
NOTES ON MEASURE AND INTEGRATION

IN LOCALLY COMPACT SPACES

William Arveson

Department of Mathematics
University of California

Berkeley, CA 94720 USA

25 March 1996

Abstract. This is a set of lecture notes which present an economical development
of measure theory and integration in locally compact Hausdorff spaces. We have tried
to illuminate the more difficult parts of the subject. The Riesz-Markov theorem is

established in a form convenient for applications in modern analysis, including Haar
measure on locally compact groups or weights on C∗-algebras...though applications
are not taken up here. The reader should have some knowledge of basic measure
theory, through outer measures and Carathéodory’s extension theorem.

Contents

Introduction
1. The trouble with Borel sets
2. How to construct Radon measures
3. Measures and linear functionals
4. Baire meets Borel
5. The dual of C0(X)

The preparation of these notes was supported in non-negligible ways by Schnitzel and Pretzel.

Typeset by AMS-TEX

1
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Introduction

At Berkeley the material of the title is taught in Mathematics 202B, and that
discussion normally culminates in some form of the Riesz-Markov theorem. The
proof of the latter can be fairly straightforward or fairly difficult, depending on the
generality in which it is formulated. One can eliminate the most serious difficulties
by limiting the discussion to spaces which are compact or σ-compact, but then one
must still deal with differences between Baire sets and Borel sets; one can eliminate
all of the difficulty by limiting the discussion to second countable spaces. I have
taken both shortcuts myself, but have not been satisfied with the result.

These notes present an approach to the general theory of integration on locally
compact spaces that is based on Radon measures. My own experience in presenting
alternate approaches has convinced me that Radon measures are the most sensible
way to reduce the arbitrariness and the bother involved with doing measure theory
in these spaces. We prove the Riesz-Markov theorem in general, in a form appro-
priate for constructing Haar measure on locally compact groups or for dealing with
weights on commutative C∗-algebras.

If I have neglected to mention significant references in the bibliography it is
partly because these lecture notes have been dashed off in haste. I apologize to any
of my colleagues who may have been abused or offended, in that order.

Finally, I want to thank Cal Moore for pointing out an error in the proof of
Proposition 2.1 (the present version has been fixed) and Bob Solovay for supplying
the idea behind the example preceding Proposition 1.2.

1. The trouble with Borel sets

Throughout these notes, X will denote a locally compact Hausdorff space. A
Borel set is a subset of X belonging to the σ-algebra generated by the closed sets of
X. A Baire set is an element belonging to the σ-algebra generated by the compact
Gδs...that is, compact sets K having the form

K = U1 ∩ U2 ∩ . . . ,

where U1, U2, . . . is a sequence of open sets in X. We will write B (resp. B0) for
the σ-algebra of all Borel (resp. Baire) sets.

If the topology of X has a countable base then B = B0. It is a good exercise to
prove that assertion. In general, however, there is a difference between these two
σ-algebras, even when X is compact. At the same time, each of them is more or
less inevitable: B is associated with the topology of X and B0 is associated with
the space C0(X) of continuous real-valued functions on X which vanish at ∞ (see
Proposition 4.1). In these notes we deal mainly with Borel sets and Borel measures.
The corresponding results for Baire sets and Baire measures are treated in §4.

The point we want to make is that the trouble with measure and integration in
locally compact spaces has little to do with the fact that B and B0 are different, and
a lot to do with the fact that X can be very large...i.e., very non-compact. And
one needs the result in general if one wishes to discuss Haar measure on locally
compact groups (even commutative ones), or weights on C∗-algebras (especially
commutative ones).

In these notes I have taken the approach that I have come to prefer, in which
measure means Radon measure. I have attempted to cast light on the pitfalls that
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can occur, to avoid verbosity in the mathematics, and especially I have tried to
avoid the pitfalls I have stumbled through in the past.

A Radon measure is a positive Borel measure

µ : B → [0,+∞]

which is finite on compact sets and is inner regular in the sense that for every Borel
set E we have

µ(E) = sup{µ(K) : K ⊆ E,K ∈ K}

K denoting the family of all compact sets. There is a corresponding notion of outer
regularity: a Borel measure µ is outer regular on a family F of Borel sets if for
every E ∈ F we have

µ(E) = inf{µ(O) : O ⊇ E,O ∈ O},

O denoting the family of all open sets. The following result implies that when X
is compact (or even σ-compact) one has the best of it, in that inner and outer
regularity are equivalent properties. A set is called bounded if it is contained in
some compact set, and σ-bounded if it is contained in a countable union of compact
sets. Every σ-bounded Borel set can obviously be written as a countable union of
bounded Borel sets.

Proposition 1.1. Let µ be a Borel measure which is finite on compact sets. Then
the following are equivalent.

(1) µ is outer regular on σ-bounded sets.
(2) µ is inner regular on σ-bounded sets.

proof. (1) =⇒ (2) Suppose first that E is a bounded Borel set, say E ⊆ L where
L is compact, and fix ε > 0. We have to show that there is a compact set K ⊆ E
with µ(K) ≥ µ(E)− ε. But since the relative complement L \E is bounded, we see
by outer regularity that there is an open set O ⊇ L \ E such that

µ(O) ≤ µ(L \ E) + ε.

It follows that K = L \O = L ∩Oc is a compact subset of E satisfying

µ(K) = µ(L)− µ(L ∩O) ≥ µ(L)− µ(O) ≥ µ(L)− µ(L \ E)− ε = µ(E)− ε,

as required.
More generally, suppose that

E = E1 ∪ E2 ∪ . . .

is a countable union of bounded Borel sets En. Without loss of generality, we may
assume that the sets En are disjoint. If some En has infinite measure, then by the
preceding paragraph we have

sup{µ(K) : K ⊆ En,K ∈ K} = µ(En) = +∞.

Hence
sup{µ(K) : K ⊆ E,K ∈ K} = µ(E) = +∞,
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and we are done. If, on the other hand, µ(En) < ∞ for every n, then fixing ε > 0
we may find a sequence of compact sets Kn ⊆ En with

µ(En) ≤ µ(Kn) + ε/2n.

Putting Ln = K1 ∪K2 ∪ · · · ∪Kn, it is clear that Ln is a compact subset of E for
which

µ(Ln) =
n∑
k=1

µ(Kk) ≥
n∑
k=1

(µ(Ek)− ε/2k) ≥
n∑
k=1

µ(Ek)− ε.

Taking the supremum over all n we obtain

supµ(Ln) ≥ µ(E)− ε,

from which inner regularity follows.
(2) =⇒ (1) Suppose first that E is a bounded Borel set. Then the closure E of

E is compact, and a simple covering argument implies that there is a bounded open
set U such that E ⊆ U . Set L = U , and fix ε > 0. Then L \ E is a bounded Borel
set, hence by inner regularity there is a compact set K ⊆ L \ E with

µ(K) ≥ µ(L \ E)− ε.

Put V = U \K = U ∩Kc. V is a bounded open set which contains E, and we have

µ(V ) = µ(U ∩Kc) ≤ µ(L∩Kc) = µ(L)−µ(K) ≤ µ(L)− (µ(L\E)− ε) = µ(E)− ε.

Since ε is arbitrary, this shows that µ is outer regular on bounded sets.
In general, suppose E = ∪nEn, where each En is a bounded Borel set. Again,

we may assume that the sets En are mutually disjoint. Since the assertion 1.1 (1)
is trivial when µ(E) = +∞ we may assume µ(E) < +∞, and hence µ(En) < +∞
for every n. Fix ε > 0. By the preceding paragraph we may find a sequence of open
sets On ⊇ En such that

µ(On) ≤ µ(En) + ε/2n.

Then E is contained in the union O = ∪nOn, and we have

µ(O) ≤
∑
n

µ(On) ≤
∑
n

µ(En) + ε = µ(E) + ε

as required. �

We emphasize that inner and outer regularity are not equivalent properties when
X fails to be σ-compact. In order to discuss this phenomenon, we consider the
family R of all σ-bounded Borel sets. Notice that R contains X if and only if X is
σ-compact; and in that case we have R = B. But if X is not σ-compact then R is
not a σ-algebra but merely a σ-ring of subsets of X.

More explicitly, a σ-ring is a nonvoid family S of subsets of X satisfying the
conditions

E,F ∈ S =⇒ E \ F ∈ S
E1, E2, · · · ∈ S =⇒ ∪nEn ∈ S.
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There is a theory of measures defined on σ-rings that is parallel to and generalizes
the theory of measures defined on σ-algebras. The ‘σ-ring’ approach to Baire mea-
sures was emphasized and popularized by Paul Halmos [1], who co-invented the
name itself.

Remarks. We are now able to make some concrete observations about the degree
of arbitrariness that accompanies measure theory in humongous spaces. Assume X
is not σ-compact, let R be the σ-ring of all σ-bounded Borel sets and let R′ denote
the set of all complements of sets in R,

R′ = {Ec : E ∈ R}.

Then R∩R′ = ∅ and R∪R′ is the σ-algebra generated by R. This is a σ-algebra
of Borel sets, but it is not B since it does not necessarily contain open sets or closed
sets. In any event, we have a convenient partition of this σ-algebra into Borel sets
which are either σ-bounded or co-σ-bounded.

It is natural to ask if a “reasonable” measure that is initially defined on R can
be extended uniquely to a measure on the σ-algebra generated by R. The answer
is no. Indeed [2, Exercise 9, pp. 258-59] shows that a measure on R always has an
extension but that extensions are not unique. Actually, there is a one-parameter
family of extensions of any “reasonable” measure on R. There is a smallest one
(the “inner regular” extension) and a largest one (the “outer regular” extension),
and there is an arbitrary positive constant involved with each of the others.

A bad apple. Big locally compact spaces can be pathological in subtle ways. For
example, let S be an uncountable discrete space, let R be the Euclidean real line,
and let

X = S × R.

X is a locally compact Hausdorff space, being the cartesian product of two such.
For every subset E ⊆ X and every s ∈ S, let Es ⊆ R be the section of E defined
by

Es = {x ∈ R : (s, x) ∈ E}.

It is easy to show that that E is open iff every section Es is an open set in R.
Similarly, E is compact iff all but a finite number of sections of E are empty and
all the remaining sections are compact subsets of R.

It would seem reasonable to guess that if a set E ⊆ X is “locally Borel” in the
sense that its intersection with every compact set is a Borel set, then it must be a
Borel set (many of us have been so fooled: see [2, Lemma 9, p. 334]). That guess is
wrong, as the following example shows. Since a complete discussion of the example
would require more information about the Baire hierarchy than we have at hand,
we merely give enough details for a persistent reader to complete the argument.

We may as well take S to be the set of all countable ordinals. It follows from the
above remarks that E ∩K is a Borel set for every compact set K iff every section
of E is a Borel set in R. Here is an example of a non-Borel set E ⊆ X having
the latter property. For every countable ordinal ω ∈ S, let Eω be a Borel set in R

which belongs to the ωth Baire class but to no properly smaller Baire class. Define

E = {(ω, x) ∈ S × R : x ∈ Eω}.
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Clearly every section of E is a Borel set. To see that E is not a Borel set, suppose
that it did belong to the σ-algebra B generated by the family O of all open sets of
X. Then E would have to belong to some Baire class over O, say to the ωth

0 Baire
class. It is easy to see that this implies that every section Eλ must belong to the
ωth

0 Baire class in the real line, contradicting our construction of the sections of E.

Finally, we point out that finite Radon measures behave as well as possible, even
when the underlying space is huge:

Proposition 1.2. Every finite Radon measure is both inner and outer regular.

sketch of proof. Outer regularity of the measure on any Borel set follows from the
inner regularity of the measure on the complement of the set, because the measure
of any set is finite.

2. How to construct Radon measures

In this section we show how Radon measures can be constructed from certain
simpler entities defined on the family O of all open subsets of X. Let

m : O → [0,+∞]

be a function having the following properties

U ∈ K =⇒ m(U) < +∞(A)

U ⊆ V =⇒ m(U) ≤ m(V )(B)

U1, U2, · · · ∈ U =⇒ m(∪nUn) ≤
∑
n

m(Un),(C)

U ∩ V = ∅ =⇒ m(U ∪ V ) = m(U) +m(V )(D)

m(U) = sup{m(V ) : V ∈ O, V ⊆ U, V ∈ K}.(E)

Notice that A and D together imply that m(∅) = 0. If we start with a Radon
measure µ on B and define m to be the restriction of µ to O, then such an m
obviously has properties A through D, and a simple argument establishes E as well.
Conversely, we have

Proposition 2.1. Any function m defined on the open sets which has properties A
through E can be extended uniquely to a Radon measure defined on all Borel sets.

proof. For uniqueness, let µ be a Radon measure which agrees with m on O. Since
Radon measures are obviously determined by their values on compact sets, it suffices
to observe that for every compact set K ⊆ X, we have

µ(K) = inf{m(U) : U ⊇ K,U ∈ O}.

Indeed, µ is inner regular by definition of Radon measures, and every compact set
is obviously a bounded Borel set. Thus the assertion is an immediate consequence
of the equivalence of conditions (1) and (2) in proposition 1.1.

Turning now to existence, we consider the set function µ∗ defined on arbitrary
subsets A ⊆ X by

µ∗(A) = inf{m(U) : U ⊇ A,U ∈ O}.
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We claim first that µ∗ is an outer measure, that is

µ∗(∅) = 0

A ⊆ B =⇒ µ∗(A) ≤ µ∗(B)

A1, A2, · · · ⊆ X =⇒ µ∗(∪nAn) ≤
∑
n

µ∗(An).

The first two properties are obvious. To prove the third, it is clear that we need
only consider the case in which µ∗(An) is finite for every n = 1, 2, . . . . In that case,
fix ε > 0 and choose open sets Un ⊇ An with the property that

µ∗(Un) ≤ µ∗(An) + ε/2n

for every n. Then ∪nUn is an open set containing ∪nAn, hence by property C
above,

µ∗(∪nAn) ≤ m(∪nUn) ≤
∑
n

m(Un) ≤
∑
n

µ∗(An) + ε,

and the claim follows from the fact that ε is arbitrary.
It is apparent from the definition of µ∗ that µ∗(U) = m(U) if U is an open set.

We claim next that every open set is measurable; that is, for each open set O we
have

(2.2) µ∗(A) = µ∗(A ∩O) + µ∗(A ∩Oc),

for every subset A ⊆ X. To prove 2.2 it suffices to prove the inequality ≥, since
the opposite one follows from the subadditivity of µ∗. For that, fix A and O. If
µ∗(A) = +∞ then there is nothing to prove, so we may assume that µ∗(A) (and
hence both µ∗(A ∩O) and µ∗(A ∩Oc)) is finite. Fix ε > 0 and choose an open set
U ⊇ A so that

m(U) ≤ µ∗(A) + ε.

We will prove that

(2.3) m(U) ≥ m(U ∩O) + µ∗(U ∩Oc).

Note that it suffices to prove 2.3, since

µ∗(A ∩O) + µ∗(A ∩Oc) ≤ m(U ∩O) + µ∗(U ∩Oc) ≤ m(U) ≤ µ∗(A) + ε,

and ε is arbitrary.
In order to prove 2.3, we use property E above to find an open set V whose

closure V is a compact subset of U ∩O and

m(U ∩O) ≤ m(V ) + ε.

Notice that V and U ∩ V c are disjoint open sets which are both contained in U .
Thus we have by properties B and D

m(V ) +m(U ∩ V c) = m(V ∪ (U ∩ V c)) ≤ m(U).
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Finally, since U ∩Oc ⊆ U ∩ V c,

m(U ∩O) + µ∗(U ∩Oc) ≤ m(V ) + ε+ µ∗(U ∩Oc)

≤ m(V ) +m(U ∩ V c) + ε ≤ m(U) + ε,

and 2.3 follows because ε is arbitrary.
By Carathéodory’s extension theorem [2, Chapter 12, §2] the restriction of µ∗

to the σ-algebra of µ∗-measurable sets is a measure; hence the restriction of µ∗ to
the σ-algebra of Borel sets is a measure µ satisfying µ(O) = m(O) for every open
set O.

Notice that µ is finite on bounded sets by property A, and µ is outer regular by
the definition of µ∗. So if X is σ-compact, then µ is already a Radon measure by
proposition 1.1.

If X is not σ-compact then µ is not necessarily a Radon measure, and we must
modify it as follows. Let M denote the σ-ring of all σ-bounded Borel sets. We
define a new set function µ on Borel sets as follows:

µ(E) = sup{µ(B) : B ∈M, B ⊆ E}.

It is a fact that µ is countably additive. Granting that for a moment, notice that
µ is a Radon measure. Indeed, Proposition 1.1 implies that µ(B) = µ(B) for every
B ∈ M, that µ is inner regular on M, and thus by its definition µ must be inner
regular on all Borel sets. We also have µ(O) = m(O) for every open set O. To see
that, fix O and choose an open set V whose closure is a compact subset of O. Then
we have

m(O) = µ(O) ≥ µ(O) ≥ µ(V ).

Since V is a σ-bounded open set we have µ(V ) = µ(V ) = m(V ), and hence

m(O) ≥ µ(O) ≥ m(V )

for all such V . After taking the sup over V and using property (E) above, we find
that m(O) = µ(O). We may conclude in this case that µ is a Radon measure which
agrees with m on open sets.

It remains to check that µ is countably additive. For that, let E1, E2, . . . be a
sequence of mutually disjoint Borel sets, and let B be a σ-bounded subset of ∪nEn.
Set Bn = B ∩ En. Then B1, B2, . . . are mutually disjoint σ-bounded Borel sets,
hence

µ(B) =
∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(En).

By taking the supremum over all such B we obtain

µ(∪nEn) ≤
∞∑
n=1

µ(En).

To prove the opposite inequality it suffices to consider the case in which µ(En) is
finite for every n. In this case, for each positive number ε we can find a σ-bounded
Borel set Bn ⊆ En such that

µ(Bn) ≥ µ(En)− ε/2n.
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By summing on n we obtain µ(B) ≥
∑
n µ(En)− ε where B = ∪nBn. Since B is a

σ-bounded subset of ∪nEn we find that

µ(∪nEn) ≥ µ(B) ≥
∞∑
n=1

µ(En)− ε,

and the countable additivity of µ follows because ε is arbitrary. �

Remark. There are other routes to the construction of Borel measures which begin
with a set function m defined on the family K of all compact sets. Such entities m
are called contents, and are in a sense dual to set functions obeying the properties
A–E that we have used. The interested reader is referred to [1, sections 53–54] and
[2, chapter 13, section 3].

3. Measures and linear functionals

Let Cc(X) be the space of all continuous functions f : X → R which have
compact support in the sense that the set supp(f) = {x ∈ X : f(x) 6= 0} is compact.
supp(f) is called the support of the function f . Cc(X) is an algebra of functions,
and is in fact an ideal in the algebra C(X) of all continuous functions f : X → R,
in the sense that

f ∈ Cc(X), g ∈ C(X) =⇒ fg ∈ Cc(X).

If X is compact then Cc(X) = C(X). If X is not compact, then Cc(X) is sup-norm
dense in the algebra C0(X) of all continuous real functions which vanish at ∞.

The Riesz-Markov theorem gives a useful and concrete description of positive
linear functionals

Λ : Cc(X)→ R,

that is, linear functionals Λ which are positive in the sense that

f ≥ 0 =⇒ Λ(f) ≥ 0, f ∈ Cc(X).

For example, let µ be a Radon measure on B. Since compact sets have finite
µ-measure, it follows that every function in Cc(X) belongs to L1(X,B, µ) and we
can define Λ : Cc(X)→ R by

(3.1) Λ(f) =
∫
X

f dµ, f ∈ Cc(X).

Λ is a positive linear functional on Cc(X). The following lemma shows how certain
values of the measure µ can be recovered directly from Λ.

Lemma 3.2. Suppose that µ and Λ are related by 3.1. Then for every open set
U ⊆ X we have

µ(U) = sup{Λ(f) : 0 ≤ f ≤ 1, f ∈ Cc(X), supp(f) ⊆ U}.

proof. The inequality ≥ is clear from the fact that if 0 ≤ f ≤ 1 and supp(f) ⊆ U
then

χU (x) ≥ f(x) for every x ∈ X,
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and after integrating this inequality we obtain

µ(U) ≥
∫
X

f dµ = Λ(f).

For the opposite inequality, let K be an arbitrary compact subset of U . We may
find a bounded open set V satisfying

K ⊆ V ⊆ V ⊆ U.

By Tietze’s extension theorem, there is a continuous function f satisfying 0 ≤ f ≤ 1,
f = 1 on K, and f = 0 on the complement of V . Thus the support of f is contained
in V ⊆ U , and since χK ≤ f we may integrate the latter inequality to obtain

µ(K) ≤ Λ(f) ≤ sup{Λ(f) : 0 ≤ f ≤ 1, f ∈ Cc(X), supp(f) ⊆ U}.

The desired inequality follows from inner regularity after taking the sup over K. �

The following theorem of Riesz and Markov asserts that 3.1 gives the the most
general example of a positive linear functional on Cc(X).

Theorem 3.3 (Riesz-Markov). Let Λ be a positive linear functional on Cc(X).
Then there is a unique Radon measure µ such that

Λ(f) =
∫
X

f dµ, f ∈ Cc(X).

Remarks. I should point out that in spite of the fact that this formulation of the
Riesz-Markov theorem is the one I happen to prefer, it is not the only reasonable
one. See [1],[2] for others. The connection between linear functionals and Baire
measures will be described in section 4 below.

proof of Theorem 3.3. The uniqueness of µ is a direct consequence of Lemma 3.2
and the results of section 1. Indeed, Lemma 3.2 implies that the values of µ on
open sets are determined by the linear functional Λ, and by proposition 1.1 the
value of µ on any compact set K obeys

µ(K) = inf{µ(U) : U ⊇ K,U ∈ O}.

Finally, since for an arbitrary Borel set E we have

µ(E) = sup{µ(K) : K ⊆ E,K ∈ K},

it follows that the µ(E) is uniquely determined by the linear functional Λ.
For existence, we define a number m(U) ∈ [0,+∞] for every open set U by

m(U) = sup{Λ(f) : f ∈ Cc(X), 0 ≤ f ≤ 1, supp(f) ⊆ U}.

We will show first that m satisfies the hypostheses A–E of proposition 2.1, and
hence defines a Radon measure µ : B → [0,+∞] by way of

µ(U) = m(U), U ∈ O.

We then show that Λ is truly integration against this Radon measure µ. We will
require the following result on the existence of partitions of unity.
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Lemma 3.4. Let {Oα : α ∈ I} be an open cover of a compact subset K ⊆ X.
Then there is a finite set φ1, φ2, . . . , φn of real continuous functions on X and there
is a finite subset α1, α2 . . . , αn ∈ I satisfying

0 ≤φk ≤ 1(i)

supp(φk) ⊆ Oαk
(ii) ∑

k

φk = 1 on K.(iii)

This is a standard result whose proof can be found in [2, proposition 9.16]. Let
us establish the properties A–E of section 2. For A, let U be a bounded open set.
Since the closure of U is compact, a simple covering argument shows that we may
find another bounded open set V which contains the closure of U . By Tietze’s
extension theorem, there is a continuous function g : X → R such that

0 ≤ g ≤ 1,

g = 1 on U

g = 0 on the complement of V.

Any function f ∈ Cc(X) satisfying 0 ≤ f ≤ 1 and supp(f) ⊆ U must also satisfy
0 ≤ f ≤ g and hence Λ(f) ≤ Λ(g). It follows that

m(U) = sup{Λ(f) : 0 ≤ f ≤ 1, f ∈ Cc(X)} ≤ Λ(g) < +∞

and property A follows.
Property B is obvious. For property C, choose open sets U1, U2, . . . , put U =

∪nUn, and choose f ∈ Cc(X) with 0 ≤ f ≤ 1 and such that f is supported in U .
By Lemma 3.4, we may find an integer n and continuous functions φ1, φ2, . . . , φn
taking values in the unit interval, such that

supp(φk) ⊆ Uk, and

φ1 + φ2 + . . . φn = 1 on supp(f).

It follows that f =
∑
k φkf , and hence

Λ(f) =
n∑
k=1

Λ(φkf) ≤
n∑
k=1

m(Uk) ≤
∞∑
k=1

m(Uk).

Property C follows by taking the supremum over all f in the preceding line.
To establish D we prove only the inequality ≥, since the opposite one is a con-

sequence of C. Let U and V be disjoint open sets and let f and g be two functions
in Cc(X) satisfying 0 ≤ f, g ≤ 1, supp(f) ⊆ U , and supp(g) ⊆ V . Since U ∩ V = ∅
we have 0 ≤ f + g ≤ 1 and supp(f + g) ⊆ U ∪ V . Hence

Λ(f) + Λ(g) = Λ(f + g) ≤ m(U ∪ V ),

and the inequality m(U) + m(V ) ≤ m(U ∪ V ) follows after taking the supremum
over f and g.
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For property E, choose f ∈ Cc(X) satisfing 0 ≤ f ≤ 1 and supp(f) ⊆ U . Another
simple covering argument on the compact subset supp(f) ⊆ U shows that we can
find an open set V having compact closure such that

supp(f) ⊆ V ⊂ V ⊆ U.

Since supp(f) ⊆ V we have

Λ(f) ≤ m(V ) ≤ sup{m(V ) : V ⊂ U, V ∈ K}

and now property E follows after taking the sup over f .
Using proposition 2.1 we may conclude that there is a Radon measure µ on B

which agrees with m on open sets. It remains to show that

(3.4) Λ(f) =
∫
X

f dµ

for every f ∈ Cc(X). Since both sides of 3.4 are linear in f and since Cc(X) is
spanned by its nonnegative functions, it suffices to establish 3.4 for the case where
0 ≤ f ≤ 1. To this end, fix f and choose a positive number ε. We will exhibit a
pair of simple Borel functions u, v having the following properties.

u ≤f ≤ v(3.5) ∫
X

(v−u) dµ ≤ ε(3.6) ∫
X

u dµ ≤Λ(f) ≤
∫
X

v dµ+ ε(3.7)

Note that this will complete the proof. Indeed, we may integrate 3.5 to obtain∫
X

u dµ ≤
∫
X

f dµ ≤
∫
X

v dµ

and since the integrals of u and v are within ε of each other by 3.6, we see from 3.7
and the preceding inequality that

|Λ(f)−
∫
X

f dµ| ≤ 2ε.

The result follows since ε is arbitrary.
In order to construct u and v, fix a positive integer n and define a sequence of

bounded open sets O0 ⊇ O1 ⊇ · · · ⊇ On by

Ok = {x ∈ X : f(x) > k/n},

for k = 1, 2, . . . , n, and let O0 be any bounded open set which contains supp(f).
Notice that On is empty and that the closure of Ok is contained in Ok−1 for
k = 1, 2, . . . , n. Define u and v as follows

u =
1
n

n∑
k=1

ck

v =
1
n

n∑
k=1

ck−1,
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where ck denotes the characteristic function of Ok. We have cn = 0 because On is
empty, and it apparent that 0 ≤ u ≤ v.

We will show that if n is sufficiently large then the conditions 3.5–3.7 are satisfied.
For 3.5, notice that f, u, v all vanish outside O0, and that if x ∈ Ok−1 \ Ok for
k = 1, 2, . . . , n then

u(x) =
1
n

k−1∑
i=1

1 =
k − 1
n

< f(x) ≤ k

n
=

1
n

k−1∑
i=0

1 = v(x),

which proves 3.5. For 3.6 we have v − u = 1
nc0; hence∫

(v − u) dµ =
1
n
µ(O0)

which is smaller than ε provided n is sufficiently large.
To prove 3.7 we employ a device from [1, §56, p. 246]. Define a sequence

φ1, φ2, . . . , φn of continuous functions by

φk = [(f − k − 1
n

) ∨ 0] ∧ 1
n

= [(f − k − 1
n

) ∧ 1
n

] ∨ 0.

Each φk vanishes on the complement of O0, hence φk ∈ Cc(X). Moreover, we have

(3.8) φk(x) =


0 if x /∈ Ok−1

f(x)− k−1
n if x ∈ Ok−1 \Ok

1
n if x ∈ Ok.

Clearly, 0 ≤ φk ≤ 1
n . Noting that for x ∈ Ok−1 \Ok,

φ1(x) = φ2(x) = · · · = φk−1(x) =
1
n

φk(x) = f(x)− k − 1
n

φk+1(x) = φk+2(x) = · · · = φn(x) = 0

it follows that f = φ1 + φ2 + . . . φn.
For convenience, we define O−1 = O0. We claim that for every k = 1, 2, . . . , n

we have the inequalities

(3.9)
1
n
µ(Ok) ≤ Λ(φk) ≤ 1

n
µ(Ok−2),

To prove the first inequality, choose any function g ∈ Cc(X) satisfying 0 ≤ g ≤ 1
and supp(g) ⊆ Ok. Since nφk(x) = 1 for every x ∈ Ok we have 0 ≤ g ≤ nφk, and
hence

Λ(g) ≤ Λ(nφk).
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Taking the supremum over all such g gives

µ(Ok) ≤ Λ(nφk) = nΛ(φk),

and the inequality follows after division by n. For the second inequality, notice that
for k ≥ 2, the closed support of nφk is contained in Ok−1 ⊆ Ok−2. So by definition
of µ(Ok−2) = m(Ok−2) we have

nΛ(φk) = Λ(nφk) ≤ µ(Ok−2)

and we obtain the second inequality after dividing by n. The case k = 1 follows
similarly from the fact that the closed support of nφ1 is contained in O0. Noting
that ∫

X

u dµ =
1
n

n∑
k=1

µ(Ok) =
1
n

n−1∑
k=1

µ(Ok), and

∫
X

v dµ =
1
n

n∑
k=1

µ(Ok−1) =
1
n

n−1∑
k=0

µ(Ok)

we may sum the inequalities 3.9 from k = 1 to n and use Λ(f) =
∑
k Λ(φk) to

obtain ∫
X

u dµ ≤ Λ(f) ≤
∫
X

v dµ+
1
n
µ(O0).

Since the last term on the right is less than ε when n is large, 3.7 follows. �

4. Baire meets Borel

We have already pointed out that the Borel σ-algebra B is natural because it is
the σ-algebra generated by the topology of X. The following result implies that
the Baire σ algebra B0 has just as strong a claim to inevitability.

Proposition 4.1. B0 is the smallest σ-algebra with respect to which the functions
in Cc(X) are measurable.

proof. We show first that every function f in Cc(X) is B0-measurable. Since the
B0-measurable functions are a vector space and since every function in Cc(X) is a
difference of nonnegatives ones, we may assume that f ≥ 0. Fix t ∈ R and consider
the set

Ft = {x ∈ X : f(x) ≥ t}.

If t ≤ 0 then Ft = X belongs to B0. If t > 0 then

Ft = ∩∞n=2{x ∈ X : f(x) > t− t/n}

is exhibited as a compact Gδ, hence Ft ∈ B0.
Conversely, if A is any σ-algebra with the property that every function in Cc(X)

is A-measurable, then we claim that A contains every compact Gδ, and hence A
contains B0. For that, let K be a compact set having the form

K = U1 ∩ U2 ∩ . . .
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where the sets Un are open. By replacing each Un with a smaller open set if
necessary, we can assume that each Un is bounded, and hence has compact closure.
By Tietze’s extension theorem there are continuous functions fn : X → [0, 1] with
the properties fn = 1 on K and fn = 0 on the complement of Un. fn belongs to
Cc(X) and is therefore A-measurable. Finally, since for each x ∈ X we have

lim
n→∞

fn(x) =
{

1 if x ∈ K
0 if x /∈ K,

it follows that the characteristic function of K, being a pointwise limit of a sequence
of A-measurable functions, is A-measurable. Hence K ∈ A. �

Remark. Since the closure of Cc(X) in the sup norm

‖f‖ = sup{|f(x)| : x ∈ X}

is the algebra C0(X) of all continuous real-valued functions which vanish at ∞, we
see that B0 could also have been defined as the smallest σ-algebra with respect to
which the functions in C0(X) are measurable.

Perhaps the most compelling feature of Baire measures is that regularity comes
for free on σ-bounded sets. In order to discuss this result it will be convenient to
introduce some notation. K0 will denote the family of all compact Gδs, and O0

will denote the family of all open Baire sets. A Baire measure µ : B0 → [0,+∞] is
called inner regular on a family F of Baire sets if for every F ∈ F we have

µ(F ) = sup{µ(K) : K ⊆ F,K ∈ K0}.

Similarly, µ is outer regular on F if for every F ∈ F we have

µ(F ) = inf{µ(O) : O ⊇ F,O ∈ O0}.

4.2 Separation properties of K0 and O0. There are enough open Baire sets to form
a base for the topology on X; more generally, given any compact set K and an
open set U containing K, there exist sets K0 ∈ K0 and U0 ∈ O0 such that

K ⊆ K0 ⊆ U0 ⊆ U,

see [1, Theorem D, §50]. Indeed, by replacing U with a smaller open set having
compact closure, if necessary, we see that one can even choose U0 to be a bounded
open Baire set. That is about all one can say about open Baire sets in general.
On the other hand, the only compact Baire sets are the obvious ones, namely the
compact Gδs. The proof of the latter is not so easy, and we shall not require the
result the sequel. The reader is referred to [1, Theorem A, §51] for a proof.

Proposition 4.3. Let µ be a Baire measure which is finite on compact Gδs. Then
µ is both inner regular and outer regular on σ-bounded Baire sets.

proof. We will show that for every σ-bounded Baire set E one has both properties

µ(E) = sup{µ(K) : K ⊆ E,K ∈ K0},(4.3.A)

µ(E) = inf{µ(U) : U ⊇ E,U ∈ O0}.(4.3.B)
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To this end, we claim that for every Baire set E and every K ∈ K0, the intersection
K ∩ E satisfies both 4.3.A and 4.3.B. Indeed, let A denote the family of all Baire
sets E for which this assertion is true. It suffices to show that A contains K0 and
is a σ-algebra.

To see that A contains K0, choose E ∈ K0. The assertion 4.3.A is trivial because
E itself belongs to K0. In order to prove 4.3.B, let K ∈ K0. Since K∩E is a compact
Gδ we may find bounded open Baire sets Un such that

K ∩ E = U1 ∩ U2 ∩ . . . .

By replacing Un with U1 ∩ U2 ∩ · · · ∩ Un we can assume that U1 ⊇ U2 ⊇ . . . . For
each n we have µ(Un) < ∞ because Un is bounded, and thus 4.3.B follows from
upper continuity of µ:

µ(K ∩ E) = lim
n→∞

µ(Un).

In order to show that A is a σ-algebra we have to show that A is closed under
complementation and countable unions. We show first that A is closed under
complementation. Choose E ∈ A, fix K ∈ K0 and ε > 0. Since E ∈ A there are
sets L ∈ K0 and U, V ∈ O0 such that

L ⊆ K ∩ E ⊆ U,
K ⊆ V

and such that both µ(U \L) and µ(V \K) are smaller than ε. Using the remarks 4.2
we may assume that both U and V are bounded, by replacing them with smaller
ones if necessary. Define sets A,B by

A = K ∩ U c, B = V ∩ Lc.

A belongs to K0, B belongs to O0, and we have

A ⊆ K ∩ E ⊆ B.

Both A and B are bounded sets, and therefore have finite measure. Moreover, since

µ(B) = µ(V \ L) = µ(V \K) + µ(K \ L)

and since
µ(A) = µ(K \ U) = µ(K)− µ(K ∩ U) ≥ µ(K)− µ(U)

we have

µ(B)−µ(A) ≤ µ(V \K)+µ(K \L)−µ(K)+µ(U) = µ(V \K)+(µ(U)−µ(L)) ≤ 2ε.

Since ε is arbitrary, it follows that Ec belongs to A.
We claim now that A is closed under countable unions. Choose E1, E2, · · · ∈ A,

fix K ∈ K0 and ε > 0. Because 4.3.A and 4.3.B are valid for K ∩ En for every n,
we may find Kn ∈ K0, and bounded sets Un ∈ O0 such that

Kn ⊆ K ∩ En ⊆ Un
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and for which
µ(Un)− µ(Kn) ≤ ε/2n.

Put U = ∪nUn, Ln = K1 ∪ K2 ∪ · · · ∪ Kn. Then Ln ∈ K0, U ∈ O0 and we have
Ln ⊆ K ∩ E ⊆ U . Moreover,

µ(U)− µ(∪nLn) ≤
∞∑
n=1

(µ(Un)− µ(Kn)) ≤ ε.

Since the sets Ln increase to ∪nLn as n → ∞ and since ∪nLn ⊆ K ∩ E has finite
measure, it follows that µ(Ln) → µ(∪nLn). Hence the difference µ(U) − µ(Ln) is
smaller than 2ε when n is sufficiently large. Since ε is arbitrary, we conclude that
∪nEn ∈ A.

Thus, A contains all Baire sets. Now let E be any σ-bounded Baire set, say

E ⊆ ∪nKn

where Kn is compact. Then by the remarks 4.2 we may assume that Kn ∈ K0 by
slightly enlarging each Kn. Hence E is itself a countable union of sets

E = ∪n(Kn ∩ E)

each of which is, by what has already been proved, a Baire set of finite measure
which is both inner and outer regular. It is easy to see that this implies E is both
inner and outer regular. Indeed, choose ε > 0. For each n we find Ln ∈ K0 and a
bounded set Un ∈ O0 such that

Ln ⊆ Kn ∩ E ⊂ Un

and for which
µ(Un)− µ(Kn) ≤ ε/2n.

Putting L = ∪nLn, and U = ∪nUn we have

L ⊆ E ⊆ U

and by estimating as we have done above we also have

µ(U \ L) ≤ ε.

If µ(E) is infinite then so is µ(U) and the preceding inequality implies µ(L) = +∞.
By lower continuity of µ,

lim
n→∞

µ(L1 ∪ L2 ∪ · · · ∪ Ln) = µ(L) = +∞.

Since L1 ∪ L2 ∪ · · · ∪ Ln is a compact Gδ subset of E, this establishes inner and
outer regularity at E in this case. If µ(E) < +∞, then the preceding inequality
implies that both µ(L) and µ(U) are within ε of µ(E). Since

µ(L) = lim
n→∞

µ(L1 ∪ L2 ∪ · · · ∪ Ln)

and since L1 ∪ L2 ∪ · · · ∪ Ln is a K0-subset of E for each n, we conclude that E is
both inner and outer regular in this case as well. �
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Corollary. Every finite Baire measure on a compact Hausdorff space is both inner
regular and outer regular.

Finally, it is significant that the correspondence between Radon measures (de-
fined on B) and Baire measures (defined on B0) is bijective. However, even here
one must be careful in the formulation if X is not σ-compact. More precisely, if one
restricts a Radon measure µ to B0 then one obtains a Baire measure which is finite
on compact sets. However, the inner regularity of Radon measures on B does not
immediately imply that their restrictions to B0 are inner regular Baire measures as
defined in the paragraphs preceding Proposition 4.3. The problem is that a given
Baire set may have many more compact subsets than it has compact Gδ subsets.

Nevertheless, Proposition 4.3 implies that the restriction of a Radon measure on
B to the σ-ring R0 of σ-bounded Baire sets is inner regular. If X is σ-compact,
then this restriction is already a regular Baire measure in both the inner and outer
senses. But if X is not σ-compact then in order to obtain an inner regular Baire
measure we must first restrict the Radon measure to the σ-ring R0 and then use
the latter to define an inner regular Baire measure on the full Baire σ-algebra much
as we did in the proof of Proposition 2.1. After these shenanigans one can say that
every Radon measure “restricts” to an inner regular Baire measure in general. The
following asserts that this map is a bijection.

Proposition 4.4. Let µ be an inner regular Baire measure which is finite on com-
pact Baire sets. Then µ extends uniquely to a Radon measure on B.

proof. For the existence of a Radon extension of µ we note that since functions
in Cc(X) are Baire measurable and µ-integerable, we may define a positive linear
functional Λ on Cc(X) by

Λ(f) =
∫
X

f dµ.

By Theorem 3.3 there is a Radon measure ν such that∫
X

f dν = Λ(f) =
∫
X

f dµ, f ∈ Cc(X).

In order to show that µ is the “restriction” of ν as described in the preceding
discussion, let K be any compact Gδ. Notice that there is a sequence of functions
fn ∈ Cc(X) such that

fn(x) ↓
{

1 if x ∈ K
0 if x /∈ K.

Indeed, we can write K = ∩Un where each Un is an open set having compact
closure. Choosing a continuous function gn taking values in [0, 1] such that gn = 1
on K and gn = 0 on the complement of Un, we may take fn = g1 ∧ g2 ∧ · · · ∧ gn.
By the monotone convergence theorem we have

ν(K) = lim
n

∫
X

fn dν = lim
n

∫
X

fn dµ = µ(K),

and the desired conclusion follows from the inner regularity of µ on B0.
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For uniqueness, suppose that ν1 and ν2 are two Radon measures which extend
µ in the sense described above. Notice that for every f ∈ Cc(X) satisfying f ≥ 0,
the value of the integral ∫

X

f dν1

is entirely determined by the values of the function F (t) = ν1({x ∈ X : f(x) ≥ t})
for t > 0; i.e., by the values of ν1 �K0= µ �K0 . The same applies to ν2, hence∫

X

f dν1 =
∫
X

f dµ =
∫
X

f dν2.

Hence ν1 = ν2 by the uniqueness assertion of 3.3. �

Corollary. If X is compact, then every finite Baire measure extends uniquely to
a measure on B which is both inner and outer regular.

There are two possible reformulations of the Riesz-Markov theorem in terms of
Baire measures; the proofs follow from the preceding discussion.

Theorem 4.5. For every positive linear functional Λ defined on Cc(X) there is a
unique measure µ defined on the σ-ring of all σ-bounded Baire sets (resp. a unique
inner regular Baire measure µ) such that

Λ(f) =
∫
X

f dµ, f ∈ Cc(X).

5. The dual of C0(X)

We now discuss one of the useful consequences of the Riesz-Markov theorem.
C0(X) will denote the space of all real-valued continuous functions f on X which
vanish at∞ in the sense that for every ε > 0 the set {x ∈ X : |f(x)| ≥ ε} is compact.
C0(X) is a real algebra in that it is closed under the usual linear operations and
pointwise multiplication. The norm

‖f‖ = sup
x∈X
|f(x)|

makes C0(X) into a Banach space in which

‖fg‖ ≤ ‖f‖ · ‖g‖.

We will make essential use of the natural order ≤ on elements of C0(X), defined
by f ≤ g ⇐⇒ f(x) ≤ g(x) for every x ∈ X. This ordering makes C0(X) into a
lattice, and the lattice operations can be defined pointwise by

f ∨ g (x) = max(f(x), g(x)),

f ∧ g (x) = min(f(x), g(x)), x ∈ X.

Finally, P will denote the cone of all positive functions,

P = {f ∈ C0(X) : f ≥ 0}.

Notice that P ∩ −P = {0} and P − P = C0(X).
There is a natural ordering induced on the dual C0(X)∗ by the ordering on

C0(X), namely

ρ ≤ σ ⇐⇒ ρ(f) ≤ σ(f), for every f ∈ P,

and a linear functional ρ is called positive if ρ ≥ 0.
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Proposition 5.1. Every positive linear functional on C0(X) is bounded. Moreover,
for every ρ ∈ C0(X)∗ there is a smallest positive linear functional Λ such that ρ ≤ Λ.

Remarks. The second assertion means that if Λ′ is another positive linear functional
satisfying ρ ≤ Λ′, then Λ ≤ Λ′. After a simple argument (which we omit), this
implies that the dual of C0(X) is itself a lattice with respect to the ordering defined
above; and of course Λ = ρ ∨ 0.

proof. To establish the first assertion let Λ be a positive linear functional. Since
every element in the unit ball of C0(X) is a difference of positive functions in the
unit ball of C0(X), to show that Λ is bounded it suffices to show that

sup{Λ(f) : f ∈ P, ‖f‖ ≤ 1} < +∞.

But if this supremum is infinite then we can find a sequence fn ∈ P satisfying
‖fn‖ ≤ 1 and Λ(fn) > 2n. Letting g ∈ P be the function defined by the absolutely
convergent series

g =
∞∑
k=1

2−kfk,

we have g ≥
∑n
k=1 2−kfk for every n, hence

Λ(g) ≥ Λ(
n∑
k=1

2−kfk) =
n∑
k=1

2−kΛ(fk) > n.

The latter is absurd for large n.
To prove the second assertion choose ρ ∈ C0(X)∗. For every f ∈ P we define a

nonnegative number Λ0(f) by

Λ0(f) = sup{ρ(u) : 0 ≤ u ≤ f}.

Clearly Λ0(αf) = αΛ0(f) for every nonnegative scalar α and every f ∈ P. We
claim that for all f, g ∈ P,

Λ0(f + g) = Λ0(f) + Λ0(g).

The inequality ≥ follows from the fact that if 0 ≤ u ≤ f and 0 ≤ v ≤ g then
0 ≤ u+ v ≤ f + g, hence

Λ0(f + g) ≥ ρ(u+ v) = ρ(u) + ρ(v).

≥ follows after taking the sup over u and v. For the opposite inequality, fix f, g ∈ P
and choose u satisfying 0 ≤ u ≤ f + g. Now for each x ∈ X, f ∧u (x) is either f(x)
or u(x), and in either case u(x) ≤ (f ∧ u) (x) + g(x). It follows that

0 ≤ u− f ∧ u ≤ g.

Therefore
ρ(u)− ρ(f ∧ u) = ρ(u− f ∧ u) ≤ Λ0(g),
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and hence
ρ(u) ≤ ρ(f ∧ u) + Λ0(g) ≤ Λ0(f) + Λ0(g).

The inequality ≤ now follows after taking the supremum over u.
Finally, we claim that Λ0 extends uniquely to a linear functional Λ defined on

all of C0(X). Given that, the remaining assertions of 5.1 follow; for if Λ′ is another
positive linear functional satisfying ρ ≤ Λ′, then for every f ∈ P and every 0 ≤ u ≤
f we have

ρ(u) ≤ Λ′(u) ≤ Λ′(f),

and Λ(f) ≤ Λ′(f) follows from the preceding inequality after taking the sup over
u. In order to extend Λ0, choose an arbitrary f ∈ C0(X), write f = f1 − f2 in any
way as the difference of two elements fk ∈ P, and define Λ(f) = Λ0(f1) − Λ0(f2).
The only question is whether or not this is well-defined; but that is clear from the
fact that if fk, gk ∈ P and f1 − f2 = g1 − g2 then

Λ0(f1) + Λ0(g2) = Λ0(f1 + g2) = Λ0(g1 + f2) = Λ0(g1) + Λ0(f2),

hence Λ0(f1)− Λ0(f2) = Λ0(g1)− Λ0(g2). The linearity of the extended Λ follows
from the restricted linearity of the original Λ0 on the positive cone. Uniqueness of
the extension is obvious from the fact that P − P = C0(X) �

Remarks. Let Λ be a positive linear functional on C0(X), and let ‖Λ‖ be its norm.
By the Riesz-Markov theorem there is a positive Radon measure µ such that

Λ(f) =
∫
X

f dµ, f ∈ Cc(X).

Notice that if f ∈ Cc(X) satisfies 0 ≤ f ≤ 1, then∫
X

f dµ ≤ Λ(f) ≤ ‖Λ‖.

From this, we may deduce that for every compact set K ⊂ X we have µ(K) ≤ ‖Λ‖,
and finally by inner regularity

µ(X) ≤ ‖Λ‖ < +∞.

In particular, µ is a finite measure, and hence is both outer and inner regular
(Proposition 1.2). It is easy to see that in fact µ(X) = ‖Λ‖.

More generally, we may deduce the following description of the dual of C0(X);
this result (together with myriad other results which bear it no relation whatsoever)
is (are) often called the Riesz Representation Theorem.

Theorem 5.2. For every bounded linear functional ρ on C0(X) there is a finite
signed Borel measure µ such that

ρ(f) =
∫
X

f dµ, f ∈ C0(X).

proof. Note first that ρ can be decomposed into a difference Λ1 − Λ2 of positive
linear functionals. Indeed, using 5.1 we may define Λ1 = ρ ∨ 0, and it is clear from
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the statement of 5.1 that the linear functional Λ2 = Λ1 − ρ is positive. Thus the
existence of µ follows from the Riesz-Markov theorem and 5.1 above. �

Remarks. If one stipulates that the total variation measure |µ| of µ should be a
Radon measure, then µ is unique, and moreover |µ| is outer regular as well as inner
regular because it is finite. We omit the argument [2, Chapter 13, §5].

If we agree to define a signed Radon measure as a finite signed measure µ whose
variation |µ| = µ+ + µ− is inner regular (and therefore also outer regular), then
the vector space M(X) of all signed Radon measures becomes a Banach space with
norm

‖ µ ‖= sup
∑
k

|µ(Ek)|

the supremum being extended over all finite families E1, E2, . . . , En of mutually
disjoint Borel sets. Such a measure gives rise to a linear functional ρ ∈ C0(X)∗ as
in 5.2, and it is not hard to show that

‖ ρ ‖=‖ µ ‖,

[2, Chapter 13, §5]. Thus the dual of C0(X) is naturally isometrically isomorphic
to the Banach space M(X) in such a way that the order structure on the dual of
C0(X) corresponds to the natural ordering of signed measures.

References

1. Halmos, P. R., Measure Theory, Van Nostrand, Princeton, 1950.
2. Royden, H. L., Real Analysis, third edition, Macmillan, New York, 1988.


