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3 The functional calculus (continued)

Fix A = A∗ ∈ B(H). We wish to define f(A) for appropriate f .
Recall that

σ(A) ⊆ [a, b] ⊆ [−‖A‖ , ‖A‖]

where a = inf{〈Ax, x〉 : ‖x‖ = 1} and b = sup{〈Ax, x〉 : ‖x‖ = 1}.

3.2 Continuous Functions on σ(A)

If p(t) = c0 + c1t + · · · + cnt
n (ck ∈ C) is a poly of a real variable, then p(A) = c0I +

c1A+ · · ·+ cnA
n. The map Φ0 : p→ p(A) from the algebra of polynomials into B(H)

preserves the algebraic operations +, ·, ∗ where p∗(t) = p̄(t) = c̄0 + c̄1t+ · · ·+ c̄nt
n.

To extend to functions that are “limits” of polynomials, need some sort of “continuity”
of Φ0:

Lemma 6 (Spectral Mapping Lemma) σ(p(A)) = p(σ(A)) = {p(λ) : λ ∈ σ(A)}.

Proposition 7 ‖p(A)‖B(H) = sup{|p(λ)| : λ ∈ σ(A)} ≡ ‖p‖σ(A) .

For some purposes, it is sufficient to know a weaker estimate:

Lemma 8 (Nelson, p. 67) 1 Let p(t) = a0 + a1t + · · · + ant
n be a polynomial. For all

x ∈ H, ‖p(A)x‖ ≤ max{|p(t)| : t ∈ [−‖A‖ , ‖A‖]} ‖x‖. Hence

‖p(A)‖B(H) ≤ max{|p(t)| : t ∈ [−‖A‖ , ‖A‖]}. (1)

Proof Let M := span{x,Ax, . . . , Anx}; this is a finite dimensional subspace of H (au-
tomatically closed). Let E be the orthogonal projection onto M . Then, since Akx ∈ M
when k = 0, . . . , n, we have p(A)x ∈M and

p(A)x = Ep(A)Ex = p(EAE)x

(verify!)2 Since EAE is a selfadjoint operator on the finite-dimensional space M , we may
apply the spectral theorem for finite dimensional spaces to get

EAE =
∑

λkPλk
and I =

∑
Pλk

where the λ′ks are the eigenvalues with associated projections Pλk
. It follows that

p(A)x = p(
∑

λkPλk
)x =

(∑
p(λk)Pλk

)
x

1E. Nelson, Topics in Dynamics I: Flows, Princeton Univ. Press and the University of Tokyo Press,
1969

2Note that M is not in general A-invariant.
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and by Pythagoras’ theorem,

‖p(A)x‖2 =
∑
|p(λk)|2 ‖Pλk

x‖2

≤ max
k
|p(λk)|2

∑
‖Pλk

x‖2 = max
k
|p(λk)|2 ‖x‖2

since
∑
‖Pλk

x‖2 = ‖x‖2 . But each λk satisfies |λk| ≤ ‖EAE‖ ≤ ‖A‖, hence is in the
interval [−‖A‖ , ‖A‖]; therefore

‖p(A)x‖ ≤ max{|p(λ)| : λ ∈ [−‖A‖ , ‖A‖]} ‖x‖ . 2

Remark 9 In general, the inequality may be strict: for example suppose A is a nonzero
orthogonal projection, so σ(A) = {0, 1} and let p(t) = t − t2. Then p(A) = A − A2 = 0
while max{|p(λ)| : λ ∈ [−‖A‖ , ‖A‖]} = p(1/2) = 1/4. However here max{|p(λ)| : λ ∈
σ(A)} = 0 as in Proposition 7.

To prove Proposition 7, use

Proposition 10 Let A = A∗ ∈ B(H). Then one of the numbers ‖A‖ or −‖A‖ must
belong to σ(A). In particular,

sup{|λ| : λ ∈ σ(A)} = ‖A‖.

Proof We will prove that the number ‖A‖2 is in σ(A2). It will follow that the product
(A − ‖A‖I)(A + ‖A‖I) = (A2 − ‖A‖2I) cannot be invertible, and hence the operators
(A− ‖A‖I) and (A+ ‖A‖I) cannot both be invertible, as required.

For each λ ∈ R and each x ∈ H, since 〈A2x, λ2x〉 ∈ R, we have

‖A2x− λ2x‖2 =〈A2x− λ2x,A2x− λ2x〉=‖A2x‖2− 2〈A2x, λ2x〉+ ‖λ2x‖2

=‖A2x‖2 − 2λ2‖Ax‖2 + λ4‖x‖2.

But since ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}, there is a sequence (xn) with ‖xn‖ = 1 and
‖Axn‖ → ‖A‖. Using the previous equality with x = xn and λ = ‖A‖, we obtain

‖A2xn − λ2xn‖2 = ‖A2xn‖2 − 2λ2‖Axn‖2 + λ4

≤ (‖A‖‖Axn‖)2 − 2λ2‖Axn‖2 + λ4 = λ4 − λ2‖Axn‖2 → 0.

This shows that the operator A2 − λ2I cannot be invertible (why?) and hence λ2 =
‖A‖2 ∈ σ(A2). 2

Proof of Proposition 7 The idea is to reduce to the selfadjoint case and use the
C*-property for the norm: Observe that if p(t) =

∑n
k=0 akt

k, then

p(A)∗p(A) = (
n∑
k=0

akA
k)∗(

n∑
r=0

arA
r) = (

n∑
k=0

ākA
k)(

n∑
r=0

arA
r) = q(A)

(since A = A∗) where q is the polynomial q(t) = p̄(t)p(t). Now q(A) is selfadjoint so by
Proposition 10 we get

‖q(A)‖ = sup{|µ| : µ ∈ σ(q(A))}.
But σ(q(A)) = q(σ(A)) = {q(λ) : λ ∈ σ(A)} by the spectral mapping lemma, and so

‖q(A)‖ = sup{|q(λ)| : λ ∈ σ(A)}.
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But the C*-property gives ‖p(A)‖2 = ‖p(A)∗p(A)‖ = ‖q(A)‖ and so

‖p(A)‖2 = ‖q(A)‖ = sup{|q(λ)| : λ ∈ σ(A)}
= sup{|p̄(λ)p(λ)| : λ ∈ σ(A)} = (sup{|p(λ)| : λ ∈ σ(A)})2.

The proof is complete. 2

Theorem 11 The map Φ0 extends uniquely to an isometric *-homomorphism

Φc : (C(σ(A)), ‖·‖σ(A))→ (B(H), ‖·‖)

For f ∈ C(σ(A)), we write f(A) for Φc(f).

Thus f(a) = lim pn(A) where (pn) is any sequence of polynomials converging to f
uniformly on σ(A).

4 Unbounded operators

4.1 Definitions

H,K are Hilbert (or Banach) spaces. An operator from H to K is a pair (D(T ), T ) where
D(T ) ⊆ H is a linear manifold and T : D(T ) → K is a linear map. We say that T is
densely defined if its domain D(T ) is dense in H. Note that if T is densely defined and
continuous, it admits a unique extension to a map defined on H, with the same norm;
but if T is not continuous, it cannot be extended continuously to the whole of H. If T, S
are operators from H to K, we say S extends T and we write T ⊂ S if D(T ) ⊆ D(S)
and S|D(T ) = T .

Example 12 (The “position operator” of Quantum Mechanics)
Let H = L2(R) (Lebesgue measure understood), D(Q) = {f ∈ H : t → tf(t) is in H}
and define Q : D(Q) → H by (Qf)(t) = tf(t), f ∈ D(Q). Then Q is unbounded, but its
graph is a closed subspace of H⊕H.

Definition 4.1 The graph of a linear operator T : D(T )→ K is the following subspace
of H⊕K:

Gr(T ) = {x⊕ Tx : x ∈ D(T )}.

This is of course a linear manifold. We say T is a closed operator when Gr(T ) is a
closed subspace of H⊕K. The set of all closed operators is denoted C(H,K).

We say T is closable when the subspace Gr(T ) is the graph of some linear operator.
This operator (if it exists) is unique and is denoted T . Clearly T ⊂ T .

Example 13 If D(Qo) = {f ∈ H : f has compact support } and Qo : D(Qo) → H is
given by (Qof)(t) = tf(t), f ∈ D(Qo), then Qo is closable and its closure is Q.

A closed, everywhere defined operator is necessarily bounded (closed graph theorem!);
so being closed is a (useful) weakening of continuity.
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