Operator Spaces: An introduction 21 October 2022

Aristides Katavolos

Milestones I

F. J. Murray and J. Von Neumann.

On rings of operators.

Ann. of Math. (2), 37(1):116-229, 1936.

I. Gelfand and M. Neumark.

On the imbedding of normed rings into the ring of operators in Hilbert space.

Rec. Math. [Mat. Sbornik] N.S., 12(54):197–213, 1943.

W. Forrest Stinespring.

Positive functions on C^* -algebras.

Proc. Amer. Math. Soc., 6:211-216, 1955.

William B. Arveson.

Subalgebras of *C**-algebras.

Acta Math., 123:141-224, 1969.

Milestones II

- Man Duen Choi and Edward G. Effros. Injectivity and operator spaces. J. Functional Analysis, 24(2):156–209, 1977.
- Zhong-Jin Ruan.
 Subspaces of C*-algebras.
 J. Funct. Anal., 76(1):217–230, 1988.
- Gilles Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
- Edward G. Effros and Zhong-Jin Ruan. Theory of operator spaces. AMS Chelsea Publishing, Providence, RI, 2022. Corrected reprint of the 2000 original [1793753].

Milestones III

Vern Paulsen.

Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 2002.

$$\mathscr{B}(H)$$

Let H be a Hilbert space. The algebra of all bounded linear operators $T: H \to H$ is denoted $\mathcal{B}(H)$. It is complete under the norm

$$||T|| = \sup\{||Tx|| : x \in \text{ball}(H)\}$$

Moreover, it has an *involution* $T \rightarrow T^*$ defined via

$$\langle T^*x,y\rangle = \langle x,Ty\rangle$$
 for all $x,y\in H$.

This satisfies

$$||T^*T|| = ||T||^2$$
 the C^* property.

 $\mathscr{B}(H)$ is a C*-algebra

Structure of $\mathcal{B}(H)$:

- 1 linear space
- ring for composition of operators [thus, an associative algebra]
- *-vector space with identity
- 4 has a complete submultiplicative norm ($||TS|| \le ||T|| ||S||$)
- 5 norm satisfies the C^* property $||T^*T|| = ||T||^2$

Provisional Definitions

- Operator space: A linear subspace of $\mathcal{B}(H)$ (sometimes assumed closed)
- Operator system: A selfadjoint (i.e. *-closed) linear subspace of $\mathcal{B}(H)$ containing the identity
- **C***-algebra: A selfadjoint, $\|\cdot\|$ -closed subalgebra of $\mathcal{B}(H)$

Function Spaces

A concrete function space is a linear subspace $E \subseteq \ell_{\infty}(\Gamma)$ for some Γ .

Is E/N a concrete function space on some Γ' ?

Remark

Every normed space can be isometrically represented as a concrete function space.

Given $(E, \|\cdot\|)$ and $n \in \mathbb{N}$, consider

 $\ell_{\infty}([n]; E) := \{([x_1, \dots, x_n] : x_i \in E\} \text{ with sup norm.}$

Note that if $E \subseteq \ell_{\infty}(\Gamma)$ then $\ell_{\infty}([n]; E) \subseteq \ell_{\infty}([n] \times \Gamma)$ isometrically.

Remark

If E is function space, so is $\ell_{\infty}([n]; E)$ for all $n \in \mathbb{N}$.

Operator Spaces

"Quantize": Replace function in $\ell_{\infty}(\Gamma)$ by operators in $\mathscr{B}(H)$ for some Hilbert space H.

Given a subspace $E \subseteq \mathcal{B}(H)$ and $n \in \mathbb{N}$, then

 $M_n(E) \subseteq M_n(\mathcal{B}(H))$ as linear spaces.

But note $M_n(\mathcal{B}(H)) \simeq \mathcal{B}(H^n)$ as linear spaces, where

$$H^n := \{\vec{h} := [h_1, \dots, h_n] : x_i \in H\} \text{ with } \langle \vec{h}, \vec{h}' \rangle := \sum_{k=1}^n \langle h_k, h'_k \rangle_H$$
 and $M_n(\mathscr{B}(H)) \longrightarrow \mathscr{B}(H^n) : [a_{ii}] \mapsto A \text{ where } A\vec{h} = [\sum_{i=1}^n a_{ii}h_i].$

Remark

If E is an operator space on H, then, for all $n \in \mathbb{N}$, $M_n(E)$ is an operator space on H^n .

So the embedding $j: E \rightarrowtail \mathscr{B}(H)$ defines a sequence of norms $\{\|\cdot\|_{M_n(E)}: n \in \mathbb{N}\}.$

Operator Spaces

Definition

An operator space E is a pair (E,j) where E is a linear space and $j: E \rightarrowtail \mathcal{B}(H)$ a linear embedding. If

$$\big\|[x_{ij}]\big\|_{M_n(E)}\stackrel{def}{=} \big\|[j(x_{ij})]\big\|_{\mathscr{B}(H^n)}\ (x_{ij}\in E)\,,$$

¹ the sequence of norms $\{\|\cdot\|_{M_n(E)} : n \in \mathbb{N}\}$ is called the operator space structure on E induced by j.

Definition

An operator space structure on a normed space $(E, \|\cdot\|)$ is the operator space structure induced by a linear isometric embedding $j: E \rightarrowtail \mathcal{B}(H)$ for some Hilbert space H.

(Thus
$$||j(x)||_{\mathscr{B}(H)} = ||x||_E$$
 for all $x \in E$)

¹Thanks, Dimos!

Completely bounded maps

Notation Given a linear map $\phi : \mathcal{B}(H) \to \mathcal{B}(H')$, for any $n \in \mathbb{N}$ define $\phi_n : \mathcal{B}(H^n) \to \mathcal{B}(H'^n) : [a_{ij}] \mapsto [\phi(a_{ij})]$.

Definition

A linear map $\phi: E \to F$ between operator spaces is said to be completely bounded if (each $\phi_n: M_n(E) \to M_n(F)$ is bounded and) $\|\phi\|_{cb} := \sup_n \|\phi_n\| < \infty$.

The map ϕ is said to be completely isometric if each $\phi_n: M_n(E) \to M_n(F)$ is an isometry.

Thus if $j: E \to \mathscr{B}(H)$ is an isometric embedding, the induced operator space structure on E is by definition the one making $j_n: (M_n(E), \|\cdot\|_{M_n(E)}) \to (\mathscr{B}(H^n), \|\cdot\|_{\mathscr{B}(H^n)})$ isometric for all n, i.e. making j a complete isometry.

The minimal operator space structure on $(E, \|\cdot\|_E)$

Remark

Every normed space $(E, \|\cdot\|_E)$ admits an operator space structure.

Proof Embed $E \hookrightarrow \ell_{\infty}(\Gamma)$ isometrically, then embed $\ell_{\infty}(\Gamma) \hookrightarrow \mathcal{B}(\ell_2(\Gamma)) = \mathcal{B}(H)$ as diagonal operators. Let j be the composite, so $||j(x)||_{\mathcal{B}(H)} = ||x||_E$ for all $x \in E$. For $n \in \mathbb{N}$ and $x = [x_{ij}] \in M_n(E)$, define $||x||_{M_n(E)} := ||j_n(x)||_{\mathcal{B}(H^n)}$.

This op. space structure is called the minimal op. structure $\min E$ on $(E, \|\cdot\|_E)$. It has the universal property: If F is an op. space and $\phi: F \to E$ a bounded linear map, then ϕ is completely bounded and in fact $\|\phi\|_{cb} = \|\phi\|$.

For $n \in \mathbb{N}$ and $x = [x_{ij}] \in M_n(E)$,

$$\|[x_{ij}]\|_{\min} = \sup\{\|[\phi(x_{ij})]\|_{\mathscr{B}(H^n)}: \phi: E \to \mathbb{C} \text{ contraction}\}$$

(using ball(E^*) for Γ).

The maximal operator space structure on $(E, \|\cdot\|_F)$

Let $\mathscr S$ be the family of all isometric embeddings $\phi: E \to \mathscr B(H_\phi)$ (this is not empty since min E exists).

The max structure corresponds to the embedding given by the 'direct sum' (suitable defined) of all the embeddings $\phi: E \to \mathcal{B}(H_{\phi})$.

Each ϕ induces a norm $\|\cdot\|_n^{\phi}$ on each $M_n(E)$ given by $\|[x_{ij}]\|_n^{\phi} = \|[\phi(x_{ij})]\|_{\mathscr{B}(H_{\phi}^n)}$. The max norm is defined to be the supremum of these norms:

$$\|[x_{ij}]\|_{\max} = \sup\{\|[\phi(x_{ij})]\|_{\mathscr{B}(H_{\phi}^n)} : (\phi, H_{\phi}) \in \mathscr{S}\}, \quad [x_{ij}] \in M_n(E)$$

(this supremum is finite, since 2

$$\|[\phi(x_{ij})]\|_{\mathscr{B}(H^n_{\phi})} \leq \left(\sum_{i,j} \|\phi(x_{ij})\|_{\mathscr{B}(H_{\phi})}^2\right)^{1/2} = \left(\sum_{i,j} \|x_{ij}\|_{E}^2\right)^{1/2}.$$

²Thanks, Mihalis!

The maximal and minimal operator space structures

The maximal operator space structure structure $\max E$ on $(E, \|\cdot\|_E)$ has the universal property:

If V is an op. space and $\psi: E \to V$ a bounded linear map, then ψ is completely bounded and in fact $\|\psi\|_{cb} = \|\psi\|$.

To compare:

For
$$n \in \mathbb{N}$$
 and $x = [x_{ij}] \in M_n(E)$,

$$\begin{aligned} \big\| [x_{ij}] \big\|_{\min} &= \sup\{ \big\| [\phi(x_{ij})] \big\|_{\mathscr{B}(H^n)} : \phi : E \to \mathbb{C} \text{ contraction} \} \\ \big\| [x_{ij}] \big\|_{\max} &= \sup\{ \big\| [\phi(x_{ij})] \big\|_{\mathscr{B}(H^n_{\phi})} : \phi : E \to \mathscr{B}(H_{\phi}) \text{ contraction} \} \end{aligned}$$

(by the universal property of max, using contractions instead of isometries does not increase $\|\cdot\|_{\max}$).

Example: $min(\ell^1[d])$ and $max(\ell^1[d])$

Let $d \in \mathbb{N}$ and $H = L^2(\mathbb{T}^d)$. For $k \in [d]$ let $V_k \in \mathcal{B}(H)$ be multiplication by the k-th coordinate function: $(V_k f)(z_1, \ldots, z_d) = z_k f(z_1, \ldots, z_d)$ $(f \in H)$. Then $V_1, \ldots, V_d \in \mathcal{B}(H)$ are commuting unitaries. Write $\mathscr{C}_d = \operatorname{span}\{V_1, \ldots, V_d\} \subseteq \mathcal{B}(H)$. The map

$$J: \ell^1[d] \rightarrowtail \mathscr{C}_d \subseteq \mathscr{B}(H): [a_k] \mapsto \sum_{k=1}^d a_k V_k$$

is a linear isometry, and $J(\ell^1[d]) \simeq \min(\ell^1[d])$ completely isometrically.

$min(\ell^1[d])$ and $max(\ell^1[d])$ continued

Let \mathbb{F}_d be the free group in d generators u_1,\ldots,u_d and let (π,H_π) be the universal unitary representation of \mathbb{F}_d (the direct sum of all unitary representations on (separable) Hilbert spaces). Let $U_1,\ldots U_d\in \mathscr{B}(H_\pi)$ be the images of the generators: $U_k=\pi(u_k)$. These are free unitaries. Write $\mathscr{Z}_d=\operatorname{span}\{U_1,\ldots U_d\}\subseteq \mathscr{B}(H_\pi)$. The map

$$J_{\pi}:\ell^{1}[d] \rightarrowtail \mathscr{Z}_{d} \subseteq \mathscr{B}(H_{\pi}):[a_{k}] \mapsto \sum_{k=1}^{d} a_{k}U_{k}$$

is a linear isometry, and $J_{\pi}(\ell^1[d]) \simeq \max(\ell^1[d])$ completely isometrically.