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Abstract. Given a C∗-algebra A and an element A ∈ A, we give necessary

and sufficient geometric conditions equivalent to the existence of a represen-
tation (φ,H) of A so that φ(A) is a compact or a finite-rank operator. The
implications of these criteria on the geometric structure of C∗-algebras are also
discussed.

Given a C∗-algebra A and an element A of A, we give necessary and sufficient
geometric conditions equivalent to the existence of a representation (φ,H) of A so
that φ(A) is a compact operator. Our work goes into further detail; as we shall
see, we can characterize when A can be represented as a finite-rank or a rank-one
operator. In order to implement these characterizations we introduce a new Banach
space-geometric notion, the geometric rank. Roughly speaking, elements of finite
geometric rank lie at the opposite pole of extreme points in the intuitive sense that
they are located on the “flat” parts of the boundary of the unit ball. It turns out
that the finiteness of the geometric rank for a particular element A ∈ A guarantees
that A can be represented as a finite-rank operator and vice versa.

There are many ways one can interpret the results of the present work. One
can actually view them as necessary conditions for a Banach space (X , ‖ ‖) to
be isometrically isomorphic to a C∗-algebra. Indeed, the spatial structure of the
compact operators translates into a purely geometric structure (Theorem 3.2). We
consider this as one of the main accomplishments of our work.

There is some work which relates to the one in the present paper. Indeed, the
problem of characterizing which elements of a C∗-algebra can be represented as
rank-one operators has already attracted some attention (see [3]). However, the
existing criteria are of algebraic (and not of geometric) nature.

1. Notation and preliminaries

If (X , ‖ ‖) is a Banach space, then Xa denotes the closed ball with center 0 and
radius a. If S is any subset of X1, then the contractive perturbations of S is the set

cp(S) = {x ∈ X | ‖x± s‖ ≤ 1, ∀s ∈ S}.
The n-th contractive perturbations of S are defined as cp(n)(S) = cp(cp(n−1)(S)),
n = 2, 3, . . . . It is clear that cp(S) is a norm-closed convex subset of X1. One can
also verify that S ⊆ cp(2)(S); from this it follows that cp(3)(S) = cp(S). Thus,
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the consideration of the n-th contractive perturbations, for n ≥ 3, is not of any
interest.

Definitions. Let (X , ‖ · ‖) be a Banach space and x a norm-one element of X .
The geometric rank of x, denoted as rg(x), is the dimension of the linear space

generated by cp(2)({x}). In particular, x is said to have geometric rank one (i.e.
rg(x) = 1) if cp(2)({x}) = {λx, |λ| ≤ 1}.

In this paper we show that the finiteness of the geometric rank of an element x
of a C∗-algebra is equivalent to the fact that x can be represented as a finite-rank
operator (i.e., there exists a faithful representation (φ,H) of A so that the range of
φ(x) is finite dimensional). The spatial rank of the representative for x and rg(x)
do not necessarily coincide; one reason is that the (spatial) rank always depends
on the particular representation of the operator algebra while the geometric rank
does not. But, even in the case where X = B(H), the (spatial) rank of an element
x and rg(x) do not coincide (the only exception is the case of rank-one operators).

The reader should pay special notice to the elements of geometric rank one.
Indeed, it is easily seen that an element x of a Banach space (X , ‖ ‖) is an extreme
point of X1 iff cp(2)({x}) = X1. Hence, the elements of geometric rank one lie at
the opposite pole of extreme points. This conceptual distinction between extreme
points and elements of geometric rank one becomes visibly evident in the Banach
space R3, equipped with the maximum norm. In this space, the closed unit ball
is the cube Q, with vertices (1, 1, 1), (1, 1,−1), etc. The extreme points are the
vertices of Q, while the elements of geometric rank one are the centroids of its
two-dimensional faces.

Definition. Let (X , ‖ ‖) be a Banach space and let x be a norm-one element of X .
Then x is said to be geometrically compact if the set cp(2)({x}) is a norm-compact
subset of X1.

The notion of geometric compactness is a mild generalization of the notion of
finiteness for the geometric rank. The term “geometric compactness” for a par-
ticular “operator” x not only relates to the compactness of its second contractive
perturbations but also reflects our expectations. We hope that for large classes of
operator algebras, the two notions of compactness coincide. As we shall see, in
C∗-algebras this is indeed the case: if x ∈ A is geometrically compact, then there
exists a faithful representation (φ,H) of A so that φ(x) is a compact operator!

The reader may have already noticed that the second contractive perturbations
play a central role in all of our definitions. In general, given a Banach space
(X , ‖ · ‖) and S ⊆ X1, a complete characterization of cp(2)(S) seems to be elusive.
In the case of operator algebras, the following theorem will be extremely useful
for understanding the basic properties of cp(2)(S). It was discovered by R. Moore
and T. Trent [6] and, independently, by J. Rovnyak [7]. Its proof depends on the
Heinz-Kato inequality.

Theorem 1.1. Let H be a Hilbert space and let A ∈ B(H)1. If X is any contrac-
tion, then

‖A± (I − |A∗|)1/2X(I − |A|)1/2‖ ≤ 1.

In particular, if ‖X‖ ≤ 1/2, then ‖A± (I −AA∗)1/2X(I −A∗A)1/2‖ ≤ 1.

We now use the above theorem in order to produce non-trivial operators in the
second contractive perturbations of certain sets.
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Proposition 1.2. Let A be any collection of operators acting on H. Let A ∈ A1

and let X ∈ B(H) such that AXA ∈ A. If ‖X‖ ≤ 1/2, then AXA ∈ cp(2)({A}).

Proof. Let B be any element of cp({A}). Since ‖A±B‖ ≤ 1, it follows that

A∗A+ B∗B +A∗B +B∗A ≤ I,
A∗A+ B∗B −A∗B −B∗A ≤ I,

and so A∗A ≤ I−B∗B. Douglas’ Majorization Theorem [2] shows that there exists
a contraction S ∈ B(H) such that A = S(I − B∗B)1/2. In a similar fashion, there
exists a contraction T ∈ B(H) such that A = (I − BB∗)1/2T . Thus, AXA =
(I − BB∗)1/2TXS(I − B∗B)1/2 and since ‖X‖ ≤ 1/2, Theorem 1.1 shows that
‖B ± AXA‖ ≤ 1. Since B is an arbitrary element of cp({A}), the conclusion
follows.

Another application of Theorem 1.1 is the following result; we omit its proof.

Proposition 1.3. Let A =
∑∞
i=1 λiei⊗ fi be a norm-one compact operator, acting

on a Hilbert space H, where {ei}∞i=1, {fi}∞i=1 are orthonormal sequences and {λi}∞i=1

is a sequence of positive numbers, decreasing to 0. Let Ek = [{e1, e2, . . . , ek}], Fk =
[{f1, f2, . . . , fk}] and let Rk = Ek ∨ Fk. If X is any contraction in B(H), then

‖A± (1− λk)R⊥k XR
⊥
k ‖ ≤ 1.

2. Compact operators and C∗-algebras

We emphasize that, in general, a concrete C∗-algebra may not contain any com-
pact operators. This fact should not be considered as a disadvantage in our inves-
tigation. Indeed, there is a variety of (non-isomorphic) C∗-algebras which contain
an abundance of compact operators (for instance, the C∗-algebras generated by
weighted shift operators). On the other hand, our emphasis is on the interplay
between compactness and the geometry of the unit ball. We start with an easy
lemma.

Lemma 2.1. Let A be any operator and let a be a positive number. If the set
A(B(H))aA is norm precompact, then A is a compact operator.

Proof. Let {fn}∞n=1 be any bounded sequence in H. Without loss of generality
we may assume that ‖fn‖ ≤ a, for all n = 1, 2, . . . . Let e be any unit vector in
(KerA∗)⊥. For every n ∈ N, let Xn = e ⊗ fn. Then AXnA = A∗e ⊗ Afn. Since
A(B(H))aA is a precompact set, the sequence {A∗e ⊗ Afn}∞n=1 has a convergent
subsequence. This is easily seen to imply that the sequence {Afn}∞n=1 has a norm-
convergent subsequence. The conclusion now follows.

Theorem 2.2. Let A be a (not necessarily unital) C∗-algebra and let A be a norm-
one element of A. Then the following are equivalent :

(i) There exists a faithful representation (φ,H) of A so that φ(A) is a compact
operator.

(ii) A is a geometrically compact element of A.

In particular, there exists a faithful representation (φ,H) of A so that φ(A) is a
finite-rank operator if and only if rg(A) <∞.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2118 M. ANOUSSIS AND E. G. KATSOULIS

Proof. Let (φ,H) be a faithful representation ofA so that φ(A) ∈ B(H) is a compact
operator. Let us identify A with φ(A).

Without loss of generality we may assume that A is non-degenerate. Thus, if
{Gb}b∈B is an approximate unit for A, then the net {Gb}b∈B converges strongly to
I ∈ B(H).

We will show that cp(2)({A}) is totally bounded. Let ε > 0; it is enough to
produce a finite-rank projection R so that max{‖R⊥X‖, ‖XR⊥‖} ≤ ε, for all X ∈
cp(2)({A}).

Let

A =
∞∑
i=1

λiei ⊗ fi

be as in Proposition 1.3. Let k ∈ N so that (1 − (1 − λk)2)1/2 ≤ ε. Let X be
an arbitrary element of cp(2)({A}). Observe that both Ek = [{e1, e2, . . . , ek}] and
Fk = [{f1, f2, . . . , fk}] belong to A, and so Rk = Ek ∨Fk also belongs to A. Hence,
Proposition 1.3 implies that (1 − λk)R⊥k GbR

⊥
k belongs to cp({A}), for all b ∈ B.

Since X ∈ cp(2)({A}), we conclude that ‖X ± (1−λk)R⊥k GbR⊥k ‖ ≤ 1, for all b ∈ B.
Taking strong limits in the previous inequality, it follows that ‖X±(1−λk)R⊥k ‖ ≤ 1.
This implies that

X∗X ≤ I − (1− λk)2R⊥k ,

and so

R⊥kX
∗XR⊥k ≤ R⊥k [I − (1− λk)2R⊥k ]R⊥k

= (1− (1− λk)2)R⊥k .

Hence, ‖XR⊥k ‖ ≤ (1− (1−λk)2)1/2 ≤ ε. Similar arguments show that ‖R⊥kX‖ ≤ ε.
Letting R = Rk, the conclusion follows.

Conversely, assume that cp(2)({A}) is a norm-compact subset of A1. Let
{(φi,Hi)}i∈I be a maximal family of pairwise inequivalent irreducible represen-
tations of A and let φ be the representation (

∑
i∈I ⊕φi,

∑
i∈I ⊕Hi). Since all

φi are pairwise disjoint, the w∗-closure of φ(A) equals
∑
i∈I ⊕B(Hi). In addi-

tion, φ is faithful since the family {(φi,Hi)}i∈I is maximal. (The representa-
tion (φ,

∑
i∈I ⊕Hi) is the so-called reduced atomic representation of A; see [5]

for more details.) Kaplansky’s Density Theorem shows now that φ(A1) is w∗-dense
in (
∑
i∈I ⊕B(Hi))1 and so φ(A)φ(A1/2)φ(A) is w∗-dense in∑

i∈I
⊕φi(A)B(Hi)1/2φi(A).

However, Proposition 1.2 shows that φ(A)φ(A1/2)φ(A) is contained in the set

cp(2)({φ(A)}), which is, by assumption, a norm-compact set. Thus(∑
i∈I
⊕φi(A)B(Hi)1/2φi(A)

)
⊆ cp(2)({φ(A)})

and so
∑
i∈I ⊕φi(A)B(Hi)1/2φi(A) is precompact. Lemma 2.1 shows now that

each φi(A), i ∈ I, is a compact operator. In addition, given any ε > 0, one can
easily verify that the precompactness of

∑
i∈I ⊕φi(A)B(Hi)1/2φ(A) implies that

‖φi(A)‖ ≤ ε, for all but finitely many i ∈ I. This shows that φ(A) is a compact
operator.
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If (X , ‖ ‖) is a Banach space and M a closed subspace of X , then M is said to
be an M -ideal iff X ∗ = M∗ ⊕1M⊥. It is known that in any C∗-algebra, the M -
ideals coincide with the two-sided norm closed ideals (see [4]). This fact, together
with Theorem 2.2, can be used to give a purely geometrical characterization for the
elements of a C∗-algebra which admit a representation as compact operators.

Corollary 2.3. Let A be a C∗-algebra and let A be an element of A. Then the
following are equivalent :

(i) There is a representation (φ,H) of A such that φ(A) is a non-zero compact
operator.

(ii) There is a proper M -ideal J of A such that (A+J )/‖A+J‖ is a geometrically
compact element of A/J .

Another application of Theorem 2.2 is the following result, which gives the first
indication that the theory of geometric compactness is susceptible to analysis in
non-selfadjoint operator algebras as well. Its proof is similar to that of Theorem 2.2.

Corollary 2.4. Let A be a norm-closed operator algebra which acts on a Hilbert
space H and contains C∞(H), the set of compact operators on H. If A ∈ A, then
A is a compact operator if and only if A/‖A‖ is a geometrically compact element
of A.

The result above applies to a variety of operator algebras. For instance, it
applies to C∗-algebras generated by weighted shift operators, thus strengthening
Theorem 2.2 in that case. It also applies to a variety of non-selfadjoint operator
algebras, such as the quasitriangular algebras (see [1]) for a definition).

3. The behavior of the geometric rank

In this section we examine the behavior of the geometric rank over a C∗-algebra
A. This behavior is described in detail in Theorem 3.2. We show that the geometric
rank is affiliated with the spatial rank (see Lemma 3.1 and the remarks following
it) and so its behavior resembles that of the spatial rank.

Outside the class of C∗-algebras, the behavior of the geometric rank may be
different from that of the spatial rank; this claim is justified by several examples
which occupy the rest of the section.

We have already mentioned that the geometric rank of a finite-rank operator in
B(H) does not necessarily equal its spatial rank. We now compute.

Lemma 3.1. If A ∈ B(H) is a contraction whose spatial rank is equal to n, then
dim[cp(2)({A})] = n2.

Proof. A simple application of the polar decomposition shows that

dim[cp(2)({A})] = dim[cp(2)({|A|})].
Thus, without loss of generality, we may assume that A is positive; let P be the
range projection of A.

It is clear that B(P⊥(H)) ⊕ 0 ⊆ [cp({A})] and so [cp(2)({A})] ⊆ 0⊕ B(P (H)).
It suffices to show the the previous inclusion is actually an equality.

Let A =
∑n
i=1 λiei ⊗ ei, where {ei, e2, . . . , en} is an orthonormal set, and let

Xij = (1/2)ei ⊗ ej, 1 ≤ i, j ≤ n. Proposition 1.2 shows now that AXijA belongs

to cp(2)({A}). However, AXijA = (λiλj/2)ei ⊗ ej , and the conclusion follows.
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Using the previous lemma, one can evaluate the geometric rank of any con-
traction in some finite-dimensional C∗-algebra. Such a computation should be

based on the fact that if A =
⊕k

i=1 Mni(C) and A =
⊕k

i=1 Ai ∈ A then rg(A) =∑k
i=1 dim[cp(2)({Ai})]. Thus, one can see that Lemma 3.1 fails in an arbitrary

C∗-algebra. The same computation is also used in the following theorem.

Theorem 3.2. Let A be a C∗-algebra and let F (A) be the set of all norm-one
elements of A with finite geometric rank. Then

(i) If A,B ∈ F (A), then (A+B)/‖A+B‖ ∈ F (A) and

rg((A+B)/‖A+B‖) ≤ [(rg(A))1/2 + (rg(B))1/2]2.

(ii) If A ∈ F (A), then A is a linear combination of rank-one elements from A.
(iii) If A,An, n = 1, 2, . . . , belong to F (A) and A = limAn, then rg(A) ≤

lim inf rg(An).

Proof. We only prove (iii). First, we claim that if P ∈ A has finite geometric rank,
then rg(PXP/‖PXP‖) ≤ rg(X), for any norm-one element X ∈ F (A). Indeed,
Lemma 3.1 shows that the claim is true for A = B(H), and the remarks succeeding
that lemma prove the claim in any finite-dimensional C∗-algebra.

In general, let Q be the finite-rank projections generated by P , the range pro-
jection of X and (KerX)⊥. Notice that Q belongs to A. In addition, the geometric
rank of X (resp. PXP/‖PXP‖) in A coincides with the geometric rank of X (resp.
PXP/‖PXP‖) in QAQ. The proof of the claim follows now from the fact that
QAQ is of finite dimension.

For the proof, notice that the conclusion is satisfied whenA = B(H) (Lemma 3.1)
and so the same is true for any finite-dimensional C∗-algebra. In general, let P be
the projection generated by the range projection of A and (KerA)⊥. Then, using
the fact that the algebra PAP is finite dimensional, we obtain

lim inf rg(An) ≥ lim inf rg(PAnP/‖PAnP‖)
≥ rg(PAP/‖PAP‖) = rg(A),

and the conclusion follows.

The following examples show that in an arbitrary Banach space, the conclusions
of Theorem 3.2 may fail.

Examples. Failure of property (i). Consider the space (l1, ‖ ‖1) and let A =
(1/2, 1/2, . . . ) and B = (1/2,−1/2, 0, 0, . . . ). We claim that both A and B have
finite geometric rank in (l1, ‖ · ‖1) but (A+B)/‖A+B‖ does not.

Indeed, notice that cp({A}) contains B and so, if X ∈ cp(2)(A), then ‖X±B‖ ≤
1. This forces X to be of the form X = (x1, x2, 0, 0, . . . ), i.e., rg(A) ≤ 2. A similar
argument shows that rg(B) ≤ 2. However, A+B/‖A+B‖ = (1, 0, 0, . . . ) which is
an extreme point in (l1, ‖ ‖1); thus rg((A +B)/‖A+B‖) =∞.

The reader should notice that a finite-dimensional variation of the previous ex-
ample produces a finite-dimensional Banach space for which the estimate of Theo-
rem 3.2 (i) fails.

Failure of property (ii). Any finite-dimensional Hilbert space H, dimH ≥ 2,
serves as an example.

Failure of property (iii). Let H = C3 and let e1, e2, e3 be an orthonormal basis in
H. Consider the Banach space of all operators onH, whose matrices with respect to
the basis {e1, e2, e3} are upper triangular, equipped with the usual operator norm.
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Let A = e3⊗ e1 and let An = [ 1
ne2 +

√
1− ( 1

n )2e3]⊗ e1; notice that A = limAn.

Let us compute the geometric rank of A.
First we need to identify cp({A}). Let X be some element of cp({A}). Then

‖X ± A‖ ≤ 1, and so XX∗ ≤ I − AA∗ and X∗X ≤ I − A∗A. Thus, an up-
per triangular matrix X belongs to cp({A}) if ranX = ranXX∗ ⊆ [{e2, e3}] and
(KerX)⊥ ⊆ [{e1, e2}]; in particular Xe1 ∈ [{e1, e2}]. However, the upper trian-
gularity of X implies that Xe1 ∈ [{e1}] and so Xe1 = 0. For the same reason,
Xe2 ∈ [{e1, e2}] and so Xe2 = λe2, for some scalar λ. Thus,

cp({A}) = {λe2 ⊗ e2, |λ| ≤ 1}.

We are in position now to describe cp(2)({A}). Arguing as above, one can show
that X ∈ cp(2)({A}) if (KerX)⊥ ⊆ [{e1, e3}] and ranX ⊆ [{e1, e3}]. Since X is
upper triangular, 〈Xe1, e3〉 = 0 and so

[cp(2)({A})] = [{e1 ⊗ e1, e1 ⊗ e3, e3 ⊗ e3}],
i.e., rg(A) = 3.

We claim now that rg(An) ≤ 2, n = 1, 2, . . . .

Indeed, it is obvious that [
√

1− ( 1
n )2e2 − 1

ne3]⊗ e2 belongs to cp({An}). Thus,

arguing as above, every element of cp(2)({An}) should satisfy

(KerX)⊥ ⊆ [{e1, (
1

n
e2 +

√
1− (

1

n
)2e3)}]

and ranX ⊆ [{e1, e3}]. From these inclusions, it follows that ranX ⊆ [{e1}]; indeed
if not, then there exist scalars λ1, λ2 and λ3, with λ3 6= 0, so that Xe2 = λ1e2 and

Xe3 = λ2e1 + λ3e3. But then X(
√

1− ( 1
n )2e2 − 1

ne3) 6= 0, which contradicts

([{e1, (
1
ne2 +

√
1− ( 1

n )2e3)}])⊥ ⊆ KerX . Thus, rg(An) ≤ 2 and we are done.

There are several ways one can use Theorem 3.2 in order to describe the geometric
structure of certain C∗-algebras. For instance, using the fact that every maximal
ideal of a C∗-algebra A is the kernel of some irreducible representation of A, one
has the following.

Corollary 3.3. Let A be a GCR C∗-algebra and let J be a proper maximal M -
ideal of A. Then, F (A/J ) 6= ∅ and the geometric rank over A/J satisfies the
properties described in Theorem 3.2.

Similarly, one can obtain invariants for AF C∗-algebras, by noticing that these
spaces are generated by finite-dimensional subspaces, on which the geometric rank
behaves as in Theorem 3.2.
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