
Operator Theory – Spring 2010 – Summary
Week 2: Feb. 24-25

1.1 Examples of operators (continued)

Given an onb of H, every bounded operator on H has a matrix. The converse fails!
Integral operators on L2(X,µ): given a “nice” function k : X ×X → C, let f → Akf

where Akf(x) =
∫
k(x, y)f(y)dµ(y).

2 Bounded Operators

2.1

The adjoint: if T ∈ B(H1,H2), the formula

〈T ∗y, x〉1 = 〈y, Tx〉2 , x ∈ H1, y ∈ H2

defines a unique T ∗ ∈ B(H2,H1), and ‖T ∗‖ = ‖T‖.
Properties of the adjoint operation:

1. A∗∗ = A (A : H1 → H2)

2. (A+ λB)∗ = A∗ + λ̄B∗ (A,B ∈ B(H1H2), λ ∈ C)

3. (AC)∗ = C∗A∗ (A : H1 → H2, C : H2 → H3)

4. ‖A∗A‖ = ‖A‖2 (A ∈ B(H1H2)).

Generalisation: A sesquilinear form is a map φ : H1 × H2 → C which is linear in
the first variable and antilinear (or conjugate linear) in the second.

Theorem 1 (The BLT theorem) 1 A sesquilinear form φ is bounded (i.e. there is
M < ∞ s.t. φ(x, y) ≤ M ‖x‖ ‖y‖ for all x ∈ H1, y ∈ H2) iff there exists T ∈ B(H1,H2)
s.t.

φ(x, y) = 〈Tx, y〉 , x ∈ H1, y ∈ H2.

This T is unique and the least bound M for φ is ‖T‖.

Polarisation. Every sesquilinear φ : H × H → C is uniquely determined by the
associated “quadratic form”: for all x, y ∈ H

4φ(x, y) = φ(x+ y, x+ y)− φ(x− y, x− y) + iφ(x+ iy, x+ iy)− iφ(x− iy, x− iy).

Hence, if 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H, then S = T . What happens in real Hilbert
space?!
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2.2 Classes of operators

• An isometry X : H1 → H2 is ... an isometry: ‖Xx‖ = ‖x‖ for all x ∈ H1; equivalently,
〈Xx,Xy〉 = 〈x, y〉 for all x, y ∈ H1 (polarise); X is isometric iff X∗X = IH1 .
• Special case: a unitary operator Y : H1 → H2 is an onto isometry. Y is unitary iff
Y ∗Y = IH1 and Y Y ∗ = IH2 ; equivalently, if it is invertible and Y −1 = Y ∗.

Example: The unilateral shift S : en → en+1 on `2(Z+) is isometric, not unitary. Note
S∗(en) = en−1 for n > 0 but S∗(e0) = 0.

The bilateral shift U : en → en+1 on `2(Z) is unitary: U∗(en) = en−1 for all n ∈ Z.
• A ∈ B(H) is called normal iff A∗A = AA∗.

Example: the shift S isn’t; any unitary V : H → H is.
• Special case: B ∈ B(H) is called selfadjoint if B∗ = B; equivalently, if 〈Bx, x〉 ∈ R for
all x ∈ H (polarise).
• Special case: C ∈ B(H) is called positive if 〈Cx, x〉 ≥ 0 for all x ∈ H.

Examples: All multilpication operators Mf (f ∈ L∞(X,µ)) are normal, because M∗
f =

Mf̄ . Mf is selfadjoint iff f(t) ∈ R for µ-almost all t ∈ X; it is positive iff f(t) ≥ 0 for
µ-almost all t ∈ X; it is isometric iff it is unitary iff |f(t)| = 1 for µ-almost all t ∈ X.

Lemma 2 If S ≥ 0 then for all x, y ∈ H

(i) | 〈Sx, y〉 |2 ≤ 〈Sx, x〉 〈Sy, y〉
(ii) ‖S‖ = sup{| 〈Sx, x〉 | : ‖x‖ ≤ 1}
(iii) ‖Sx‖ |2 ≤ ‖S‖ 〈Sx, x〉 .

NB. (ii) also holds for S normal. Not generally (even for 2× 2 matrices).
Proof (i) is just C-S. For (ii): If a ≡ sup{| 〈Sx, x〉 | : ‖x‖ ≤ 1} then a ≤ ‖S‖.

For the opposite inequality, apply (i) to 〈Sx, y〉:

| 〈Sx, y〉 |2 ≤ 〈Sx, x〉 〈Sy, y〉 ≤ a2.

Take sup over x, y in ballH to obtain ‖S‖2 ≤ a2.
For (iii): apply (ii) to y = Sx.

Proposition 3 Let (Bn) be a monotone sequence of selfadjoint operators which is uni-
formly bounded, i.e. supn ‖Bn‖ < ∞. Then there is a unique B = B∗ ∈ B(H) such that
‖Bnx−Bx‖ → 0 for all x ∈ H. We say Bn → B in the strong operator topology (SOT).

Projections If M ⊆ H is a closed subspace, define the (orthogonal) projection PM ∈
B(H)).
• An operator P ∈ B(H)) is a projection iff P = P 2 = P ∗ (write P ∈ P(B(H))). Then
P = PM where M = P (H). Also 0 ≤ P ≤ I.
• If P,Q ∈ P(B(H))) then

P (H) ⊆ Q(H) ⇐⇒ P ≤ Q ⇐⇒ PQ = P ⇐⇒ QP = P.

• If Pn ∈ P(B(H))) and (Pn) ↗ (resp. (Pn) ↘) then Pn
SOT→ P where P = PM ,

M = ∪nPn(H) (resp. M = ∩n(Pn(H))). [Monotonicity cannot be omitted.]
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