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2 Bounded Operators (continued)

2.3 Invariant subspaces

Definition. Example: eigenspaces.
AM)C M <= AP =PAP < A~({1)
A*(M)C M <= PA=PAP <= A~ (:?) <= AM"')C M+
both: Areduces M <= AP =PA <— A~ (}?)

If Alg(M) ={A € B(H): A(M) C M} the map A — PAP| preserves products on
Alg(M), not *

The map A — PLAP*|,,. preserves products on Alg(M~*), not *

If A reduces M then both these maps preserve products AND *, on Alg(M, M*t) =
{AeB(H): A(M) C M and A(M*) C M*}.

More generally:

Let Mj, My be closed orthogonal subspaces, M = M; @& My and P = P(M,). If
A= Alg(My,M) ={A e B(H): A(My) C M; and A(M) C M}, the map A — PAP|y,
preserves products on A, not *. [Erercise]

Conversely, if A C B(H) is a subalgebra and P = P(N) a projection such that
A — PAP preserves products on A, then the closed subspace N is semi-invariant for
A, i.e. there are A-invariant subspaces L C K such that N = K N L*. [Ezercise]

2.4 The Spectral Theorem in finite dimensions

Remark A diagonal operator D, on £? is normal. Ditto for a diagonalisable operator on
a Hilbert space. Partial (!) converse:

Theorem 1 If dimH < oo, a normal operator A on 'H is diagonalisable, i.e. there is an
orthonormal basis of H consisting of e-vectors of A.

Equivalently, if o0,(A) = {\ € C : ker(A — A) # {0}} s the (nonempty!) finite
set of e-values of A, and if Py denotes the projection onto the e-space corresponding to A,
then

A= APy and I= Y P
A€op(A) A€op(A)
Uses:

Lemma 2 If T is a normal operator on any Hilbert space, if A\, € 0,(T") and My, M,
are the corresponding e-spaces, then

(i) Tx = \x implies T*x = \x;

(11) My reduces T';

(iii) if X # p then My L M,,.

However if dim ’H = oo then 0,(7") may be empty.
Example Let T € B(L*([0, 1]) be given by Tf(t) = t f(t) [Ezercise].
Generalisation:



2.5 The Spectrum of a bounded operator
Definition: If A € B(H),

o(A) ={\ € C: X — Anot invertible} the spectrum of A
p(A)=C\ o(A) the resolvent of A

Remark By the open mapping theorem, if T is bijective it is a homeo [requires com-
pleteness!]. Thus A € o(A) iff A — A is not bijective.

Lemma 3 If |T|| <1 then I —T is invertible. [Geometric series!]

Proposition 4 The spectrum of A is a nonempty and compact subset of C and the B(H)-
valued map z — (z — A)~! is holomorphic on p(A). In fact:

(i) o(A) C{z € C:|z| < ||A|]}, so a(A) is bounded

(ii) If X € p(A) and |z| < ||[(A — A)72|7", then A+ z € p(A) (s0 o(A) is closed) and

(iii) the function z — (z — A)™ has a power series expansion in a disk centered at \ of
radius ||(A — A)~| 7"

() o(A) #0.

Remark The resolvent identity: If A\, u € p(A) are distinct,

(= A (= A

-~ = (A= A) =AY

shows (again) that the resolvent u — (u — A)~! is norm-differentiable on p(A) and its
derivative is —(u — A)72.

Lemma 5 (i) ker(A) = (A*(H))* and A(H) = ker(A*)*.

(i) If A = A* € B(H) then o(A) C [a,b] where a = inf{(Ax,z) : ||z|| = 1} and
b=sup{(Az,z) : ||z|| = 1} | Exercise]. In particular, c(A) C R.

(111) If U € B(H) is unitary, then o(U) CT={z€ C: |z| = 1}.

3 The functional calculus: continuous functions of a
bounded selfadjoint operator

Fix A = A* € B(H). We wish to define f(A) for appropriate f.

3.1 Polynomials

If p(t) = co + it + -+ + cut" (¢ € C) is a poly of a real variable, then p(A) = col +
A+ -+c,A". Themap @¢:p— p(A) from the algebra of polynomials into B(H)
preserves the algebraic operations +, -, % where p*(t) = p(t) = ¢o + ¢t + - - - + 1™,

To extend to the “closure” of the algebra of polynomials, need some sort of “continuity”
of ®q (for which topologies?).

Lemma 6 (Spectral Mapping Lemma) o(p(A)) = p(a(A)) ={p(\) : A € a(A)}.

Proposition 7 [|p(A)| 5, = sup{[p(N)] : A € a(A)} = [[pll, ) -
Note |[p[|,(4) < sup{[p(A)|: A € [a,b]} with a,b as in Lemma 5.



