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2 Bounded Operators (continued)

2.3 Invariant subspaces

Definition. Example: eigenspaces.

A(M) ⊆M ⇐⇒ AP = PAP ⇐⇒ A ' ( ∗ ∗0 ∗ )

A∗(M) ⊆M ⇐⇒ PA = PAP ⇐⇒ A ' ( ∗ 0
∗ ∗ ) ⇐⇒ A(M⊥) ⊆M⊥

both: A reduces M ⇐⇒ AP = PA ⇐⇒ A ' ( ∗ 0
0 ∗ )

If Alg(M) = {A ∈ B(H) : A(M) ⊆ M} the map A → PAP |M preserves products on
Alg(M), not *

The map A→ P⊥AP⊥|M⊥ preserves products on Alg(M⊥), not *
If A reduces M then both these maps preserve products AND *, on Alg(M,M⊥) =

{A ∈ B(H) : A(M) ⊆M and A(M⊥) ⊆M⊥}.
More generally:
Let M1,M2 be closed orthogonal subspaces, M = M1 ⊕ M2 and P = P (M2). If

A = Alg(M1,M) = {A ∈ B(H) : A(M1) ⊆ M1 and A(M) ⊆ M}, the map A→ PAP |M2

preserves products on A, not *. [Exercise]
Conversely, if A ⊆ B(H) is a subalgebra and P = P (N) a projection such that

A → PAP preserves products on A, then the closed subspace N is semi-invariant for
A, i.e. there are A-invariant subspaces L ⊆ K such that N = K ∩ L⊥. [Exercise]

2.4 The Spectral Theorem in finite dimensions

Remark A diagonal operator Da on `2 is normal. Ditto for a diagonalisable operator on
a Hilbert space. Partial (!) converse:

Theorem 1 If dimH <∞, a normal operator A on H is diagonalisable, i.e. there is an
orthonormal basis of H consisting of e-vectors of A.

Equivalently, if σp(A) = {λ ∈ C : ker(λ − A) 6= {0}} is the (nonempty!) finite
set of e-values of A, and if Pλ denotes the projection onto the e-space corresponding to λ,
then

A =
∑

λ∈σp(A)

λPλ and I =
∑

λ∈σp(A)

Pλ.

Uses:

Lemma 2 If T is a normal operator on any Hilbert space, if λ, µ ∈ σp(T ) and Mλ,Mµ

are the corresponding e-spaces, then
(i) Tx = λx implies T ∗x = λ̄x;
(ii) Mλ reduces T ;
(iii) if λ 6= µ then Mλ ⊥Mµ.

However if dimH =∞ then σp(T ) may be empty.
Example Let T ∈ B(L2([0, 1]) be given by Tf(t) = tf(t) [Exercise].

Generalisation:
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2.5 The Spectrum of a bounded operator

Definition: If A ∈ B(H),

σ(A) = {λ ∈ C : λ− A not invertible} the spectrum of A

ρ(A) = C \ σ(A) the resolvent of A

Remark By the open mapping theorem, if T is bijective it is a homeo [requires com-
pleteness!]. Thus λ ∈ σ(A) iff λ− A is not bijective.

Lemma 3 If ‖T‖ < 1 then I − T is invertible. [Geometric series!]

Proposition 4 The spectrum of A is a nonempty and compact subset of C and the B(H)-
valued map z → (z − A)−1 is holomorphic on ρ(A). In fact:
(i) σ(A) ⊆ {z ∈ C : |z| ≤ ‖A‖}, so σ(A) is bounded
(ii) If λ ∈ ρ(A) and |z| < ‖(λ− A)−1‖−1

, then λ+ z ∈ ρ(A) (so σ(A) is closed) and
(iii) the function z → (z − A)−1 has a power series expansion in a disk centered at λ of
radius ‖(λ− A)−1‖−1

.
(iv) σ(A) 6= ∅.

Remark The resolvent identity: If λ, µ ∈ ρ(A) are distinct,

(λ− A)−1 − (µ− A)−1

λ− µ
= −(λ− A)−1(µ− A)−1

shows (again) that the resolvent µ → (µ − A)−1 is norm-differentiable on ρ(A) and its
derivative is −(µ− A)−2.

Lemma 5 (i) ker(A) = (A∗(H))⊥ and A(H) = ker(A∗)⊥.
(ii) If A = A∗ ∈ B(H) then σ(A) ⊆ [a, b] where a = inf{〈Ax, x〉 : ‖x‖ = 1} and
b = sup{〈Ax, x〉 : ‖x‖ = 1} [ Exercise]. In particular, σ(A) ⊆ R.
(iii) If U ∈ B(H) is unitary, then σ(U) ⊆ T = {z ∈ C : |z| = 1}.

3 The functional calculus: continuous functions of a

bounded selfadjoint operator

Fix A = A∗ ∈ B(H). We wish to define f(A) for appropriate f .

3.1 Polynomials

If p(t) = c0 + c1t + · · · + cnt
n (ck ∈ C) is a poly of a real variable, then p(A) = c0I +

c1A+ · · ·+ cnA
n. The map Φ0 : p→ p(A) from the algebra of polynomials into B(H)

preserves the algebraic operations +, ·, ∗ where p∗(t) = p̄(t) = c̄0 + c̄1t+ · · ·+ c̄nt
n.

To extend to the “closure” of the algebra of polynomials, need some sort of “continuity”
of Φ0 (for which topologies?).

Lemma 6 (Spectral Mapping Lemma) σ(p(A)) = p(σ(A)) = {p(λ) : λ ∈ σ(A)}.

Proposition 7 ‖p(A)‖B(H) = sup{|p(λ)| : λ ∈ σ(A)} ≡ ‖p‖σ(A) .

Note ‖p‖σ(A) ≤ sup{|p(λ)| : λ ∈ [a, b]} with a, b as in Lemma 5.

2


