
Beurling’s Theorem
Let U : L2(T) → L2(T) be the bilateral shift, i.e.

Uf = ζf (f ∈ L2(T)),

where ζ(z) = z (z ∈ T). Recall the definition

H2 = H2(T) = {f ∈ L2(T) : f̂(−k) = 0 for all k = 1, 2, . . .}.

Note that {ζn : n ∈ N} is an orthonormal basis of H2. Since U(ζn) = ζn+1 we have
U(H2) ⊆ H2 and in fact ⋂

n≥0

Un(H2) = {0}.

Indeed, ζk ⊥ Un(H2) for all k < n. Hence if f ∈
⋂

n≥0 Un(H2) then f ⊥ ζk for all
k ∈ N and so f = 0.

Now let φ ∈ L2 with |φ(z)| = 1 for almost all z ∈ T. Note1 that since |φ| = 1 a.e.,
φ defines a bounded, in fact a unitary operator Mφ on L2; therefore φH2 is a closed
subspace of L2 because Mφ is isometric.

Also, φH2 is U -invariant because ζH2 ⊆ H2 and so

U(φH2) = ζφH2 = φ(ζH2) ⊆ φH2.

In fact, since Mφ is isometric,

⋂
n≥0

Un(φH2) =
⋂
n≥0

UnMφ(H
2) =

⋂
n≥0

Mφ(U
n(H2)) = Mφ

(⋂
n≥0

Un(H2)

)
= {0}.

Theorem 1 A closed nonzero subspace E ⊆ L2 = L2(T) is U-invariant and U(E) 6=
E if and only if there exists φ ∈ L2 with |φ(z)| = 1 for almost all z ∈ T such that
E = φH2.

Proof. Suppose that E ⊆ L2 is a closed nonzero U -invariant subspace with U(E) 6= E.
The space U(E) is a closed subspace of E because U is isometric.

Thus there exists φ ∈ E of norm 1, such that φ ⊥ U(E).

Claim 1. The sequence {φ, U(φ), U2(φ), . . . } is an orthonormal sequence in E.
Proof. Since φ ∈ E which is U -invariant we have Un(φ) ∈ E for all n ∈ N. Moreover
‖Un(φ)‖2 = ‖φ‖2 = 1. Also, if m, n ∈ N with m > n we have

Um(φ) ∈ Um(E) ⊆ Un+1(E) = Un(U(E)).

But φ ⊥ U(E) by construction and so Un(φ) ⊥ Un(U(φ)) since Un is isometric. Thus

Un(φ) ⊥ Um(φ). 2

Claim 2. For all nonzero k ∈ Z we have

∫
ζk|φ|2 = 0.
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Proof. For k > 0 write∫
ζk|φ|2 =

∫
(ζkφ)φ̄ =

〈
ζkφ, φ

〉
=
〈
Uk(φ), φ

〉
= 0

by the previous claim, and for k = −n < 0,∫
ζk|φ|2 =

∫
φ(ζnφ) = 〈φ, ζnφ〉 = 〈φ, Un(φ)〉 = 0. 2

It follows from this claim that the function |φ|2 is orthogonal to all ζk except for
k = 0; thus it is a complex multiple of ζ0 = 1 and hence a.e. equal to a constant.
Hence so is |φ|.
This shows that |φ(z)| = 1 a.e.

Claim 3. E = φH2.
Proof. First, φH2 = Mφ(H

2) and Mφ is an isometry since |φ| = 1 a.e. Now from
Claim 1 we have that the set

{φ, U(φ), U2(φ), . . . } = {φ, ζφ, ζ2φ, . . . } = Mφ({ζn : n = 0, 1, 2, . . . })

is contained in E. Since {ζn : n = 0, 1, 2, . . . } is an orthonormal basis of H2 and Mφ

is an isometry, we conclude that Mφ(H
2) ⊆ E.

Finally if f ∈ E is orthogonal to φH2 we show that f = 0. Indeed, for all
n = 0, 1, 2, . . . we have 〈

M∗
φ(f), ζn

〉
= 〈f, Mφ(ζ

n)〉 = 0

since Mφ(ζ
n) ∈ φH2. On the other hand if k = 1, 2, . . . since ζkf = Uk(f) ∈ Uk(E) ⊆

U(E) while φ ⊥ U(E) by construction, we have〈
M∗

φ(f), ζ−k
〉

=
〈
f, Mφ(ζ

−k)
〉

=
〈
f, φζ−k

〉
=
〈
ζkf, φ

〉
= 0.

This shows that the L2 function φ̄f = M∗
φ(f) is orthogonal to all ζk (k ∈ Z) and

hence must vanish. But Mφ is 1-1 and hence f = 0.
This concludes the proof of the Theorem. 2

If S : H2(T) → H2(T) is the unilateral shift, i.e. the restriction of U to H2(T),
note that ⋂

n≥0

Sn(H2) = {0}.

Therefore every closed S-invariant subspace E ⊆ H2 satisfies⋂
n≥0

Sn(E) ⊆
⋂
n≥0

Sn(H2) = {0}.

Also, if φ ∈ H2 and |φ(z)| = 1 for almost all z ∈ T then for all n ∈ N we have

φζn = ζnφ = Sn(φ) ∈ Sn(H2),

so Mφ({ζn : n ∈ N}) ⊆ H2.

Since {ζn : n ∈ N} is an orthonormal basis of H2 and Mφ is bounded, it follows that
the subspace φH2 is contained in H2.

Therefore the previous Theorem gives
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Theorem 2 (Beurling) A closed nonzero subspace E ⊆ H2 = H2(T) is S-invariant
if and only if there exists φ ∈ H2 with |φ(z)| = 1 for almost all z ∈ T such that
E = φH2

A function φ ∈ H2 with |φ(z)| = 1 for almost all z ∈ T is caled an inner function
Examples are: ζn (n ∈ N) and f(z) = exp z−1

z+1
.

Theorem 3 If f is any function such that f ∈ H2, the set σ = {z ∈ T : f(z) = 0}
has Lebesgue measure zero.

Remark In fact this is also true if f ∈ H1.
Proof. Consider the space

E = {g ∈ H2 : g|σ = 0 a.e.}.

This is clearly a closed, S-invariant subspace and hence there exists an inner function
φ such that E = φH2 Thus φ ∈ E and hence φ|σ = 0. Since |φ| = 1 a.e. this shows
that σ must have measure zero.

Theorem 4 A closed subspace E ⊆ L2 = L2(T) is U-invariant if and only if either
(a) there exists a Borel set σ ⊆ T such that

E = {f ∈ L2 : f |σ = 0 a.e.}

in which case U(E) = E (such an E is called doubly invariant),
or
(b) there exists φ ∈ L2 with |φ(z)| = 1 for almost all z ∈ T such that E = φH2, in

which case
⋂

n≥0 Un(E) = {0}, in which case (such an E is called simply invariant).

Proof. Let E be U -invariant. Since U is unitary, we know that we can decompose

E = E1 ⊕ E2

where U(E1) = E1 and
⋂

n≥0 Un(E2) = {0}. We have also shown that there is a Borel
set σ ⊆ T such that

E1 = Eσ = {f ∈ L2 : f |σc = 0 a.e.}.

Thus
E2 ⊆ E⊥

σ = {f ∈ L2 : f |σ = 0 a.e.}.

But we know that if E2 6= {0} then E2 = φH2 where |φ| = 1 a.e. Since φ ∈ E⊥
σ , it

follows that σ must have measure zero. But then E1 = {0}. 2
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