The parallelogram law

Proposition 1 Suppose¹ E is a complex topological vector space space and $p: E \to \mathbb{R}_+$ is a continuous function satisfying

$$p(\lambda x) = |\lambda| p(x)$$
 $(\lambda \in \mathbb{C}, x \in E)$

and the parallelogram law

$$p(x+y)^2 + p(x-y)^2 = 2p(x)^2 + 2p(y)^2$$
 $(x, y \in E)$.

Then there is a (unique) continuous sesquilinear form $\phi: E \times E \to \mathbb{C}$ such that

$$p(x)^2 = \phi(x, x) \qquad (x \in E)$$

(and p is a seminorm).

Proof Recall that any sesquilinear form $\phi: E \times E \to \mathbb{C}$ satisfies the polarisation identity

$$4\phi(x,y) = \phi(x+y, x+y) - \phi(x-y, x-y) + i\phi(x+iy, x+iy) - i\phi(x-iy, x-iy).$$

Thus if ϕ and ψ are two sesquilinear forms satisfying $\phi(x,x) = \psi(x,x)$ for all $x \in E$ then $\phi = \psi$. This proves uniqueness.

For existence, suppose p satisfies the parallelogram law, and define ϕ by polarisation:

$$4\phi(x,y) = p(x+y)^2 - p(x-y)^2 + i(p(x+iy)^2 - p(x-iy)^2).$$

We will show that ϕ is a sesquilinear form. Observe that, since the linear operations and p are continuous, ϕ is continuous.

It follows immdediately from the definition that

$$\phi(0,y) = 0 = \phi(y,0) \quad \text{for all } y \in E.$$

Also

(i)
$$4\phi(x,x) = (2p(x))^2 + i(|1+i|p(x))^2 - i(|1-i|p(x))^2 = 4p(x)^2 \ge 0$$

since |1+i| = |1-i|.

(ii)
$$4\phi(y,x) = p(x+y)^2 - p(y-x)^2 + ip(y+ix)^2 - ip(y-ix)^2$$

$$= p(x+y)^2 - p(x-y)^2 + ip(i(x-iy))^2 - ip(-i(x+iy))^2$$

$$= p(x+y)^2 - p(x-y)^2 + ip(x-iy)^2 - ip((x+iy)^2 = 4\overline{\phi(x,y)})$$

We show that

$$(iii) \ \phi(x+z,y) = \phi(x,y) + \phi(z,y).$$

¹pythag, 30 May 2007

Indeed the parallelogram law gives

$$p((x+y)+z)^{2} = 2p(x+y)^{2} + 2p(z)^{2} - p((x+y)-z)^{2}$$

$$-p((x-y)+z)^{2} = -2p(x-y)^{2} - 2p(z)^{2} + p((x-y)-z)^{2}$$

$$p((z+y)+x)^{2} = 2p(z+y)^{2} + 2p(x)^{2} - p((z+y)-x)^{2}$$

$$-p((z-y)+x)^{2} = -2p(z-y)^{2} - 2p(x)^{2} + p((z-y)-x)^{2}$$

but p(x+y-z) = p(z-y-x) and p(x-y-z) = p(z+y-x), so adding $2p(x+z+y)^2 - 2p(x+z-y)^2 = p((x+y)+z)^2 - p((x-y)+z)^2 + p((z+y)+x)^2 - p((z-y)+x)^2 = 2p(x+y)^2 + 2p(z)^2 - p(x+y-z)^2 - 2p(x-y)^2 - 2p(z)^2 + p(x-y-z)^2 + 2p(z+y)^2 + 2p(x)^2 - p(z+y-x)^2 - 2p(z-y)^2 - 2p(x)^2 + p(z-y-x)^2 = 2p(x+y)^2 - 2p(x-y)^2 + 2p(x-y)^2 + 2p(x-y)^2 + 2p(x-y)^2 - 2p(x-y)^2$

in other words

$$\operatorname{Re} \phi(x+z,y) = \operatorname{Re} \phi(x,y) + \operatorname{Re} \phi(z,y).$$

Replacing y with iy in the same calculation we conclude that

$$\operatorname{Im} \phi(x+z,y) = \operatorname{Im} \phi(x,y) + \operatorname{Im} \phi(z,y)$$

and hence (iii) is proved. The relation

$$(iii)' \phi(x, y + z) = \phi(x, y) + \phi(y, z)$$

follows from (iii) and (ii). From (iii) and induction we see that

$$\phi(nx, y) = n\phi(x, y)$$
 for all $n \in \mathbb{N}$.

Since also

$$4\phi(-x,y) = p(-x+y)^2 - p(-x-y)^2 + i(p(-x+iy)^2 - p(-x-iy)^2)$$

= $-(p(-(x+y))^2 - p(-(x-y))^2) - i(p(-(x+iy))^2 - p(-(x-iy))^2) = -4\phi(x,y)$

we have

$$\phi(nx,y) = n\phi(x,y)$$
 for all $n \in \mathbb{Z}$.

Now if $m \in \mathbb{N}$ we have

$$\phi(x,y) = \phi(m\frac{1}{m}x,y) = m\phi(\frac{1}{m}x,y)$$
 and so $\frac{1}{m}\phi(x,y) = \phi(\frac{1}{m}x,y)$.

Now the relation

$$\lambda \phi(x,y) = \phi(\lambda x, y)$$

which has just been proved for all rational λ follows for all real λ by continuity. It remains to show that

$$\phi(ix, y) = i\phi(x, y).$$

Indeed,

$$4\phi(ix,y) = p(ix+y)^2 - p(ix-y)^2 + i(p(ix+iy)^2 - p(ix-iy)^2) = p(y+ix)^2 - p(y-ix)^2 + i(p(y+x)^2 - p(y-x)^2) = i[p(y+x)^2 - p(y-x)^2 - i(p(y+ix)^2 - p(y-ix)^2)] = 4i\overline{\phi(y,x)} = 4i\phi(x,y) \quad \text{by (ii)}$$

and this concludes the proof that ϕ is sesquilinear. Now the relation $p(x) = \sqrt{\phi(x, x)}$ together with the Cauchy-Schwartz inequality shows that p must be a seminorm.