs

(∑
s∈G

‖ξ(s)‖2
Ho
<∞

)
where, for x ∈ Ho, the ‘monomial’ xδs is the function G→ Ho

xδs(t) =

{
x, t = s
0, t 6= s

Thus, a bounded operator A ∈ B(H) defines a ‘|G| × |G| matrix’ A = [As,t] where
each As,t ∈ B(Ho). The correspondence is given by the formula6

〈At,sx, y〉Ho
= 〈A(xδs), (yδt)〉H (x, y ∈ Ho, s, t ∈ G).

6recall the formula 〈Aδn, δm〉 = am,n for operators on `2.

5



Define a representation π of C on H by

(π(a)ξ)(s) = πo(α
−1
s (a))(ξ(s)) (a ∈ C, ξ ∈ `2(G,Ho))

(for each s ∈ G, ξ(s) is an element of Ho, hence so is πo(α
−1
s (a))(ξ(s)))

equivalently π(a)xδs = (πo(α
−1
s (a))x)δs (a ∈ C, x ∈ Ho, s ∈ G).

Observe that

〈π(a)(xδs), (yδt)〉H =

{
〈πo(α

−1
s (a))x, y〉Ho

, s = t
0, s 6= t

so that
π(a) = diag(πo(α

−1
s (a))).

It is easy to check that π is a *-representation of C which is faithful when πo is faithful.
Note, however, that π is never irreducible (when G is non-trivial): each copy of Ho

in H = ⊕sHo is invariant (in fact, reducing) for π.
Define a unitary representation Λ of G on H by7

(Λtξ)(s) = ξ(t−1s) (t ∈ G, ξ ∈ `2(G,Ho)).

Equivalently
Λt(xδr) = xδtr (t ∈ G, x ∈ Ho, r ∈ G)

(because (Λtxδr)(s) = xδr(t
−1s) = xδtr(s) for all s ∈ G). Thus Λ is the left regular

representation of G of ‘multiplicity’ equal to dimHo.
We verify the covariance condition:

(Λtπ(a)Λ∗
t ξ)(s) = (π(a)Λ∗

t ξ)(t
−1s) = πo(α

−1
t−1s(a))((Λ

∗
t ξ)(t

−1s))

= πo(α
−1
t−1s(a))(ξ(s)) = πo(α

−1
s (αt(a)))(ξ(s)) = (π(αt(a))ξ)(s)

for all ξ ∈ H, so
Λtπ(a)Λ∗

t = π(αt(a)).

It is instructive to verify this in the case G = Z or even G = Z3. In the latter case,
G is generated by 1̄ and we have:

Λ1̄ =

0 0 I
I 0 0
0 I 0

 π(a) =

πo(α(a)) 0 0
0 πo(a) 0
0 0 πo(α

−1(a))


7Letting ξt(s) = ξ(t−1s) we have Λt(Λsξ) = Λtξs = (ξs)t where (ξs)t(r) = ξs(t−1r) = ξ(s−1t−1r)

so that (ξs)t = ξts = Λtsξ, so that Λ is indeed a group morphism; the fact that ‖Λtξ‖2 = ‖ξ‖2 is
obvious, so Λt is an invertible isometry, hence a unitary.
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where I is the identity operator on Ho and α ≡ α1̄. We have

Λ1̄π(a)Λ∗
1̄ =

0 0 I
I 0 0
0 I 0

πo(α(a)) 0 0
0 πo(a) 0
0 0 πo(α

−1(a))

0 I 0
0 0 I
I 0 0



=

πo(α
−1(a)) 0 0
0 πo(α(a)) 0
0 0 πo(a)


and

π(α(a)) =

πo(α
2(a)) 0 0
0 πo(α(a)) 0
0 0 πo(a)

 =

πo(α
−1(a)) 0 0
0 πo(α(a)) 0
0 0 πo(a)

 .

The twisted convolution algebra The idea is to ‘enlarge’ C by ‘adding’ unitary
elements δt, (t ∈ G) which will implement the action α of G on C.

So we form the linear space8

coo(G, C) = {f : G→ C : supp f finite }

and we write its elements
f =

∑
t∈G

f(t)δt

where f(t) in C.
[In the case G = Z, every f =

∑
n∈Z f(n)δn =

∑
n∈Z f(n)δn

1 ∈ coo(Z, C) is a
C-valued polynomial in the generator δ1.]

Note that coo(G, C) can be considered to contain a copy of C, by identifying a ∈ C
with9 aδe ∈ coo(G, C).

We define a ‘twisted convolution’ so that the unitaries implement the action. That
is, we want to have αs(a) = δsaδ

∗
s or equivalently δsa = αs(a)δs for a ∈ C and s ∈ G.

This gives the motivation for the definition of the convolution: we multiply mono-
mials according to the rule

(aδs) ∗ (bδt) = aαs(b)δsδt = aαs(b)δst

and define the involution by

(aδt)
∗ = δ∗t a

∗ = δt−1a∗ = αt−1(a∗)δt−1 = α−1
t (a)∗δt−1 .

8If one uses the theory of tensor products, one may identify coo(G, C) with the algebraic tensor
product C ⊗ coo(G): its elements can be written as (finite) sums f =

∑
t f(t)⊗ δt, where {δt} is the

usual (Hamel) basis of coo(G).
9e ∈ G is of course the identity element
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Thus the definitions are

f ∗ g =

(∑
s

f(s)δs

)
∗

(∑
t

g(t)δt

)
=
∑
s,t

f(s)αs(g(t))δst

and
f ∗ =

(∑
s

f(s)δs

)∗

=
∑

s

α−1
s (f(s))∗δs−1 .

In other words (setting r = st)

f ∗ g =
∑

r

(∑
s

f(s)αs(g(s
−1r))

)
δr

and (changing s to r = s−1)

f ∗ =
∑

r

αr(f(r−1))∗δr.

Thus
(f ∗ g)(r) =

∑
s

f(s)αs(g(s
−1r))

and (f ∗)(r) = αr(f(r−1))∗ (r ∈ G). (3)

We summarize:

Definition 5 The twisted convolution algebra coo(G,α, C) is the space of all functions
f : G → C with finite support, equipped with the convolution and involution defined
by (3). The completion with respect to the `1 norm

‖f‖1 =
∑

t

‖f(t)‖C

is a Banach *-algebra with isometric involution, denoted `1(G,α, C).

The reduced crossed product In order to equip coo(G,α, C) with a suitable C*-
norm, we construct a *-representation on a Hilbert space. In fact we can work directly
with `1(G,α, C).

If C consists of operators on a Hilbert space Ho, we consider the covariant pair
(π,Λ) acting on H = `2(G,Ho) which we constructed above (with πo the identity
representation) and we define

π̃

(∑
s

f(s)δs

)
=
∑

s

π(f(s))Λs

(
f =

∑
s

f(s)δs ∈ `1(G,α, C)

)
.

Since
∑

t ‖f(t)‖C < ∞, the sum
∑

t π(f(t))Λt converges (absolutely) in the norm of
B(`2(G,Ho)). Thus

∑
t π(f(t))Λt ∈ B(H) and in fact∥∥∥∥∥∑

t

π(f(t))Λt

∥∥∥∥∥
B(H)

≤
∑

t

‖f(t)‖C =

∥∥∥∥∥∑
t

f(t)δt

∥∥∥∥∥
1

.
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The fact that π̃ is a *-representation follows immediately using the covariance con-
dition (in fact the twisted convolution and the involution were defined precisely to
ensure this).

We claim that π̃ is faithful. Indeed, if f =
∑

t f(t)δt ∈ `1(G,α, C) is nonzero then
there exists s ∈ G with f(s) 6= 0 hence α−1

s (f(s)) 6= 0. Choosing x, y ∈ Ho such that
〈πo(α

−1
s (f(s))x, y〉 6= 0 we obtain

〈π̃(f)xδe, yδs〉H =

〈∑
t

π(f(t))Λt(xδe), yδs

〉
H

(4)

=
∑

t

〈
(πo(α

−1
t (f(t)))x)δt, yδs

〉
H

=
〈
πo(α

−1
s (f(s)))x, y

〉
Ho
6= 0

because xδt⊥yδs in `2(G,Ho). Thus π̃(f) 6= 0.
Therefore if we define∥∥∥∥∥∑

t

f(t)δt

∥∥∥∥∥
r

=

∥∥∥∥∥∑
t

π(f(t))Λt

∥∥∥∥∥
B(H)

we obtain an algebra norm on `1(G,α, C) satisfying the C*-condition.

Definition 6 If (C, α,G) is a C*-dynamical system, the reduced crossed product
C ×αr G of C by α is the completion of `1(G,α, C) (equivalently, of coo(G,α, C)) with
respect to the norm ‖·‖r just defined. Equivalently, C×αrG is the concrete C*-algebra
of operators on `2(G,Ho) generated (as a C*-algebra) by the family of operators

{π(a)Λt : a ∈ C, t ∈ G}.

Remark 4 We may identify coo(G,α, C) with its image in B(`2(G,α, C)) and think
of it as the (non-closed) *-subalgebra of B(`2(G,α, C)) generated by {π(a)Λt : a ∈
C, t ∈ G}.

Note that this family contains π(C) (an image of C): just set t = e to get π(a)Λe =
π(a), but it does not contain the image {Λt : t ∈ G}, unless C is unital (proof?).

Remark 5 The above argument works for any faithful representation (πo, Ho) of the
C*-algebra C. Therefore:

For any faithful *-representation (πo, Ho) of C the *-representation π̃ of `1(G,α, C)
on `2(G,Ho) is faithful, and extends by continuity to a faithful representation of C×αr

G.

Representations of `1(G,α, C). We show that the algebraic structure of `1(G,α, C)
was constructed so as to ‘absorb’ all covariant representations of the C*-dynamical
system (C, α,G). More precisely, we generalize the construction of the previous para-
graph to arbitrary covariant pairs:

Given a covariant representation (π, U) of (C, α,G) on a Hilbert spaceH, we define
a map π × U first on ‘trigonometric polynomials’ by the formula:

(π × U)(
∑

t

f(t)δt) =
∑

t

π(f(t))Ut, f =
∑

t

f(t)δt ∈ coo(G, C) (5)
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(thus the representation π̃ defined in Remark 5 is π × Λ).

Proposition 6 There exists a bijective correspondence between non-degenerate *-
representations ρ of `1(G,α, C) and covariant *-representations (π, U) of (C, α,G) for
which π is non-degenerate.

Proof Given a covariant representation (π, U) let ρ = π × U be defined as above.
Observe that ρ is a linear map and

‖ρ(
∑

t

f(t)δt)‖ ≤
∑

t

‖π(f(t))Ut‖ =
∑

t

‖π(f(t))‖ ≤
∑

t

‖f(t)‖ = ‖f‖1

(we have used the fact that π is contractive). Thus ρ is ‖·‖1-contractive and hence
extends to `1(G,α, C). For x, y ∈ C and t, s ∈ G, we have

ρ((xδt) ∗ (yδs)) = ρ(xαt(y)δts) = π(xαt(y))Uts

= π(x)π(αt(y))UtUs = π(x)(Utπ(y)U∗
t )UtUs

= π(x)Utπ(y)Us = ρ(xδt)ρ(yδs)

and ρ((xδt)
∗) = ρ(αt−1(x∗)δt−1) = π(αt−1(x∗))Ut−1

= Ut−1π(x∗)U∗
t−1Ut−1 = U∗

t (π(x))∗

= (π(x)Ut)
∗ = (ρ(xδt))

∗

showing that ρ is a *-representation. Since ρ(aδ1)H = π(a)H, if π is non-degenerate,
so is ρ.

Conversely, let ρ be a non-degenerate contractive representation of the Banach
*-algebra `1(G,α, C) on some Hilbert space H.

Define a map
π : C → B(H) by π(a) = ρ(aδ1).

Since (aδ1) ∗ (bδ1) = abδ1 we have π(a)π(b) = π(ab), and since (aδ1)
∗ = a∗δ1 we have

π(a∗) = π(a)∗, so that π is a *-representation.
To show that π is non-degenerate, observe that π(C)H ⊇ π(C)H1, where H1 is the

linear manifold
H1 = [ρ(bδs)η : b ∈ C, s ∈ G, η ∈ H].

Thus

π(C)H ⊇ [ρ(aδ1)ρ(bδs)η : a, b ∈ C, s ∈ G, η ∈ H]

= [ρ(abδs)η : a, b ∈ C, s ∈ G, η ∈ H].

Since ρ is assumed non-degenerate, this last linear manifold is dense in H (and hence
so is H1 which contains it).10 Thus π(C)H is dense in H, so π is non-degenerate.

Suppose for the moment that C is unital. Then we may define

Ut = ρ(1δt)

10For if 〈ξ, ρ(abδs)η〉 = 0 for all b ∈ C and η ∈ H then replacing a by eλ for an approximate identity
{eλ} and noting that for all b ∈ C we have ‖ρ((eλb− b)δs)‖ = ‖(eλb− b)δs‖1 = ‖eλb− b‖C → 0 we
obtain 〈ξ, ρ(bδs)η〉 = 0 for all for all b, s and η. But the monomials bδs generate `1(G,α, C) and so
〈ξ, ρ(f)η〉 = 0 for all f ∈ `1(G,α, C) and η ∈ H hence ξ = 0 because ρ is non-degenerate.
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and it is immediate that UtUs = Uts and U1 = I. Also ‖Ut‖ ≤ ‖1δt‖ = 1 so that Ut

and its inverse are contractions, and hence Ut is unitary. Note that

Ut(ρ(aδs)η) = ρ(1δt)ρ(aδs)η = ρ(αt(a)δts)η (a ∈ C, s ∈ G, η ∈ H). (6)

If C is not unital, the right hand side of (6) makes sense and can be used as the
definition of Ut on H1. So we define Ut initially on the dense subspace H1 by

Ut(ρ(aδs)η) = ρ(αt(a)δts)η (a ∈ C, s ∈ G, η ∈ H). (7)

It is clear that UtUs = Uts.
11 Also, if ξ′ = ρ(aδs)ξ, η

′ = ρ(bδr)η are in H1

〈Ut−1ξ′, η′〉 = 〈Ut−1(ρ(aδs)ξ), ρ(bδr)η〉 = 〈ρ(αt−1(a)δt−1s)ξ, ρ(bδr)η〉
=〈ξ, (ρ(αt−1(a)δt−1s))

∗ρ(bδr)η〉 =
〈
ξ, ρ(α(t−1s)−1(αt−1(a∗))δ(t−1s)−1)ρ(bδr)η

〉
= 〈ξ, ρ(αs−1(a∗)δs−1t)ρ(bδr)η〉
= 〈ξ, ρ(αs−1(a∗)αs−1t(b)δs−1tr)η〉 = 〈ξ, ρ(αs−1(a∗)δs−1)ρ(αt(b)δtr)η〉
=〈ρ(aδs)ξ, ρ(αt(b)δtr)η〉 = 〈ρ(aδs)ξ, Utρ(bδr)η〉 = 〈ξ′, Utη

′〉.

By linearity, 〈Ut−1ξ′, η〉 = 〈ξ′, Utη
′〉 for all ξ′, η′ ∈ H1. Now if ξ′ ∈ H1 then from the

definition of Ut we see that Utξ
′ ∈ H1. Thus 〈Utξ

′, Utη
′〉 = 〈Ut−1Utξ

′, η′〉 = 〈ξ′, η′〉
showing that Ut is an isometry on H1. Hence it extends to an isometry on H, also to
be denoted by Ut. The relation 〈Ut−1ξ, η〉 = 〈ξ, Utη〉 is now valid for all ξ, η ∈ H, and
shows that U∗

t = Ut−1 . Thus t→ Ut is a unitary representation of G on H.

Alternative approach We choose a contractive approximate identity {eλ} for C and
define

Utξ = lim
λ
ρ(eλδt)ξ (ξ ∈ H). (8)

We will prove that the limit exists when ξ ∈ H1. For this, it suffices to consider ξ of
the form ξ = ρ(aδs)η. Then

‖ρ(eλδt)ξ − ρ(αt(a)δts)η‖H = ‖ρ(eλδt)ρ(aδs)η − ρ(αt(a)δts)η‖H

= ‖ρ(eλαt(a)δts − αt(a)δts)η‖H

≤ ‖ρ(eλαt(a)δts − αt(a)δts)‖ ‖η‖H

≤ ‖(eλαt(a)− αt(a))δts‖1 ‖η‖H

= ‖eλαt(a)− αt(a)‖C ‖η‖H →
λ

0

because limλ ‖eλb− b‖C → 0 for every b ∈ C. Thus the limit exists and in fact12

lim
λ
ρ(eλδt)ρ(aδs)η = ρ(αt(a)δtsη. (9)

11Indeed,

UtUs(ρ(aδr)η) = Utρ(αs(a)δsr)η = ρ(αt(αs(a))δtsr)η = ρ(αts(a)δ(ts)r)η = Uts(ρ(aδr)η).

12This relation incidentally shows that the definitions (7) and (8) are the same (on H1).

11



Note that, given ξ ∈ H1, the element Utξ depends only on t and not on the approxi-
mate identity {eλ} used to define it. Indeed, this is clear from relation (9).

Now if ξ ∈ H1

‖Utξ‖ = lim
λ
‖ρ(eλδt)ξ‖ ≤ sup ‖ρ(eλδt)‖ ‖ξ‖ ≤ sup ‖eλδt‖1 ‖ξ‖ = sup ‖eλ‖C ‖ξ‖ ≤ ‖ξ‖.

Hence Ut is a contraction on H1 and therefore extends to a contraction on H. Also,
we have

UtUs = Uts for all t, s ∈ G.
Indeed, for all ξ ∈ H1,

UtUsξ = Ut(lim
λ
ρ(eλδs)ξ) = lim

λ
Ut(ρ(eλδs)ξ) = lim

λ
ρ(αt(eλ)δts)ξ) = Utsξ

because for each fixed t, the net {αt(eλ)}λ is a contractive approximate identity. Thus
UtUs − Uts vanishes on H1 and hence on H.

Since obviously Ue = I, we have that each Ut is invertible with inverse Ut−1 . Now
Ut is a contraction and its inverse is also a contraction, so it must be an isometry, and
so, being onto, it is unitary. We have shown that t → Ut is a unitary representation
of G.

Having defined (π, U), we verify covariance:

Utπ(b)U∗
t (ρ(aδs)ξ) = Utπ(b)Ut−1(ρ(aδs)ξ) = Utρ(bδe)ρ(αt−1(a)δt−1s)ξ

= Utρ(bαt−1(a)δt−1s)ξ = ρ(αt(bαt−1(a))δtt−1s)ξ

= ρ(αt(b)aδs)ξ = ρ(αt(b)δe)ρ(aδs)ξ

= π(αt(b))ρ(aδs)ξ

which shows (by linearity) that Utπ(b)U∗
t = π(αt(b)) on H1, hence on H by continuity.

Moreover, if η = ρ(bδs)ξ,

(π × U)(aδt)η = (π × U)(aδt)(ρ(bδs)ξ) = π(a)Ut(ρ(bδs)ξ)

= ρ(aδe)ρ(αt(b)δts)ξ = ρ(aαt(b)δts)ξ=ρ(aδt)ρ(bδs)ξ = ρ(aδt)η

showing that π × U = ρ. 2

The (full) C*-crossed product C ×α G. If (C, α,G) is a C*-dynamical system,
we define a norm ‖·‖∗ on the algebra `1(G,α, C) as follows: Let Π be the set of all
non-degenerate *-representations of `1(G,α, C) on Hilbert space. Recall that these
are automatically ‖·‖1-contractive and are all of the form ρ = π × U , where (π, U) is
a covariant *-representation of (C, α,G). For a ∈ `1(G,α, C), we define

‖a‖∗ = sup{‖ρ(a)‖ : ρ ∈ Π}.

Thus ‖a‖∗ ≤ ‖a‖1. Since each ‖ρ(·)‖ is a C*-seminorm, clearly ‖·‖∗ is a C*-seminorm.
Moreover, since C is a C*-algebra, it has a faithful *-representation, and hence Remark
5 shows that there exists a faithful *-representation of `1(G,α, C). It follows that ‖·‖∗
is in fact a C*-norm on `1(G,α, C).
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Definition 7 The C*-crossed product C×αG is defined to be the completion of `1(G,α, C)
with respect to the C*-norm ‖·‖∗. It is an abstract C*-algebra.

Example 7 IfG = Z, C = C and α is the trivial action, then the unitary Λ in Remark
4 is just the bilateral shift on `2(Z), which is unitarily equivalent to multiplication by
z on L2(T). If πo is the identity representation of C as operators on C, then (as we
show below) the representation π̃ in Remark 5 extends to a faithful representation of
C×α Z on L2(T). If f =

∑
fkδk is in coo(Z), then π̃(f) =

∑
fkU

k is the operator of
multiplication by the function

∑
fkz

k, whose norm is precisely the supremum norm
of the function. Since such functions are dense in C(T), it follows that C ×α Z is
isometrically isomorphic to C(T). The dense subalgebra `1(Z) of C ×id Z is mapped
by π̃ to the Wiener algebra, that is the algebra of all φ ∈ C(T) whose Fourier series
is absolutely convergent. 2

Each non-degenerate *-representation of `1(G,α, C) is ‖·‖∗-contractive, by the very
definition of the C*-norm. Thus it extends by continuity to a *-representation of the
C*-algebra C×αG. Thus each covariant non-degenerate *-representation of (C, α,G)
gives rise to a *-representation of the C*-algebra C×αG which will also be denoted
π × U .

Proposition 8 The correspondence (π, U) → π × U is bijective between covariant
*-representations of (C, α,G) for which π is non-degenerate and non-degenerate *-
representations of C ×α G.

However it is not true in general that an injective *-representation of `1(G,α, C)
has an injective extension to C×αG. We will see below that this is true in special
cases.

Fourier coefficients Suppose that πo is a *-representation of C on Ho, and let π̃ be
the corresponding *-representation of `1(G,α, C) on `2(G,Ho) (Remark 5). Denote the
extension of π̃ to C×αG by the same symbol. Each φ ∈ `1(G,α, C) is an absolutely
convergent sum φ =

∑
t φ(t)δt (where φ(t) ∈ C). We call φ(t) the t-th Fourier

coefficient of φ. Note that 〈π̃(φ)xδe, yδt〉H =
〈
πo(α

−1
t (φ(t)))x, y

〉
Ho

(see relation (4))

and so ‖πo(α
−1
t (φ(t)))‖ ≤ ‖π̃(φ)‖ for each t ∈ G. Now

‖φ(t)‖C = ‖α−1
t (φ(t))‖ = sup{

∥∥πo(α
−1
t (φ(t)))

∥∥ : πo *-repr. of C}
≤ sup{‖π̃(φ)‖ : π̃ *-repr. of `1(G,α, C)} = ‖φ‖∗.

Thus for each t ∈ G the map

Et : `1(G,α, C) → C given by Et(φ) = φ(t)

is (linear and) contractive with respect to the C*-norm. Therefore it extends to a
contractive linear mapping Et : C×αG → C. Thus for each a ∈ C ×α G we have a
function E(a) : G→ C given by E(a)(t) = Et(a). This function is bounded by ‖a‖∗,
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so that E(a) ∈ `∞(G, C) and ‖E(a)‖∞ ≤ ‖a‖∗. Moreover if φ ∈ coo(G, C) then E(φ)
vanishes outside a finite subset of G, so that E(φ) ∈ coo(G, C). Since C ×α G is the
closure of coo(G, C) with respect to the C*-norm, it follows that E(a) ∈ co(G, C) for
each a ∈ C ×α G.

Definition 8 For a ∈ C ×α G and t ∈ G, the t-th Fourier coefficient of a is
Et(a), where Et : C ×α G → C is the contractive linear mapping defined above. The
map

E : C ×α G→ co(G, C) : a→ E(a)

where E(a)(t) = Et(a) (t ∈ G)

is a contractive linear mapping, called the Fourier transform.

Note that if C ×id Z is identified with C(T), the Fourier transform just defined
coincides with the usual Fourier transform.

Suppose that πo is a faithful (hence isometric) *-representation of C. Then the
inequality ‖φ(t)‖C =

∥∥πo(α
−1
t (φ(t)))

∥∥ ≤ ‖π̃(φ)‖ extends from `1(G,α, C) to C ×α G;
thus ‖Et(a)‖C ≤ ‖π̃(a)‖. It follows that if a ∈ C ×α G and π̃(a) = 0, then Et(a) = 0
for each t ∈ G. Therefore, injectivity of π̃ will hold whenever the following condition
holds:

Uniqueness : If a ∈ C×αG and Eg(a) = 0 for each g ∈ G, then a = 0.

Abelian groups We will show that this condition is fulfilled when G is abelian.
Let Γ = Ĝ be the dual group. This is a compact abelian group, hence Haar measure
is a probability measure. For each γ ∈ Γ, define a map θγ : `1(G,α, C) −→ `1(G,α, C)
by

θγ(
∑

t

φ(t)δt) =
∑

t

φ(t)γ(t)δt

(recall that |γ(t)| = 1.)
Claim Each θγ extends to an isometric *-automorphism of C×αG.
Proof It is clear that θγ is a *-automorphism of `1(G,α, C). Thus, for every *-
representation π of `1(G,α, C), the map π ◦ θγ is a *-representation. By definition
of the norm ‖·‖∗ of the crossed product, this means that ‖π(θγ(a))‖ ≤ ‖a‖∗ for all
a ∈ `1(G,α, C). Since π is arbitrary, we therefore have ‖θγ(a)‖∗ = supπ ‖π(θγ(a))‖ ≤
‖a‖∗ for all a ∈ `1(G,α, C). Thus θγ is a contraction; since its inverse, θγ−1 , is also a
contraction, θγ is actually isometric. Hence it extends as claimed.

Thus θ defines an action of the group Γ on C×αG. The group {θγ : γ ∈ Γ} is
called the dual automorphism group.

Now for φ =
∑

t φ(t)δt ∈ `1(G,α, C) and s ∈ G we have∫
Γ

θγ(φ)γ(s−1)dγ =
∑

t

∫
Γ

φ(t)γ(ts−1)δtdγ = φsδs = Es(φ)δs
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since
∫
γ(t)dγ = 1 when t = e (the identity of G) and 0 otherwise.13

For any b ∈ C ×α G, let bi ∈ `1(G,α, C) be such that ‖bi − b‖∗ → 0 as i → ∞.
Since θγ(bi) → θγ(b) as i → ∞ uniformly in γ, it follows that

∫
Γ
θγ(bi)γ(s

−1)dγ −→
i∫

Γ
θγ(b)γ(s

−1)dγ. This shows that

Es(b)δs =

∫
Γ

θγ(b)γ(s
−1)dγ

holds for all b ∈ C×αG and s ∈ G.
Let ω be a continuous linear form on C ×α G. Denote by f : Γ −→ C the

(continuous) function f(γ) = ω(θγ(b)). Recall that C(Γ) ' C∗(G); thus there is

ψ ∈ C∗(G) such that ψ̂ = f , and we have 14 ψ(s) =
∫

Γ
f(γ)γ(s−1)dγ. Thus

ψ(s) =

∫
Γ

ω(θγ(b))γ(s
−1)dγ = ω

(∫
Γ

θγ(b)γ(s
−1)dγ

)
= ω(Es(b)δs) .

Thus if ω(Es(b)δs) = 0 for each s ∈ G then ψ = 0 and so f = ψ̂ = 0. Thus
ω(θγ(b)) = 0 for each γ ∈ Γ and hence ω(b) = 0. The Hahn-Banach theorem now
shows

Proposition 9 If G is an abelian group, each a ∈ C×αG belongs to the closed linear
span of the set {Et(a)δt : g ∈ G} of ‘monomials’. In particular, if Et(a) = 0 for each
t ∈ G, then a = 0.

Corollary 10 Suppose G is abelian. Let S ⊆ C ×α G be a closed subspace with the
property that Es(a)δs ∈ S for each a ∈ S and s ∈ G. Then

S = {a ∈ C ×α G : E(a) ∈ E(S)}.

Proof It is clear that S is contained in the right hand side. If conversely a ∈ C×αG
satisfies E(a) ∈ E(S), then for each t ∈ G there exists at ∈ S such that Et(a) =
Et(at). Thus each Et(a)δt belongs to S. It follows from the Proposition that a ∈ S.
2

We can now prove

Proposition 11 If G is abelian, the full crossed product C ×αG is isomorphic to the
reduced crossed product C ×αr G.

13Recall that for ψ =
∑

s ψ(s)δs ∈ coo(G,C) we defined
∫
Γ
ψ̂(γ)dγ = ψ(e) where ψ̂(γ) =∑

s ψ(s)γ(s). Apply this to ψ = δt (so δ̂t(γ) = γ(t)) to obtain
∫
Γ
γ(t)dγ = δt(e).

14Recall that the set {δs : s ∈ G} is an orthonormal basis of `2(G). Since the Fourier transform
is unitary, {δ̂s : s ∈ G} is an orthonormal basis of L2(Γ). Now δ̂s(γ) = γ(s) and hence, for
ψ =

∑
s ψ(s)δs ∈ `2(G),

ψ(s) = 〈ψ, δs〉`2(G) = 〈Fψ, Fδs〉L2(Γ) =
〈
ψ̂, δ̂s

〉
L2(Γ)

=
∫

Γ

ψ̂(γ)γ(s)dγ =
∫

Γ

ψ̂(γ)γ(s−1)dγ

because γ : G→ T is a group homomorphism.
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Proof Recall that the reduced crossed product C ×αr G was defined to be the
completion of coo(G,α, C) with respect to the norm∥∥∥∥∥∑

t

f(t)δt

∥∥∥∥∥
r

= ‖π × Λ‖ =

∥∥∥∥∥∑
t

π(f(t))Λt

∥∥∥∥∥
B(H)

where H = `2(G,Ho) and Ho is the space where C acts.
Since ‖·‖r ≤ ‖·‖∗, the representation π̃ = π×Λ extends to a representation of the

full crossed product C ×α G and we have to prove that it is faithful. Recall formula
(4):

〈π̃(f)xδe, yδs〉H =
〈
πo(α

−1
s (f(s)))x, y

〉
Ho

valid for f =
∑

s f(s)δs ∈ coo(G,α, C). Since Es(f) = f(s), we may rewrite this as

〈π̃(f)xδe, yδs〉H =
〈
πo(α

−1
s (Es(f)))x, y

〉
Ho
. (10)

Now coo(G,α, C) is ‖·‖∗-dense in C ×α G, and the maps a → πo(α
−1
s (Es(a))) and π̃

are ‖·‖∗-continuous. Therefore relation (10) extends by continuity to C ×α G:

〈π̃(a)xδe, yδs〉H =
〈
πo(α

−1
s (Es(a)))x, y

〉
Ho
, a ∈ C ×α G.

This means that we can prove injectivity of π̃ as before: If a 6= 0 then, by Proposition
9, there exists s ∈ G such that Es(a) 6= 0, hence α−1

s (Es(a)) 6= 0. Then we can find
x, y ∈ Ho such that 〈πo(α

−1
s (Es(a)))x, y〉Ho

6= 0 (πo is the identity representation) and
so π̃(a) 6= 0.
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