EXERCISES

OPERATOR THEORY MODULE, DECEMBER 2025

3. Ideals and positive functionals

Exercise 3.1. Let A be a C*-algebra and $x \in A_{sa}$. Recall that $x = x_+ - x_-$ with respect to its positive and negative part. Show that

$$\inf\{\|a+b\|:b\in A_+\}=\|x_+\|.$$

Deduce that $dist(x, A_+) = ||x_-||$.

Exercise 3.2. Let τ be a positive linear functional on a C*-algebra A and let (H_{τ}, ϕ_{τ}) be the GNS-representation.

- (i) If I is a closed ideal in A, show that $I \subseteq \ker \tau$ if and only if $I \subseteq \ker \phi_{\tau}$.
- (ii) We say that τ is faithful if $\tau(a) = 0$ implies a = 0 for all $a \in A_+$. Show that if τ is faithful then ϕ_{τ} is faithful.
- (iii) Suppose that α is an automorphism of A such that $\tau(\alpha(a)) = \tau(a)$ for all $a \in A$. Define a unitary $u \in H_{\tau}$ by setting

$$u(a+N_{\tau}) = \alpha(a) + N_{\tau}.$$

Show that $\phi_{\tau}(\alpha(a)) = u\phi_{\tau}(a)u^*$ for all $a \in A$.

Exercise 3.3. Let A and B be C*-algebras. Show that if $\psi: A \to B$ is a positive linear map then it is necessarily bounded.

Exercise 3.4. (i) Let $a \in M_2(\mathbb{C})$. Show that if $a \geq 0$ and $a_{11} = 0$, then $a_{12} = a_{21} = 0$ and $a_{12} \geq 0$.

- (ii) Show that there is **no** positive functional $\varphi \colon M_2(\mathbb{C}) \to \mathbb{C}$ satisfying $\varphi(E_{11}) = 0$ and $\varphi(E_{12}) = -1$.
- (iii) Show that the functional

$$\varphi \colon M_n(\mathbb{C}) \to \mathbb{C}; \varphi(a) = a_{ii}$$

is a state on $M_n(\mathbb{C})$ for all $i = 1, \ldots, n$.

(iv) Show that there is a state φ on $M_n(\mathbb{C})$ such that

$$\varphi(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}) = -1.$$

(v) Show that there is **no** state φ on $M_n(\mathbb{C})$ such that

$$\varphi(\begin{bmatrix}1 & 0 \\ 0 & -1/2\end{bmatrix}) = -1.$$

Exercise 3.5. (i) Let $f \in C(\Omega)$ for a compact Hausdorff space Ω . Show that f is a projection in $C(\Omega)$ if and only if there is a clopen $K \subseteq \Omega$ such that $f = \chi_K$ (the characteristic function on K).

- (ii) Describe the projections in $M_n(\mathbb{C})$.
- (iii) Suppose that $p, q \in M_n(\mathbb{C})$ are projections such that $\text{Tr}(p) \leq \text{Tr}(q)$. Find a partial isometry $v \in M_n(\mathbb{C})$ such that $v^*v = p$ and $vv^* = q$.

Exercise 3.6. Let $a, b \in A$ in a C*-algebra A with $||a|| \le 1$ and $||b|| \le 1$. Show that if $a, b \in A_+$ then $||a - b|| \le 1$. Does this still hold if you assume only that $a, b \in A_{sa}$?

1