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1 Preliminaries

1.1 Reminder
Iiﬂ f: T — C is a Borel function and 1 < p < oo, we say f € LP(T) if

2 ) dx
5= [ Urepr = [ 1Pdm < +oc

and we say f € L*°(T) if f is essentially bounded, which means that there is an M > 0 s.t.
the set Xj; = {e : | f(e™®)| > M} has measure zercﬂ the least such M is denoted || f]| -

We identify functions when they are almost everywhere (a.e.) equal, that is, when they
differ on a set of measure zero. Thus

C(T) S L™(T) & L*(T) G L'(T).

For f € LY(T) define
~ 271- . .
fn) = f(e™)e " dm(x), n € Z.
0
The map R
F f — (f(“))nez
is the Fourier transform.

Proposition 1.1 If f € L'(T) satisfies f(n) =0 for alln € Z then f =0 (a.e.).

Note that L?(T) is a Hilbert space for the scalar product

2
(f.9) = ; f(e)g(e™)dm(x)

and the family ‘ ‘
{Cn:n €Z} where (,(e") ="

is orthonormal: ((p, () = Onm.-

Proposition shows that no nonzero element of L? can be orthogonal to the family
{¢n i m € Z}: hence it must be an orthonormal basis of L.

Therefore for each f € L? we have

“+oo
f= Z f(n)Ca (L? convergence)

n=—0oo

+o0
and [fI3= 3" 1fm)F  (Parseval).

n=—oo

Inotesl1l, 15 Jan. 2012
2that is, given any € > 0, the set X3; can be covered by a countable number of intervals of total length
at most ¢



1.2 The space H?

Definition 1 For 1 < p < oo,

HP(T)={f e LP(T): f(—k) =0 forall k=1,2,...}.

Given f € H*(T), consider the power series
fz) =2 f(n)=".
n=0

Since Y729 1f(n)? = If]l5 < oo, and so limsup |f(n)| < 1, the power series has radius
of convergence at least 1, hence converges in the open unit disc D and defines an analytic

function f : D — C. Conversely, if an analytic function g : I — C has a power series
g(2) =Y a, 2" such that the coefficients satisfy 3" |a,|? < oo, then (by completeness of L?)
we may define ¢* € L(T) by ¢* = 3 an(, and we find that g*(n) = (¢*, () = an, when
n > 0 while gf‘(—k) =0for k=1,2,.... Thus ¢* € H%(T) and ¢* = g.

Using the linear map f — f and its inverse, g — ¢* we identify H2 (T) with the space
H?(D) of all analytic functions on the disc with square-summable power series.

It can be shown that the “boundary function” may be obtained directly from g as
follows:

Theorem 1.2 (Fatou) If g € H*(D), then for almost all e € T the limit lim, ~ g(re')
exists and equals g*(e'®).

2 Invariant subspaces

Definition 2 If H is a Hilbert space and T : H — H is bounded linear. i.e. T € B(H), a
closed linear subspace E C H is called T-invariant if T(E) C E.

Let T : H*(T) — H?*(T) be defined by

Tf=af  (f€HXT)),

where (i(z) = 2! (2 € T). Note that T is an isometryf’| (so 7*T = I) but is not onto, since
Co L T(H?). Since T((n) = (ni1 we have in fact

() T"(H?) = {0}.

n>0

Indeed, ¢, L T™(H?) for all k < n. Hence if f € (5o T™(H?) then f L ( for all k € Zy
and so, since {(, : n € Z,} is an orthonormal basis of H?, it follows that f = 0.

Now let ¢ € H? with |¢(z)| = 1 for almost all z € T. Note that since |¢| = 1 a.e., ¢
defines a bounded, in fact an isometric operator Ty on H 2 by the formulaﬁ

Tyf = ¢f,  feH

Therefore the set
¢H? ={¢f: f € H?}

is a closed subspace of H? because T} is isometric.

3 Exercise: Note that T* is not “multiplication by ;” (which does not preserve Hz); what is it?
4 Ezercise: Why does f — ¢f map H? into H??



Also, ¢H? is T-invariant:
T(pH?) = QoH? = p(QLH?) C pH?

because C1H2 C H?.

In fact,
(T"(¢H?) < () T"(H?) = {0}.
n>0 n>0
A function ¢ € H? with |¢(2)| = 1 for almost all z € T is called an inner function
Examples are: (" (n € N) and f(z) = exp ;j&

Theorem 2.1 (Beurling) A closed nonzero subspace E C H?(T) is T-invariant if and

only if there evists ¢ € H? with |¢(2)] = 1 for almost all z € T such that E = ¢H?.

Moreover, ¢ is essentially unique in the sense that if E = ¢ H? where || = 1 a.e. then %

is (a.e. equal to) a constant (of modulus 1).

Proof. Suppose that £ C H? is a closed nonzero T-invariant subspace. The space T/(E) is
a closed subspace of E because T is isometric. Moreover, T'(E) # E because

(N T(E) C () T"(H?) = {0}.
n>0 n>0

Thus there exists ¢ € E of norm 1, such that ¢ L T(F).

Claim 1. The sequence {¢,T(¢),T?(¢),...} is an orthonormal sequence in E.
Proof. Since ¢ € E which is T-invariant we have T"(¢) € E for all n € N. Moreover
IT"(#)]|]2 = [|o|ly = 1. Also, if m,n € N with m > n we have

T™ () € T™(B) € T"(B) = T"(I(E)).

Thus T(¢) € T"(T(E)). But T"(¢) L T"(T(E)) since ¢ L T(E) by construction and 7"
is isometric. Thus

T"(¢) LT™(¢). O

Claim 2. For all nonzero k € Z we have /Ck‘¢|2dm =0.
Proof. For k > 0,

[ autoPam = [(Go)adm = (Guo,0) = (74(8).0) =0

by the previous claim. For k = —n < 0,

/ Cel2dm = / H(Cad)dm = (6,Cud) = (6,T"(6)) =0. O

It follows from this claim that the function ¢ = |¢|2, which is in L, satisfies ¢)(k) = 0
for all k € Z except k = 0. By Proposition ) must be a multiple of (; = 1 and hence
a.e. equal to a constant. Hence so is |¢|. Since [|¢|?dm = 1, the constant must be 1.

This shows that |¢(2)| =1 a.e.



Claim 3. E = ¢H?.
Proof. First, pH? = Ty(H?) and T is an isometry since |¢| = 1 a.e.
Since {(, : n € Z} is an orthonormal basis of H?, the set

{T5Co, TyCr, ToCas . } = {6,100, 26y ... } = {6, T(8), T*(9), ... }

is an orthonormal basis of ¢H?, and is contained in E since ¢ € E which is T-invariant.
We conclude that ¢H? C E.

To prove that equality in fact holds, suppose f € E is orthogonal to ¢.H?; we show that
f=0. Indeed, for all n =10,1,2,... we have

flétn = / foCadm =0 = / FECndm = 0.

On the other hand if k = 1,2,... then ((if,¢) = 0 since (o f = TF(f) € TH(E) C T(E)
while ¢ L T(E) by definition; thus

0= {Guf,6) = [ Gufm.

This shows that the L? function f¢ has all its Fourier coefficients equal to 0 and hence must
vanish (a.e.). Since |¢| =1 a.e. this shows that f = 0.

Uniqueness

If pH? = H? where |¢| = |¢)| = 1 a.e. then YpH? = H?, so that ¢ = ¢l € H?.
Similarly ¢1wH? = H?, so that ¢ € H?. Thus the function h = 3¢ and its complex
conjugate are both analytic, which can only happen if h is a constant (alternatively, h € H?
means iz(—n) =0 for n =1,2,... while h € H?> means iL(+n) =0forn=1,2,...; hence h
is constant).

This concludes the proof of the Theorem. O

Remark 2.2 Note the dual role played by ¢ (and also by (1) in the above proof:
On the one hand ¢ is a vector in H* and is moved around by the operator T (we say ¢ is
a wandering vector), and on the other it “is” an operator Ty acting on the space H?.



3 Shifts

Definition 3 A closed subspace L of a Hilbert space H is said to be wandering for an
isometry A € B(H) if the subspaces L, A(L), A%(L), ... are pairwise orthogonal.

Notation If {M,} is a family of pairwise orthogonal closed subspaces of a Hilbert space
H, the orthogonal direct sum

[oe)
@MH:MO@MI@MQ@...
n=0

is the smallest closed subspace \/ M,, of H containing each M,,. This consists of all £ of the
form

€= &  with& € Myand Y [l < oo
n=0 n=0

Thus if L is an A-wandering subspace we may form the orthogonal direct sum

P A" (L) = M (L).
n=0

Remark 3.1 Note that we may recover the wandering subspace from My (L):
L= My (L) & AMy (L)) i= M (L) N A(M (L)),

Indeed, L is contained in M, (L) and is orthogonal to each A"T1(L), (n > 0), hence to their
orthogonal direct sum, which is A(M, (L)); and conversely, if a vector &€ = >, -, AFzy is in
M (L) (i.e. each x} is in L) and is orthogonal to A(M (L)) hence to all A"*1(L), then for
all p € L and n > 0 we have

0= <£7An+177> _ Z <Akxk,An+177> — <An+1$n+17An+177> — <$n+1777>
k>0

and so 41 = 0; hence £ = x¢ € L.

Definition 4 A (unilateral) shift on a Hilbert space H is a map S € B(H) such that
(a) ||Sz|| = ||x|| for allx € H (S is an isometry) and
(b) There is an S-wandering subspace L such that M (L) = H.

The number dim L is called the multiplicity of the shift.

Note that, by Remark the wandering subspace L is uniquely determined by S, and in
fact, since M4 (L) = H,

L=HoSH)=S(H)" =ker(S*).

Thus the multiplicity of a shift is uniquely defined.
Conversely,

Remark 3.2 Two shifts S € B(H) and S1 € B(H1) are unitarily equivalent if and only if
their wandering subspaces L and L1 are of the same dimension.
Thus the number dim L uniquely determines S up to unitary equivalence.



Indeed, if L and L; have the same dimension, choose any unitary U : L — L1 and define
ViH—Hi: Y S™an) = Y SHUzy).
It is clear that V is invertible:
V(3D Stwn) = Y0 S" (U )

and it is isometric because

> s

2

= SISO = Xl = [ 57 (w)

For example the operator Tf(z) = zf(z), f € H?is a Shift.ﬂ The vector ¢ is a
wandering vector for T, i.e. the family {T"( : n € Z,} is orthogonal.

We will need an easy observation

Remark 3.3 If T € B(H) is an isometry and P a projection, then the projection onto
TP(H) is TPT*.

Proof. 1t ¢ =T(n) € TP(H) then TPT*{ = TPT*Tn =TPn=Tn= ¢ (since T*T = I and
n € P(H)), and if (LTP(H) then TPT*( = 0 since for all { € H we have (T'PT*(,§) =
(¢, TPT*¢) = 0 because P(T%¢) € P(H) so TPT*¢ € TP(H). O

Theorem 3.4 (Wold Decomposition) If A € B(H) is an isometry, there is a unique
decomposition H = Hy ® H,, into A-reducing subspaces such that the restriction As of A to
H; is a shift (if nonzero) and the restriction A, of A to H, is unitary (if nonzero).
Moreover, if L=Ho A(H) = A(H)* = ker A*, then L is an A-wandering subspace,
i.e. the family {A™(L) :n € Z4} is a family of closed mutually orthogonal subspaces.
We have

Ho=M (L) =@ A™(L)={r e H: A" -0}  and H, = () A™(H).

n>0 n>0

Proof. (i) If A"x € A™(L) and A™y € A™(L) with kK = n —m > 0 then, since A™ is
isometric,

(A"x, AMy) = <AmAkx,Amy> = <Akx,y> =0
because A¥x € A(H) (since k > 1) while y is in L which is orthogonal to A(H). Thus
A™(L) LA™(L).
(ii) Define  Hg = D,,50 A"(L). We show that
Hy={x€ H: A"z — 0}. (**)

If P(L) is the projection onto L = (A(H))*, then P(L) = I — AA*; by Remark the
projection P(A™(L)) onto A™(L) is A"P(L)A* = A™(I — AA*)A™. Now z € Hj if and
only if

00 N—-1
r=Y P(A(L))x = lim AMI — AAAz =z — lim AN ANy (*)
n=0

N—o0 N—o0
n=0

5Observe that under the unitary F : H> — ¢2 : (,, = e, (of course F is the restriction to H of the Fourier
transform F : L*(T) — £*(Z)) the operator T is transformed into the (multiplicity one) shift S : ¢* — ¢2
given by Se, = ent1.



i.e. if and only if limy_o AN A*N2 = 0, equivalently if and only if limy | A*N || = 0
(AVN is an isometry).

This shows (xx).

On the other hand, y L H, if and only if y L A™(L) for all n > 0, equivalently if

0= P(A™(L))y = A™(I — AA*)A™y <= A"A™y = AnTigmntly

for all n, and so y = A" A*™y for all n. But A™A*" is the projection onto A™(H). Therefore
yLH, if and only if y € A"(H) for all n > 0. In other words, yLH, iff y € ,~o A™(H).
We have shown that -
(Ho)" = () AMH) = H,.
n>0

(iii) If P = P(H,,) then, for all x € H, Pz = lim,, A"A*"x. Thus

P(AH,)x = APA*z = Alim A" A" A*z = lim AT A* (g = Py
and so P(AH,)=APA* =P hence PA=APA*A=AP.

The second relation shows that A reduces H, and the first relation shows that A maps H,
onto H,. Hence Al|p, is a unitary operator on H,.
Finally, Hy = H also reduces A.

Uniqueness It remains to prove that if H = K, ® Ky, is an arbitrary decomposition so that
Alk, is a shift and A|g, is unitary, then K, = H, and Ky = H. But if A|g, is a shift then
L' := K; 6 A(K,) is A-wandering; and it will be enough to prove that L = L', for then
Ky =M, (L') = M,(L) = K and their orthogonal complements will also be equal. Nowlﬂ

L=HoAH = (K, ® K;) © (AK, ® AK;) = (K, ® K;) © (K, ® AK;) = K, © AK, = L.

Remark 3.5 [t follows that an isometry A € B(H) is a shift if and only if it satisfies
A x| — 0 for all z € H. Equivalently if and only if (), A™(H) = 0.

5Tn more detail: Given z € L write z = zs + z, with zs € K, and z, € K,. But 1l A(K. & K,) and
A(K, ® K;s) = AK, ® AK, = K, ® AK; (note that A(K,) = K, since A|k, is unitary). Thus z 1K, so
x = x5 € K;. But also 21 A(K;), so z € K; © A(K,) C L'. This shows that L C L’; the same argument
using the decomposition H = Hs; @ H,, yields L' C L.



4 The Beurling - Lax - Halmos Theorem

We wish to generalise Beurling’s Theorem (Theorem to characterise invariant subspaces
of a shift of arbitrary multiplicity.

In the multiplicity one case, invariant subspaces M were shown to be of the form M =
T,(H?) where ¢ € H? was a suitable function. Note that T} is an isometry which commutes
with the operator T'. This is the form of Beurling’s Theorem that generalises. Indeed, it can
be shown that, conversely, any isometry A € B(H?) which commutes with 7" is necessarily
of the form A = T} (see [2, Problem 242]).

Let E be a Hilbert space and define

H=E® ={{=(x,) 20 € E, Y _|lznlly < oo},
n>0
This is a Hilbert space with scalar product

((@n), (yn)) = D (@ yn) g

n

(the sum converges absolutely). Completeness is proved just like the case of £2.
We denote the sequence (0,...,0,z,0,...) (with = at the n-th place) by the symbol
T ® ey; the linear span of {r®e,:x € E,n € Z;} is dense in H E] and

Let S € B(H) be given by

S((zo, z1,22,...)) = (0,20, z1,22,...)

ie.
Sr®ey) =xRent1 (x€ E,nely).

This is an isometry, called the unilateral shift of multiplicity dim F.

Suppose V € B(H) is a partial isometry. Let M = V(H). This is a closed subspace
since V' is isometric on the orthogonal complement of its kernel.

Remark 4.1 IfVS =SV then M is S-invariant.
Proof. If £ € M there exists n € H such that £ = V. Then

S =8SVn) =V (Sy) e V(H) =M. O
Conversely,

Theorem 4.2 Let M C H be a closed S-invariant subspace. Then there exists a partial
isometry V € B(H) which commutes with S such that

M =V(H).
We will need the following

Lemma 4.3 If H is a separable Hilbert space and P € B(H) is a projection, then for any
orthonormal basis {f; : i € I} of H we have

dim P(H) = 3| PA|.

el

7 H is the orthogonal direct sum of its subspaces E,, := {z ® en : x € E} which are all isomorphic to E.



Proof. Let {y : k € K} be an orthonormal basis of P(H). Since each Pf; is in P(H), by
Parseval we have

IPFill? = 1 (Pfiur) |”

ek
and so ZHsz‘|’2:ZZ‘<Pfi7Z/k> ? = ZZ’(fhPyk) 2
iel iel kek ek iel
=D > 1 fow P =D llwell?
keK iel kel

by Parseval again, since {f; : ¢ € I} is an orthonormal basis of H. But the last sum equals
the cardinality of K, i.e. the dimension of P(H). O

Proof of the Theorem. Define
L=MoS(M)=Mn(SM)*.

This is a nonzero subspace because S(M) # M. Indeed, if m € Z is the smallest integer
for which there exists £ = (zy,) € M with z,, # 0, then all S(n) € S(M) have their first m
coordinates equal to 0 and so & ¢ S(M).

Let P be the projection onto M and let @ be the projection onto L. Then SPS* is the
projection onto S(M) (Remark and so

Q=P SPS".

Claim 1. L is a wandering subspace, i.e. the subspaces S™(L), n > 0 are pairwise orthogo-
nal.

Proof. E| If S™(&) € S™(L) and S™(n) € S™(L) with k =m —n > 0 then
(5™(€). 5"(m) = (S™S¥(), 5 (m)) = (S
S

But S*(¢) € S(M) (note k > 1) because S(§) €
hand n € L and L L S(M), so (S¥(¢),n) =0. O

; 77> (S™ is isometric).

3
(M) which is S-invariant; on the other
Thus we may form the sum
oo
N=@s (L) =LosSL) e L)e...
n=0
This consists of all £ of the form
o o0 oo
§=) 8") withéueLand Y [[S"|* =) [l < oo
n=0 n=0 n=0

Claim 2. N = M.

Proof. Since L C M so S™(L) C S™"(M) C M, we see that M contains each S™(L), hence
it must contain V.

Now take £ € M N N+. Then & € M and £LL; thus Q¢ = 0, i.e. (P — SPS*)¢ =
0 and so £ = P¢ = SPS*¢. Thus &€ € S(M); but ¢ € (S(L))* so SQS*¢ = 0, i.e.
(SPS* — S?2PS*2)¢ = 0 and so £ = SPS*¢ = S?2PS*%¢, ie. ¢ € S?(M). Continuing

8This generalises the argument in part (i) of the proof of Theorem 3.4

10



inductively, we conclude that £ € S™(M) i.e. £ = S"PS*¢ for all n > 0. But then & = 0,
because if £ = Zkzo T ® e then S*¢ = Zan Tp ® €p_p SO

€17 = 15" PSE|” < |52 =D flawel* - 0. O
k>n
Claim 8. There exists a partial isometry U : H — E with initial space L.

Proof. It is enough to prove that there exists an isometry W : L — E; then U : H — FE
will be the extension of W to H, defined by setting U(¢) = 0 for & € L*.
Now the existence of an isometry W : L — E will follow if we prove that dim L < dim F.
Let {ux : k € K} be an orthonormal basis of E. Since H is generated by {z ® e, : x €
E.n € Z;}, the set {up ®e, : k € K,n € Z} is an orthonormal basis of H. Thus by
Lemma

dimL =Y 3 QUu @en)P = 30 3 (Quk @ ), ug ).

keK neZy keK nely
Now ug ® e, = S™(up ® €g) and Q = P — SPS*, so

(Q(ug @ eo), up ® eg) = (Plu @ eg), (ur ® €g)) — (SPS™(ug @ eo), ug ® €g)
= (P(ur ® eg), (ux, ® €g))

(because S*(z ® eg) = 0) and for n > 0,

(Qug ® ep),ur @ en) = (PS™(up ®eg), S™(ur @ eg)) — (SPS*S™(ux, @ eg), S™(ur ® ep))
= (PS"™(ur ®ep), S™(ug, ® eg)) — <PS"_1(uk ® ), S"Hu, @ ep)).

Thus for each k € K,

D (Quk ® en), uk @ en) = (P(uy, @ eo), (ug @ e0))
n=0
+ (PS(ur, ® eo), S(uk ® eo)) — (P(uk ® eo), (uk ® eo))
+ ..
+(PS™(ug, ® eq), S"(ug ® e9)) — (PS™ Hup, ® eq), S™ Nuy ® o))
= (PSm(uk ® 60), Sm(uk ® 60))
and so
dimL = lim_ > (PSS ®eq), S™(up ®e0)) < > upl? =dimE. O
keK keK

Now define V : H — H as follows: Let € = 3>.2° jx, @ e, € H, so that 3, [lz,[*> =
€I < +00. Observe that x, € E so U*z, € L and the vectors S"(U*z,) are pairwise
orthogonal; thus the series ) S™(U*xy) converges in H and we may define

o0 o0
1% (Z T, Q en> = Z S™(U*zy,).
n=0 n=0
This is a contraction:

2
Ive)* = =D IS" (U z) > = YU zal® < ) llaall® = li€1°
n n n

Z S™(U*xy,)
n=0

11



Claim 4. V is a partial isometry.

Proof. Let F = U(L) C E be the final space of the partial isometry U. Note that U* is a
partial isometry with initial space F' and final space L. Consider the subspace

(o]
X:z{szCL’n@)en: anF}gH.

n=0

If ¢ € X, then each coordinate x,, is in F' and so |U*z,,|| = ||zn||. Thus
2 * 2
IVENR? =D 1T zall? =Y llanll = [1€]1*
n n

and so V| is isometric.

If £1.X, then each coordinate z,, is in F- ﬂ and so U*xz,, = 0. Thus V¢ = 0, showing
that V vanishes on X*. 0O.
Claim 5. V(H) = M.
Proof. Since the range of U* is L, it is clear that that V(H) lies in the direct sum of the
subspaces S™(L), namely M. On the other hand, givenn > 0 and § € L, lettingz = U{ € F
we have V(z ® e,) = S"(U*z) = S™(€). Thus V(H) contains all subspaces S™(L), n € Z,
hence also their direct sum M. O
Claim 6. VS =5V.
Proof. This is obvious: For all x € £ and n > 0,

VS(z®en) =V(z®enr1) =S (U z)
SV (x®en) = S(S(U*x)) = S"TH(U*x). O

9because for all z € F and all n > 0 we have ¢l (x ®en), hence z, Lx.

12



5 Dilations of a contraction

Theorem 5.1 Let T' € B(H) be a contraction. Then there exists a Hilbert space KK O H
and a unitary operator U € B(K) such that

T" = PyUy  (n>1).

Remark 5.2 The condition T™ = PyU"|y forces the subspace H C K to be semi-invariant

under U, i.e. of the form H = Ha N ’Hf, where H1 C Ha and both spaces are U-invariant.
Thus the matriz of U with respect to the (ordered) decomposition

K=Hi1oHD ”HQL takes the form

U:

o O %
o N %
*

Indeed, define

Ho=[Ury:y € H,n>0] and Hi=Ho NH:.

Then we have two closed subspaces of IC such that Hi1 C Ho and H = Ho ﬂ?-{ll. Clearly Ho
is U invariant (because [U™y : y € H] is) and we need to show that H; is also U invariant.

Thus if P, denotes the projection onto H;, we have to show that UP; = PLUP;. But
Py =Py — P = PPt and UP, = PUP, because U(Hz) C Ho, hence

PUP, = RLUP,P- — PUP,P+ =UP,P- — PUR,P+ =UP, — PUP,P*

and so it suffices to show that PUP,PL = 0, equivalently that PUP, = PUPP,, or
PUx = PUPx for x € Hy. In fact it suffices to show the last equality when z = U™y
for some n € Zy and y € H (for then it will follow for arbitrary x € Ha by linearity and
continuity).

But for x = U™y, since PUPU"P = (PUP)(PU"P) = T"*! = PU""1 P we have

PUPx = PUPU"y = PUPU"Py (because y € H)
= PU"' Py = PU"" 'y = PU(U"y) = PUx

as required. This shows that H; is U-invariant as well.
Example 5.3 Suppose z € C with |z| <1 and let T = zI acting on H = C.

Try to construct a unitary dilation U on the space C & C & C:

U =

o O R
S N o
o QU0

Now U is unitary if and only if its rows and columns form orthonormal sets. This forces
|b]> = |d|?> =1 — |2|? and we may choose b = d = /1 — |2|2. But then the orthogonality of
the second and third column give bé + zd = 0, so ¢ = —2. Now if the first row and third
column are to have unit length then necessarily a = 0 and e = 0. Thus

0 b —z
U=|0 = b (b=+/1—|z%).
00 0

197t would be lower triangular if we wrote the decomposition as K = Hs & H & Hi.
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But this is not unitary! The first column and last row are 0. To remedy this, we need to
add rows and columns:

s 1 0 0 O
00 b -2z 0
U=]100r=m b 0
00 0 0 1

00 0 0 ¢

Now the length of the first row and the last column force s =t = 0, and again the first
column and last row are 0. Thus we need to add more rows and columns, and so on “ad
infinitum”: So U turns out to be an operator acting on the infinite dimensional (!) space
(%(Z) given by

1 0
b -z
U= = b 0
0 1

It is not hard to verify that this operator is unitary, and it will follow anyway from the
general construction (second method) below.

Proof of the Theorem. (First method) We dilate T in two steps:
(a) we dilate (T',H) to an isometry (V, K1) and
(b) we dilate the isometry (V,H1) to a unitary (U, K).

Then (U, K) will be a unitary dilation of (T, H).

(a) Dilation of a contraction to an isometry
The space K is defined to be

ICI =H® £2(Z+)

(see Section 4). Recall that K; consists of all families (z,)n>0 (with x, € H for all n) which
are square summable in norm. We identify H with the subspace Ho = {(h,0,0,...): h € H}
of ]Cl.
Let T' € B(H) be a contraction. It follows that the operator I — 7T is positive; hence
we may define
Dy = (I —T*T)"/2.

Consider the operator V' € B(K;) given by

T 00 0 7
Dr 00 0
vl o 10 0 :[To}
0 01 0 o

(the last matrix is written with respect to the decomposition KC; = H @ H'.) Explicitly,

V(ho, h, ha, ...) = (Thy, Drho, by, ha, . ..).

14



Clearly V dilates T'. To see that it is isometric, note that

| Thol|* + | Drhol|® = (Tho, Tho) + (Drho, Drhe)
= (T*Thg, ho) + (D3ho, ho) = |[ho|)*-

and thus

IVAI* = IThol|* + | Drhol* + ) In]®

n=1

= [lholl® + D Ihal® = IR

n=1

(b) Dilation of an isometry to a unitary

Let V € B(K,) be an isometry, V*V = I.

Observe that (VV*)V = V(V*V) =V. Also (VV*)2 =V (V*V)V*=VV*s0 VV*is a
projection. Let P =1 — VV*. This is also a projection and PV =V — VV*V = 0.

Thus if

U:Ki®Ki— Ki@®Ky: s given by U:[V 0}

P Vv
then U is unitary. Indeed,

UUt — V0 v P | [ VV V*pP |1 0
| PV 0O V| | PV P24+VV*| |0 I
and oo [V PV o] _[vveerr PV ] _[1 0
o0 v P V| V*P Vvl |0 T
Combining the two steps, we obtain the dilation U in the form
™ A* 0 0 V: o0 0
0 B* 0 0
U= =P T 0
Py P T 0 P A B
Py P»n A B 2
where P1:[P11 Pis } and PQZ[PQl Py ] O

Remark 5.4 Observe that, since the space Ky is in fact U-invariant (not just semi-invariant),
we have U™\, = V™: thus U™ is in fact an extension of V" (not merely a dilation).

Proof of the Theorem. (Second method) Notice that since | T|| < 1, the operators I — T*T
and I — TT* are positive; hence we may define

Dy = (I -T2, Dp.=1-TT""2

These are called the ‘defect operators’> Dy = 0 iff T' is an isometry, and Dy« = 0 iff T* is
an isometry (then 7' is called a co-isometry). Note that

TD%=T-TT*T = D3.T,  T*D% =T*—-T*TT* = D3T*
from which we obtain

T*Dp« = DyT*,  TDp = DpT (1)
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by approximating the function f(t) = v/t by polynomials (p,) uniformly for ¢ € [0,1] (so
that Dr = lim,, p,(D2) and Dy« = lim, p,(D%.)).
The space K is defined to be
K=H®(1Z).
Thus K consists of all families (z,)nez (With x,, € H for all n) which are square summable
in norm, ie. » ., |2, |* < oo.

We identify H with the subspace Ho = {(...,0,[A0,...): h € H} of K.
Consider the operator U € B(K) given by

I O * * *
0 Dp -T*
Drs

[T T 0 0 0 =

Explicitly, for h = (hy,), we have Uh = b/ = (h},), where

h'y = Drho —T*hy, hy=Tho+ Dp-hy, b= hjy, (j #—1,0).

Clearly U dilates T'. To see that it is isometric, consider

W 1112 4 |h6]1? = ((D%ho, ho) + (T*hy, T*hy) — 2Re (Drho, T*hy))
+ ((Tho, Tho) + (Df-hy, h1) + 2Re(Dr<h1, Thy))
= |[holl® + |21 1? (using TDy = Dp+T).

To prove that U is onto, given (h}) € (*(Z) set h; = h;_1, (7 # —1,0) and determine hg
and hq by solving the system

h‘/—l = DThO - T*hl - DThl_l = (I — T*T)ho — DTT*hl
ho = Tho + Dr+<hy T*hjy = T*Tho + T*Dp-hy

= DThl_l + T*h6 = hg — DTT*hl + T*DT* hi1 = ho

W _; = Dpho — T*hy Th' | = TDrhy — TT*hy
1 = 1

6 =Thy+ Dp+hq D« hlo = Dp«Thy + (I — TT*)hl
= —Th/_1 + D hE) = —TDphy+ Dp«Thy + h1 = h1

where we have used relations . O
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6 von Neumann’s inequality

Theorem 6.1 (von Neumann’s inequality) If T' € B(H) is a contraction and p is a
polynomial p(z) = > p_, arz", then

IP(D)ll ey < sup{lp(z)] - z € T}

Proof. Let U € B(K) be any unitary dilation of T' € B(H). Observe that p(T') = Pyp(U)|n
and hence |[p(T)|| gy < Ip(U)llgx)- But U is a unitary operator so o(U) C T; thus by
the spectral mapping theorem we have

1p(0) 500y = sup{lp()] < = € o(U)} < supd[p(2)] : = € T}.
Thus  [[p(7) |5y < I12(0) ey < sup{lp(z)] -2 €T}, O

Example 6.2 In particular if T = wl where w € D, then for any polynomial p we obtain
p(T) = p(w)I and so
[p(w)| = [lp(T)|| < sup{lp(2)| : = € T}.

More generally, let A(D) be the algebra of all continuous complex-valued functions on D
which are analytic in . This is a closed subalgebra of C(D): it consists of all f € C(D)
that are limits of polynomials (in z) uniformly in D. It follows that the last inequality is
true for all f € A(D):

sup{|f(w) : w € D} < sup{f(2)|: 2z € T}.

We have obtained a particular case of the mazximum modulus principle of complex anal-
ysis by Operator Theory methods.

Remark 6.3 von Neumann’s inequality shows that, given a contraction T € B(H) the
functional calculus p — p(T) extends by continuity to a contractive homomorphism f —
f(T) from the disc algebra A(D) into B(H): a representation of the Banach algebra A(D).
Conversely, given any contractive representation 7 : A(D) — B(H) we obtain a contraction
T =7(¢) € B(H) (recall ((z) = z for z € D) such that w(f) = f(T) for all f € A(D).
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