Beurling’s Theorem
Let U : L*(T) — L*(T) be the bilateral shift, i.e.

Uf=¢f  (feL¥T),
where ((z) = z (2 € T). Recall the definition
H?>=H*T)={f e L¥T): f(—k)=0forall k =1,2,...}.
Note that {¢" : n € N} is an orthonormal basis of H?. Since U(¢") = ¢"*! we have

U(H?) C H? and in fact
(U (H?) = {0}.

n>0

Indeed, ¢¥ L U™(H?) for all k < n. Hence if f € (5, U"(H?) then f L ¢* for all
k€ Nandso f =0. -

Now let ¢ € L? with |¢(z)| = 1 for almost all z € T. Note! that since |¢| = 1 a.e.,
¢ defines a bounded, in fact a unitary operator M, on L?; therefore ¢ H? is a closed

subspace of L? because My is isometric.
Also, ¢H? is U-invariant because (H* C H? and so

U(pH?) = (pH* = ¢(CH?) C o H*.
In fact, since M, is isometric,

(U (¢H*) = (UM, = () Mu(U™(H?)) (ﬂ U™ (H?) ) = {0}.

n>0 n>0 n>0 n>0

Theorem 1 A closed nonzero subspace E C L* = L*(T) is U-invariant and U(E) #
E if and only if there exists ¢ € L* with |¢(2)| = 1 for almost all z € T such that
E = H2.

Proof. Suppose that E' C L? is a closed nonzero U-invariant subspace with U(E) # E.
The space U(FE) is a closed subspace of E because U is isometric.

Thus there exists ¢ € E of norm 1, such that ¢ L U(F).

Claim 1. The sequence {¢,U(¢), U*(¢), ...} is an orthonormal sequence in E.
Proof. Since ¢ € E which is U-invariant we have U"(¢) € E for all n € N. Moreover
U™ (@)||2 = ||¢]], = 1. Also, if m,n € N with m > n we have

U™(¢) € U™(E) C UHE) =UYU(E)).
But ¢ L U(FE) by construction and so U™(¢) L U™(U(¢)) since U™ is isometric. Thus

ut(¢) LU™(¢). O

Claim 2. For all nonzero k € Z we have /§k|gz5|2 =0
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Proof. For k > 0 write

/&Wsz@%w=<&¢@=<me@=0

by the previous claim, and for k = —n < 0,
/Ck|¢|2 /¢ "p) = (6,¢"¢) = (6, U"(¢)) =0. O

It follows from this claim that the function |¢|? is orthogonal to all ¢* except for
k = 0; thus it is a complex multiple of ¢(° = 1 and hence a.e. equal to a constant.
Hence so is |¢].

This shows that |p(z)] =1 a.e.

Claim 3. E = ¢H?.
Proof. First, ¢H?* = My(H?) and My is an isometry since |¢| = 1 a.e. Now from
Claim 1 we have that the set

{0.U(),U%(9),...} = {6, (6, (*¢,... } = My({¢" :n=0,1,2,... })

is contained in E. Since {¢" :n =0,1,2,...} is an orthonormal basis of H? and M,
is an isometry, we conclude that M,(H?) C E.

Finally if f € E is orthogonal to ¢H? we show that f = 0. Indeed, for all
n=20,1,2,... we have

(MG(f),¢") = (f, My(C™)) =0
since My(¢") € ¢H?. On the other hand if k = 1,2,... since ¢*f = U*(f) € U¥(E) C
U(FE) while ¢ L U(F) by construction, we have
(MZ(1),¢7F) = (fMo(CTh) = (f.9¢75) = (. 6) = 0.

This shows that the L? function ¢f = M (f) is orthogonal to all ¢*(k € Z) and
hence must vanish. But M, is 1-1 and hence f = 0.
This concludes the proof of the Theorem. O

If S: H*(T) — H?(T) is the unilateral shift, i.e. the restriction of U to H*(T),

note that
() S"(H?*) ={0}.

n>0
Therefore every closed S-invariant subspace E C H? satisfies

() S™(E) C () S"(#H?) = {o}.

n>0 n>0
Also, if ¢ € H? and |¢(z)| = 1 for almost all z € T then for all n € N we have
oC" = ("o = S"(¢) € S"(H?),
so My({¢":n eN}) C H”.
Since {¢™ : n € N} is an orthonormal basis of H* and M, is bounded, it follows that

the subspace ¢H? is contained in H?2.
Therefore the previous Theorem gives



Theorem 2 (Beurling) A closed nonzero subspace E C H> = H*(T) is S-invariant
if and only if there exists ¢ € H? with |¢(z)| = 1 for almost all z € T such that
E = ¢H?

A function ¢ € H? with |¢(z)] = 1 for almost all z € T is caled an inner function

Examples are: (" (n € N) and f(z) = exp Z}

Theorem 3 If f is any function such that f € H?, the set c = {2 € T : f(z) = 0}
has Lebesque measure zero.

Remark In fact this is also true if f € H".
Proof. Consider the space

E={gec H* gl =0ae}.

This is clearly a closed, S-invariant subspace and hence there exists an inner function
¢ such that F = ¢H? Thus ¢ € E and hence ¢|, = 0. Since |¢| = 1 a.e. this shows
that ¢ must have measure zero.

Theorem 4 A closed subspace E C L* = L*(T) is U-invariant if and only if either
(a) there exists a Borel set 0 C T such that

E={fel®: fl,=0ace}

in which case U(E) = E (such an E is called doubly invariant ),

or

(b) there exists ¢ € L* with |¢(z)| = 1 for almost all z € T such that E = ¢H?, in
which case (5o U"(E) = {0}, in which case (such an E is called simply invariant ).

Proof. Let E be U-invariant. Since U is unitary, we know that we can decompose
E=FE, @ FE,

where U(E;) = Ey and (), U™ (E>) = {0}. We have also shown that there is a Borel
set ¢ C T such that -
Ey=E,={fel®:f

oo =0 ae.}.

Thus
E,CEf={fel®: fl,=0ael}.

But we know that if Fy # {0} then E, = ¢H? where |¢| = 1 a.e. Since ¢ € EL, it
follows that o must have measure zero. But then E; = {0}. O



