Operator Theory — Spring 2010 — Summary
Week 4: Mar. 10-11

3 The functional calculus (continued)

Fix A = A* € B(H). We wish to define f(A) for appropriate f.
Recall that
o(A) C [a, 0] C [ [IA]l, [|A]l]

where a = inf{(Ax, z) : ||z|| = 1} and b = sup{(Ax, z) : ||z| = 1}.

3.2 Continuous Functions on o(A)

If p(t) = co+ 1t + -+ + cut" (¢, € C) is a poly of a real variable, then p(A) = ¢ +
aA+---+c,A". Themap Pg:p — p(A) from the algebra of polynomials into B(H)
preserves the algebraic operations +, -, * where p*(t) = p(t) = ¢o + 1t + - - - + cut".

To extend to functions that are “limits” of polynomials, need some sort of “continuity”
of ®:

Lemma 6 (Spectral Mapping Lemma) o(p(A)) = p(a(A)) ={p(\) : A € a(A)}.
Proposition 7 [|p(A)| 5 = sup{[p(N)] : A € a(A)} = [[pll, 4y -
For some purposes, it is sufficient to know a weaker estimate:

Lemma 8 (Nelson, p. 67) ! Let p(t) = ap + ait + - - + a,t™ be a polynomial. For all
ze M, [[p(A)z| < max{lp(t)| : t € [ [|A[l, [Al]} [|=]]. Hence

Ip(A)lgze) < max{[p(t)] = ¢ € [=[|A[l, [|A]]}- (1)

Proof Let M := span{z, Ax,..., A"x}; this is a finite dimensional subspace of H (au-
tomatically closed). Let E be the orthogonal projection onto M. Then, since A¥z € M
when k£ =0,...,n, we have p(A)x € M and

p(A)x = Ep(A)Ex = p(FAE)x

(verify!)? Since FAEF is a selfadjoint operator on the finite-dimensional space M, we may
apply the spectral theorem for finite dimensional spaces to get

EAE =) MNP, and I=> P,

where the A} s are the eigenvalues with associated projections Py . It follows that

P = Y NP = (3 pwB, ) @

'E. Nelson, Topics in Dynamics I: Flows, Princeton Univ. Press and the University of Tokyo Press,
1969
2Note that M is not in general A-invariant.




and by Pythagoras’ theorem,

lp(A)zl* = Y I 1Py

2 2
< max [pOw)E S|Pyl = max [p(v) 2 1]

since S ||Pyz||” = ||lz||>. But each X, satisfies |\;| < ||[EAE| < || A, hence is in the
interval [— ||A]|, ||A]|]; therefore

Ip(A)z|| < max{|p(N)] - A € [=[|A[}, [A[I} [l O

Remark 9 In general, the inequality may be strict: for example suppose A is a nonzero
orthogonal projection, so 0(A) = {0,1} and let p(t) =t — t*. Then p(A) = A — A? =0
while max{|[p(A)| : A € [—||4ll, |A|l]} = p(1/2) = 1/4. However here max{|p(\)| : A €
0(A)} = 0 as in Proposition 7.

To prove Proposition 7, use

Proposition 10 Let A = A* € B(H). Then one of the numbers ||A| or —||A|| must
belong to o(A). In particular,
sup{[Al: A € o(A)} = [|A]l

Proof We will prove that the number ||A]|? is in o(A?). Tt will follow that the product
(A —||AID)(A + ||A|II) = (A% — ||A||*I) cannot be invertible, and hence the operators
(A—JJA||]) and (A + ||A||) cannot both be invertible, as required.

For each A € R and each = € H, since (A%z, \2r) € R, we have

| A%z — N22||? = (A% — N2, A% — \22) = || A% ||* — 2(A%x, \22) + || Ao
=[|A%|* — 2X%|| Az]* + A%l
But since ||Al| = sup{||Az| : ||z|| = 1}, there is a sequence (z,) with |z,|| = 1 and
||Az,|| — ||A||. Using the previous equality with = = x,, and A = ||A||, we obtain
|A2%2, — N22,||2 = || A%z, |2 — 20%|| Az, |)* + M
< (I Aza[? = 227 [[ Az [|* + A" = AT = X[ Az ||* — 0.

This shows that the operator A? — A\?I cannot be invertible (why?) and hence \? =
|A]|? € 0(A4%). O

Proof of Proposition 7 The idea is to reduce to the selfadjoint case and use the
C*-property for the norm: Observe that if p(t) = >_,_, axt”, then

n n n

p(A)p(A) = O arA*) (D a,A) = ()@ A*)(D | a, A7) = q(A)

r=0 k=0 r=0

(since A = A*) where ¢ is the polynomial ¢(t) = p(t)p(t). Now ¢(A) is selfadjoint so by
Proposition 10 we get
lg(A) = sup{lul : p € o(q(A))}-

But o(q(A)) = q(c(A)) = {q(N) : A € 6(A)} by the spectral mapping lemma, and so
lg(A)]| = sup{lg(A)] : A € o(A)}.

2



But, the C*-property gives [|p(A)||* = [[p(A)"p(A)]| = [l¢(A)]| and so

Ip(A)I* = lla(A) |l = sup{|a(N)] : A € o(A)}
= sup{[p(A\)p(\)| : A € o(A)} = (sup{[p(N)| : A € o (A)})*.

The proof is complete. O

Theorem 11 The map Py extends uniquely to an isometric *-homomorphism
O - (Co(A)), [l oa)) = (B(H), |-II)
For f € C(a(A)), we write f(A) for ®.(f).

Thus  f(a) = limp,(A) where (p,) is any sequence of polynomials converging to f
uniformly on o(A).

4 Unbounded operators

4.1 Definitions

H, K are Hilbert (or Banach) spaces. An operator from H to K is a pair (D(7"), T) where
D(T) C H is a linear manifold and 7" : D(T") — K is a linear map. We say that T is
densely defined if its domain D(T') is dense in H. Note that if 7" is densely defined and
continuous, it admits a unique extension to a map defined on H, with the same norm;
but if T"is not continuous, it cannot be extended continuously to the whole of H. If T\, S
are operators from H to K, we say S extends T and we write 7' C S if D(T") C D(S5)
and S‘D(T) =T.

Example 12 (The “position operator” of Quantum Mechanics)

Let H = L*(R) (Lebesque measure understood), D(Q) = {f € H : t — tf(t) is in H}
and define Q : D(Q) — H by (Qf)(t) =tf(t), f € D(Q). Then Q is unbounded, but its
graph s a closed subspace of H & H.

Definition 4.1 The graph of a linear operator T : D(T) — K is the following subspace
of H® K:
Gr(T)={z®Tx:2z € D(T)}.

This is of course a linear manifold. We say T is a closed operator when Gr(T) is a
closed subspace of H & K. The set of all closed operators is denoted C(H,K).

We say T is closable when the subspace Gr(T) is the graph of some linear operator.
This operator (if it exists) is unique and is denoted T. Clearly T C T.

Example 13 If D(Q,) = {f € H : [ has compact support } and Q, : D(Q,) — H is
given by (Qof)(t) =tf(t), f € D(Q,), then Q, is closable and its closure is Q.

A closed, everywhere defined operator is necessarily bounded (closed graph theorem!);
so being closed is a (useful) weakening of continuity.



