On the Riesz-Markov Representation Theorem

1. Let X be a compact Hausdorff space. Each positive regular Borel measure u on X defines
a positive linear form

o COO—Cif [ s
X

(Recall that ¢, is automatically |||, -continuous and ”(pu” = @,(1).)

2. Uniqueness The measure u is uniquely determined by ¢,. In other words,

IIedétaon 1. If u and v are regular Borel measures on X and

ffdy = /fdv forall fe CX)
X X
then u=v.

Amobeién. Let A C X be a Borel set. We show that u(A) = v(A).

Given € > 0, by regularity of u there is a compact set K, and an open set V, such that
K, CACV,and u(V,) —u(K,) < ¢ (recall that g is finite); and likewise for v. Replacing K,
and K, be their union K, and replacing V, and V, by their intersection V, we have a compact
set K and an open set V such that

KCACV and w(V)—u(K) <eand v(V) —v(K) < ¢.

By Urysohn, there is a continuous function f : X — [0,1] such that
* flve =0 s0 f< xv.

Since xx < f < xv and the measures are positive, we get
) = [ < [ s v =uv).
Combining with u(K) < u(A) < u(V) yields

[ - )| < wv) - @) <

and similarly,

ffdv - v(A)‘ <v(V)—v(K) <.
But since [y fdu = [y fdv, these inequalities give
|u(A) —v(A)| < 2e.

Apov 1o £ ntav Tuxov, detgaue ot w(A) = v(A), oTtwg JeAoye.

We would like to prove the converse of (1):



Oewonua 2. If X is a compact Hausdorff space and ¢ : C(X) — C a positive linear form, there
is a (unique) positive regular Borel measure u on X such that

¢=ffdy for all fe CX).
X

For convenience, henceforth we normalize ¢ (dividing by @(1) if needed) so that
p(1)=1

and then the required u should be a probability measure.

3. The case of a discrete X

Now X = {xq,...,x,} for some n € N (X is compact and discrete). Every function on X is
continuous, so C(X) = ¢®°[n] = C". Thus every f € C(X) is determined by a finite sequence

fro (fx)s o, fxy)) € 677
and ¢ is determined by its values on the usual basis of £°
@~ (p(e), ..., pley)) € €}

where €;(x) =1 when x = x; and €;(x) = 0 otherwise (i.e. €; = )({Xj}). Indeed,

o(f) = @(Zf(xj)ej) = Zf(xj)q)(ej)-
J J

Positivity of ¢ is equivalent to @(e;) > 0 for all j. If we define
u(x;}) = @(e;) for all j,

equivalently,
w(A) = Dp(e) : x; € A}

for every subset A of X, then we have
o) = S f0)(e) = Y fouch)) = [ s
J J

for every f € C(X), as required. O

Remark The crucial point is that C(X) contains ‘enough’ characteristic functions (they span
C(X) linearly).



4. The case X = 2N '

The space
X={x:N-{0,1}}

is the Cartesian product of a countable number of discrete spaces, hence a compact metrisable
space with the product topology. This is the weakest topology on X making all the coordinate
projections continuous; equivalently it is the weakest topology on X making all the projections

a, : 2V = 27 (x(k)) » (x(1), ..., x(n))
continuous.

Define the algebra A of all cylinder sets
A = J{m;\(E,) ¢ E, € 2.

neN

Note that since 2" is discrete, every E, C 2" is open and closed (hence Borel). Clearly A is an
algebra of sets (closed under finite unions, intersections and complements) since the power set
of every 2" is an algebra of sets.

Since every A € A is open and closed, its characteristic function is continuous: x4, € C(X),
hence we may define

uo(A) 1= (xa), A€A.
It is clear that the set function g, is positive, finitely additive on A and uo(@) = @(0) = 0.

Claim The set function g, is countably additive on A.

Proof Let A,, € A, n € N be pairwise disjoint and suppose that their union

o0
A=A,
n=1

belongs to A. Then A is a closed, hence a compact set, and {A, : n € N} is a cover of A by
open sets (recall that A consists of clopen sets). Hence it must have a finite subcover: there
exists N € N so that
N
A={]A,.
n=1

Hence
N
uo(A) =D uo(A,)
n=1

by finite additivity of uq. But since the family {A, : n € N} is pairwise disjoint and its first N
members already cover A, the remaining {A, : n > N+ 1} must all be empty and so ug(4,) =0
for all n > N + 1. Thus the last equality gives

N 3]
uo(A) = Y uo(A,) = D uo(Ay)
n=1 n=1

'not discrete, but totally disconnected



which proves countable additivity of yy on A.

Now apply Caratheodory’s Extension Theorem [IFol, Theorem 4.14]: There exists a unique (recall
that uo(X) < o) positive countably additive measure u defined on the Borel subsets of X which
extends yg, i.e. satisfies

u(A) = uy(A) forall A eA.

Regularity of u is automatic: every Borel measure on a compact metric space is regular [ ,
Theorem 4.17].

Claim For all fe C(X),
o(f) = f fdu.
X

Proof The measure u defines a positive linear functional ¢, on C(X) by integration. The given
functional ¢ agrees with @, on all characteristic functions of sets in A by the definition of u:

000) = o(4) =) = [ gad, A €A
X
Hence, by linearity, o(f) = ¢,(f) for all f € span(A). But
The space span(A) C C(X):

« is an algebra (since xaxp = Xanp and xa +Xp = Xa + X — XaXB)
« contains constants (since 1 = yx and X € A)

is selfadjoint (since it is the linear span of the selfadjoint elements y4,A € A)

« separates points of X (since if x,y € X are distinct, there is an n € N such that m,(x) # 7,(y),
so taking A = 77, 1(E,) where E, = {7r,,(x)} we have y,(x) = 1 while y,(v) = 0).

Therefore, by the Stone - Weierstarss Theorem, span(A) is sup-norm dense in C(X).
Since both ¢ and @, are continuous on C(X) and agree on the dense space span(A), they must

be equal, 0TTwWGS YENQLE. O

Remark The crucial point is that C(X) contains ‘enough’ characteristic functions (they span a
dense subspace of C(X)).

9. The case of a compact metric space X

There exists a continuous surjection
p:2N X

(see cpctmetric.pdf). In the sequel we write Y for 2N for brevity.

The map p induces a map
p*: CX) = C(Y) : frfop.

This is clearly a *homomorphism, and it is 1-1, since p is onto (verifications are immediate).
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Considering C(X) as a C*-subalgebra of C(Y) (via p*), the map
p:CX)—-C

has a linear Hahn-Banach extension
p:CY)—>C

with the same norm: ||| = |l@|| = 1. Thus §(1) = (1) = 1. As we know, * the equality ||@] = §(1)
implies that the functional @ is positive.

Therefore, since Y = 2N, by Case 4 there exists a Borel probability measure & on Y such that

#(e) = f g)diy) for all ge C(Y),
Y

Now for each f € C(X) we have (noting that we have identified C(X) with its image p*(C(X))
in C(Y))

o(f) = B () = fY p*(Pda
=fy(f°p)dﬁ
- fX fd@ o p 1)

where in the last line we have used the familiar ‘change of variable’ formula which is easily
verified. *

Therefore if we define the Borel probability measure ¢ on X by
w(A) :=u(p~!(A)), A CX Borel

we finally have the required equality

o(f) = ffdy for all fe C(X).
X
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