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1 Introduction

In this article we discuss results which stand between geometry, convex geometry,
and functional analysis. We consider the family of n-dimensional normed spaces
and study the asymptotic behavior of their parameters as the dimension n grows
to infinity. Analogously, we study asymptotic phenomena for convex bodies in high
dimensional spaces.

This theory grew out of functional analysis. In fact, it may be viewed as the
most recent one among many examples of directions in mathematics which were
born inside this field during the twentieth century. Functional analysis was devel-
oped during the period between the World Wars by the Polish school of mathemat-
ics, an outstanding school with broad interests and connections. The influence of
the ideas of functional analysis on mathematical physics, on differential equations,
but also on classical analysis, was enormous. The great achievements and success-
ful applications to other fields led to the creation of new directions (among them,
algebraic analysis, non-commutative geometry and the modern theory of partial
differential equations) which in a short time became autonomous and independent
fields of mathematics.

Thus, in the last decades of the twentieth century, geometric functional analysis
and even more narrowly the study of the geometry of Banach spaces became the
main line of research in what remained as “proper” functional analysis. The two
central themes of this theory were infinite dimensional convex bodies and the linear
structure of infinite dimensional normed spaces. Several questions in the direction
of a structure theory for Banach spaces were asked and stayed open for many years.
Some of them can be found in Banach’s book. Their common feature was a search
for simple building blocks inside an arbitrary Banach space. For example: does ev-
ery Banach space contain an infinite unconditional basic sequence? Is every Banach
space decomposable as a topological sum of two infinite dimensional subspaces? Is
it true that every Banach space is isomorphic to its closed hyperplanes? Does every
Banach space contain a subspace isomorphic to some `p or c0?

This last question was answered in the negative by Tsirelson (1974) who gave
an example of a reflexive space not containing any `p. Before Tsirelson’s example,
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it had been realized by the second named author that the notion of the spectrum of
a uniformly continuous function on the unit sphere of a normed space was related to
this question and that the problem of distortion was a central geometric question
for approaching the linear structure of the space. Although Tsirelson’s example
was a major breakthrough and introduced a completely new construction of norm,
the search for simple linear structure continued to be the aim of most of the efforts
in the geometry of Banach spaces. We now know that infinite dimensional Banach
spaces have much more complicated structure than what was assumed (or hoped).
All the questions above were answered in the negative in the middle of the 90’s,
starting with the works of Gowers and Maurey, Gowers, Odell and Schlumprecht.
Actually, the line of thought related to Tsirelson’s example and the concepts of
spectrum and distortion were the most crucial for the recent developments.

The systematic quantitative study of n-dimensional spaces with n tending to
infinity started in the 60’s, as an alternative approach to several unsolved problems
of geometric functional analysis. This study led to a new and deep theory with
many surprising consequences in both analysis and geometry. When viewed as part
of functional analysis, this theory is often called local theory (or asymptotic the-
ory of finite dimensional normed spaces). However, it adopted a significant part
of classical convexity theory and used many of its methods and techniques. Clas-
sical geometric inequalities such as the Brunn-Minkowski inequality, isoperimetric
inequalities and many others were extensively used and established themselves as
important technical tools in the development of local theory. Conversely, the study
of geometric problems from a functional analysis point of view enriched classical
convexity with a new approach and a variety of problems: The “isometric” prob-
lems which were typical in convex geometry were replaced by “isomorphic” ones,
with the emphasis on the role of the dimension. This change led to a new intu-
ition and revealed new concepts, the concentration phenomenon being one of them,
with many applications in convexity and discrete mathematics. This natural melt-
ing of the two theories should perhaps correctly be called asymptotic (or convex)
geometric analysis.

This paper presents only some aspects of this asymptotic theory. We leave aside
type-cotype theory and other connections with probability theory, factorization
results, covering and entropy (besides a few results we are going to use), connections
with infinite dimension theory, random normed spaces, and so on. Other articles
in this collection will cover these topics and complement these omissions. On the
other hand, we feel it is necessary to give some background on convex geometry:
This is done in Sections 2 and 3.

The theory as we build it below “rotates” around different Euclidean structures
associated with a given norm or convex body. This is in fact a reflection of different
traces of hidden symmetries every high dimensional body possesses. To recover
these symmetries is one of the goals of the theory. A new point which appears in
this article is that all these Euclidean structures that are in use in local theory have
precise geometric descriptions in terms of classical convexity theory: they may be
viewed as “isotropic” ones.

Traditional local theory concentrates its attention on the study of the structure
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of the subspaces and quotient spaces of the original space (the “local structure” of
the space). The connection with classical convexity goes through the translation
of these results to a “global” language, that is, to equivalent statements pertaining
to the structure of the whole body or space. Such a comparison of “local” and
“global” results is very useful, opens a new dimension in our study and will lead
our presentation throughout the paper.

We refer the reader to the books of Schneider [177] and of Burago and Zalgaller
[35] for the classical convexity theory. Books mainly devoted to the local theory
are the ones by: Milman and Schechtman [149], Pisier [162], Tomczak-Jaegermann
[195].

2 Classical inequalities and isotropic positions

2.1 Notation

2.1.1. We study finite-dimensional real normed spaces X = (Rn, ‖ · ‖). The unit
ball KX of such a space is an origin-symmetric convex body in Rn which we agree
to call a body. There is a one to one correspondence between norms and bodies in
Rn: If K is a body, then ‖x‖ = min{λ > 0 : x ∈ λK} is a norm defining a space
XK with K as its unit ball. In this way bodies arise naturally in functional analysis
and will be our main object of study.

If K and T are bodies in Rn we can define a multiplicative distance d(K, T ) by

d(K,T ) = inf{ab : a, b > 0, K ⊆ bT, T ⊆ aK}.
The natural distance between the n-dimensional spaces XK and XT is the

Banach-Mazur distance. Since we want to identify isometric spaces, we allow a
linear transformation and set

d(XK , XT ) = inf{d(K, uT ) : u ∈ GLn}.
In other words, d(XK , XT ) is the smallest positive number d for which we can find
u ∈ GLn such that K ⊆ uT ⊆ dK. We clearly have d(XK , XT ) ≥ 1 with equality
if and only if XK and XT are isometric. Note the multiplicative triangle inequality
d(X, Z) ≤ d(X, Y )d(Y, Z) which holds true for every triple of n-dimensional spaces.

2.1.2. We assume that Rn is equipped with a Euclidean structure 〈·, ·〉 and
denote the corresponding Euclidean norm by | · |. Dn is the Euclidean unit ball and
Sn−1 is the unit sphere. We also write | · | for the volume (Lebesgue measure) in
Rn, and µ for the Haar probability measure on the orthogonal group O(n).

Let Gn,k denote the Grassmannian of all k-dimensional subspaces of Rn. Then,
O(n) equips Gn,k with a Haar probability measure νn,k satisfying

νn,k(A) = µ{u ∈ O(n) : uEk ∈ A}
for every Borel subset A of Gn,k and every fixed element Ek of Gn,k. The rotation-
ally invariant probability measure on Sn−1 will be denoted by σ.
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2.1.3. Duality plays an important role in the theory. If K is a body in Rn, its
polar body is defined by

K◦ = {y ∈ Rn : |〈x, y〉| ≤ 1 for all x ∈ K}.
That is, ‖y‖K◦ = maxx∈K |〈x, y〉|. Note that XK◦ = X∗

K : K◦ is the unit ball of
the dual space of X. It is easy to check that d(X, Y ) = d(X∗, Y ∗).

2.2 Classical Inequalities

(a) The Brunn-Minkowski inequality. Let K and T be two convex bodies in
Rn. If K + T denotes the Minkowski sum {x + y : x ∈ K, y ∈ T} of K and T , the
Brunn-Minkowski inequality states that

(1) |K + T |1/n ≥ |K|1/n + |T |1/n,

with equality if and only if K and T are homothetical. Actually, the same inequality
holds for arbitrary non empty compact subsets of Rn.

One can rewrite (1) in the following form: For every λ ∈ (0, 1),

(2) |λK + (1− λ)T |1/n ≥ λ|K|1/n + (1− λ)|T |1/n.

Then, the arithmetic-geometric means inequality gives a dimension free version:

(3) |λK + (1− λ)T | ≥ |K|λ|T |1−λ.

There are several proofs of the Brunn-Minkowski inequality, all of them related
to important ideas. We shall sketch only two lines of proof.

The first (historically as well) proof is based on the Brunn concavity principle:
Let K be a convex body in Rn and F be a k-dimensional subspace. Then, the

function f : F⊥ → R defined by f(x) = |K ∩ (F + x)|1/k is concave on its support.
The proof is by symmetrization. Recall that the Steiner symmetrization of K

in the direction of θ ∈ Sn−1 is the convex body Sθ(K) consisting of all points
of the form x + λθ, where x is in the projection Pθ(K) of K onto θ⊥ and |λ| ≤
1
2 × length(x + Rθ) ∩K. Steiner symmetrization preserves convexity: in fact, this
is the Brunn concavity principle for k = 1. The proof is elementary and essentially
two dimensional. A well known fact which goes back to Steiner and Schwarz but
was later rigorously proved in [45] (see [35]) is that for every convex body K one
can find a sequence of successive Steiner symmetrizations in directions θ ∈ F so
that the resulting convex body K̃ has the following property: K̃ ∩ (F + x) is a ball
with radius r(x), and |K̃ ∩ (F +x)| = |K ∩ (F +x)| for every x ∈ F⊥. Convexity of
K̃ implies that r is concave on its support, and this shows that f is also concave.
2

The Brunn concavity principle implies the Brunn-Minkowski inequality. If K,T
are convex bodies in Rn, we define K1 = K×{0}, T1 = T×{1} in Rn+1 and consider
their convex hull L. If L(t) = {x ∈ Rn : (x, t) ∈ L}, t ∈ R, we easily check that
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L(0) = K, L(1) = T , and L(1/2) = K+T
2 . Then, the Brunn concavity principle for

F = Rn shows that

(4)
∣∣∣K + T

2

∣∣∣
1/n

≥ 1
2
|K|1/n +

1
2
|T |1/n. 2

A second proof of the Brunn-Minkowski inequality may be given via the Knöthe
map: Assume that K and T are open convex bodies. Then, there exists a one to
one and onto map φ : K → T with the following properties:

(i) φ is triangular: the i-th coordinate function of φ depends only on x1, . . . , xi.
That is,

(5) φ(x1, . . . , xn) = (φ1(x1), φ2(x1, x2), . . . , φn(x1, . . . , xn)).

(ii) The partial derivatives ∂φi

∂xi
are nonnegative on K, and the determinant of

the Jacobian of φ is constant. More precisely, for every x ∈ K

(6) (detJφ)(x) =
n∏

i=1

∂φi

∂xi
(x) =

|T |
|K| .

The map φ is called the Knöthe map from K onto T . Its existence was established
in [102] (see also [149, Appendix I]). Observe that each choice of coordinate system
in Rn produces a different Knöthe map from K onto T .

It is clear that (I + φ)(K) ⊆ K + T , therefore we can estimate |K + T | using
the arithmetic-geometric means inequality as follows:

(7) |K + T | ≥
∫

(I+φ)(K)

dx =
∫

K

|detJI+φ(x)|dx =
∫

K

n∏

i=1

(
1 +

∂φi

∂xi

)
dx

≥
∫

K

(1 + detJ1/n
φ )ndx = |K|

(
1 +

|T |1/n

|K|1/n

)n

=
(
|K|1/n + |T |1/n

)n

.

This proves the Brunn-Minkowski inequality. 2

Alternatively, instead of the Knöthe map one may use the Brenier map ψ :
K → T , where K and T are open convex bodies. This is also a one to one, onto
and “ratio of volumes” preserving map (i.e. its Jacobian has constant determinant),
with the following property: There is a convex function f ∈ C2(K) defined on K
such that ψ = ∇f . A remarkable property of the Brenier map is that it is uniquely
determined. Existence and uniqueness of the Brenier map were proved in [26] (see
also [125] for a different proof and important generalizations).

It is clear that the Jacobian Jψ = Hessf is a symmetric positive definite matrix.
Again we have (I + ψ)(K) ⊆ K + T , hence

(8) |K + T | ≥
∫

K

|detJI+ψ(x)|dx =
∫

K

det (I + Hessf) dx =
∫

K

n∏

i=1

(1 + λi(x))dx,
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where λi(x) are the non negative eigenvalues of Hessf . Moreover, by the ratio of
volumes preserving property of ψ, we have

∏n
i=1 λi(x) = |T |/|K| for every x ∈ K.

Therefore, the arithmetic-geometric means inequality gives

(9) |K + T | ≥
∫

K

(
1 + [

n∏

i=1

λi(x)]1/n

)n

dx =
(
|K|1/n + |T |1/n

)n

. 2

This proof has the advantage of providing a description for the equality cases: either
K or T must be a point, or K must be homothetical to T .

Let us describe here the generalization of Brenier’s work due to McCann: Let
µ, ν be probability measures on Rn such that µ is absolutely continuous with respect
to Lebesgue measure. Then, there exists a convex function f such that ∇f : Rn →
Rn is defined µ-almost everywhere, and ν(A) = µ((∇f)−1(A))) for every Borel
subset A of Rn (∇f pushes forward µ to ν). If both µ, ν are absolutely continuous
with respect to Lebesgue measure, then the Brenier map ∇f has an inverse (∇f)−1

which is defined ν-almost everywhere and is also a Brenier map, pushing forward
ν to µ. A regularity result of Caffarelli [44] (see [11]) states that if T is a convex
bounded open set, f is a probability density on Rn, and g is a probability density
on T such that

(i) f is locally bounded and bounded away from zero on compact sets, and
(ii) there exist c1, c2 > 0 such that c1 ≤ g(y) ≤ c2 for every y ∈ T ,

then, the Brenier map∇f : (Rn, fdx) → (Rn, gdx) is continuous and belongs locally
to the Hölder class Cα for some α > 0. The following recent result [11] makes use
of all this information:
Fact 1: Let K1 and K2 be open convex bounded subsets of Rn with |K1| = |K2| = 1.
There exists a C1-diffeomorphism ψ : K1 → K2 which is volume preserving and
satisfies

(10) K1 + λK2 = {x + λψ(x) : x ∈ K1} , λ > 0.

Proof: Let ρ be any smooth strictly positive density on Rn. Consider the Brenier
maps

(11) ψi = ∇fi : (Rn, ρdx) → (Ki, dx) , i = 1, 2.

Caffarelli’s result shows that they are C1-smooth. We now apply the following
theorem of Gromov [72] (for a proof, see also [11]):
Fact 2: (i) Let f : Rn → R be a C2-smooth convex function with strictly positive
Hessian. Then, the image of the gradient map Im∇f is an open convex set.

(ii) If f1, f2 are two such functions, then

Im(∇f1 +∇f2) = Im(∇f1) + Im(∇f2). 2

It follows that, for every λ > 0,

(12) K1 + λK2 = {∇f1(x) + λ∇f2(x) : x ∈ Rn}.
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Then, one can check that the map ψ = ψ2 ◦ (ψ1)−1 : K1 → K2 satisfies all the
conditions of Fact 1. 2

The existence of a volume preserving ψ : K1 → K2 such that (I + ψ)(K1) =
K1 + K2 covers a “weak point” of the Knöthe map and should have important
applications to convex geometry. We discuss some of them in Section 3.2.

(b) Consequences of the Brunn-Minkowski inequality

(b1) The isoperimetric inequality for convex bodies. The surface area ∂(K) of a
convex body K is defined by

(13) ∂(K) = lim
ε→0+

|K + εDn| − |K|
ε

.

It is a well-known fact that among all convex bodies of a given volume the ball has
minimal surface area. This is an immediate consequence of the Brunn-Minkowski
inequality: If K is a convex body in Rn with |K| = |rDn|, then for every ε > 0

(14) |K + εDn|1/n ≥ |K|1/n + ε|Dn|1/n = (r + ε)|Dn|1/n.

It follows that the surface area ∂(K) of K satisfies

(15) ∂(K) = lim
ε→0+

|K + εDn| − |K|
ε

≥ lim
ε→0+

(r + ε)n − rn

ε
|Dn| = n|Dn| 1n |K|

n−1
n

with equality if K = rDn. The question of uniqueness in the equality case is more
delicate.
(b2) The spherical isoperimetric inequality. Consider the unit sphere Sn−1 with the
geodesic distance ρ and the rotationally invariant probability measure σ. For every
Borel subset A of Sn−1 and for every ε > 0, we define the ε-extension of A:

(16) Aε = {x ∈ Sn−1 : ρ(x,A) ≤ ε}.

Then, the isoperimetric inequality for the sphere is the following statement:
Among all Borel subsets A of Sn−1 with given measure α ∈ (0, 1), a spherical

cap B(x, r) of radius r > 0 such that σ(B(x, r)) = α has minimal ε-extension for
every ε > 0.

This means that if A ⊆ Sn−1 and σ(A) = σ(B(x0, r)) for some x0 ∈ Sn−1 and
r > 0, then

(17) σ(Aε) ≥ σ(B(x0, r + ε))

for every ε > 0. Since the σ-measure of a cap is easily computable, one can give a
lower bound for the measure of the ε-extension of any subset of the sphere. We are
mainly interested in the case σ(A) = 1

2 , and a straightforward computation (see
[61]) shows the following:
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Theorem 2.2.1. If A is a Borel subset of Sn+1 and σ(A) = 1/2, then

(18) σ(Aε) ≥ 1−
√

π/8 exp(−ε2n/2)

for every ε > 0. 2

[The constant
√

π/8 may be replaced by a sequence of constants an tending to
1
2 as n →∞.]

The spherical isoperimetric inequality can be proved by spherical symmetriza-
tion techniques (see [176] or [61]). However, it was recently observed [10] that one
can give a very simple proof of an estimate analogous to (18) using the Brunn-
Minkowski inequality. The key point is the following lemma:
Lemma. Consider the probability measure µ(A) = |A|/|Dn| on the Euclidean unit
ball Dn. If A,B are subsets of Dn with µ(A) ≥ α, µ(B) ≥ α, and if ρ(A,B) =
inf{|a− b| : a ∈ A, b ∈ B} = ρ > 0, then

α ≤ exp(−ρ2n/8).

[In other words, if two disjoint subsets of Dn have positive distance ρ, then at least
one of them must have small volume (depending on ρ) when the dimension n is
high.]
Proof: We may assume that A and B are closed. By the Brunn-Minkowski in-
equality, µ(A+B

2 ) ≥ α. On the other hand, the parallelogram law shows that if
a ∈ A, b ∈ B then

|a + b|2 = 2|a|2 + 2|b|2 − |a− b|2 ≤ 4− ρ2.

It follows that A+B
2 ⊆ (1− ρ2

4 )1/2Dn, hence

µ

(
A + B

2

)
≤

(
1− ρ2

4

)n/2

≤ exp(−ρ2n/8). 2

Proof of Theorem 2.2.1 (with weaker constants). Assume that A ⊆ Sn−1 with
σ(A) = 1/2. Let ε > 0 and define B = (Aε)c ⊆ Sn−1. We fix λ ∈ (0, 1) and consider
the subsets Ã =

⋃{tA : λ ≤ t ≤ 1} and B̃ =
⋃{tB : λ ≤ t ≤ 1} of Dn. These are

disjoint with distance ' λε. The Lemma shows that µ(B̃) ≤ exp(−cλ2ε2n/8), and
since µ(B̃) = (1− λn)σ(B) we obtain

(19) σ(Aε) ≥ 1− 1
1− λn

exp(−cλ2ε2n/8).

We conclude the proof by choosing suitable λ ∈ (0, 1). 2

(b3) C. Borell’s Lemma and Khinchine type inequalities. Let µ be a Borel probabil-
ity measure on Rn. We say that µ is log-concave if whenever A,B are Borel subsets
of Rn and λ ∈ (0, 1) we have

(20) µ(λA + (1− λ)B) ≥ µ(A)λµ(B)1−λ.
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The following lemma of C. Borell [21] holds for all log-concave probability measures:
Lemma. Let µ be a log-concave Borel probability measure on Rn, and A be a
symmetric convex subset of Rn. If µ(A) = θ > 1/2, then for every t ≥ 1 we have

(21) µ ((tA)c) ≤ θ

(
1− θ

θ

) t+1
2

.

Proof: Immediate by the log-concavity of µ, after one observes that

(22) Rn\A ⊇ 2
t + 1

(Rn\tA) +
t− 1
t + 1

A. 2

Let K be a convex body in Rn. By the Brunn-Minkowski inequality we see
that the measure µK defined by µK(A) = |A ∩K|/|K| is a log-concave probability
measure. In this context, Borell’s lemma tells us that if A is convex symmetric and
if A∩K contains more than half of the volume of K, then the proportion of K which
stays outside tA decreases exponentially in t as t → +∞ in a rate independent of
the convex body K and the dimension n.

This observation has important applications to the study of linear functions
f(x) = 〈x, y〉, y ∈ Rn, defined on convex bodies. Let us denote by ‖f‖p the Lp

norm with respect to the probability measure µK . Then, for every linear function
f : K → R we have

(23) ‖f‖q ≤ ‖f‖p ≤ cp‖f‖q , 0 < q < p

where cp are universal constants depending only on p. The left hand side inequality
is just Hölder’s inequality, while the right hand side (in the case 1 ≤ q < p) is a
consequence of Borell’s lemma (see [83]). One writes

(24)
1
|K|

∫

K

|f(x)|pdx =
∫ +∞

0

ptp−1µK ({x ∈ K : |f(x)| ≥ t}) dt

and estimates µK({x ∈ K : |f(x)| ≥ t}) for large values of t using Borell’s lemma
with say A = {x ∈ Rn : |f(x)| ≤ 3‖f‖q}. The dependence of cp on p is linear as
p →∞. This is equivalent to the fact that the Lψ1(K) norm of f

(25) ‖f‖Lψ1 (K) = inf
{

λ > 0 :
1
|K|

∫

K

exp(|f(x)|/λ) ≤ 2
}

is equivalent to ‖f‖1. The question to determine the cases where c(p) ' √
p as

p → ∞ in (23) is very important for the theory. This is certainly true for some
bodies (e.g. the cube), but the example of the cross-polytope shows that it is not
always so.

Inverse Hölder inequalities of this type are very similar in nature to the classical
Khinchine inequality (and are sometimes called Khinchine type inequalities). In
fact, the argument described above may be used to give proofs of the Kahane-
Khinchine inequality (see [149, Appendix III]).
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Khinchine type inequalities do not hold only for linear functions. For example,
Bourgain [24] has shown that if f : K → R is a polynomial of degree m, then

(26) ‖f‖p ≤ c(p,m)‖f‖2
for every p > 2, where c(p,m) depends only on p and the degree m of f (For this
purpose, the Brunn-Minkowski inequality was not enough, and a suitable direct use
of the Knöthe map was necessary). It was also recently proved [107] that (23) holds
true for any norm f on Rn. Finally the interval of values of p and q in (23) can be
extended to (−1,+∞) (see [145] for linear functions, [76] for norms).

2.3 Extremal problems and isotropic positions

In the study of finite dimensional normed spaces one often faces the problem of
choosing a suitable Euclidean structure related to the question in hand. In geomet-
ric language, we are given the body K in Rn and want to find a specific Euclidean
norm in Rn which is naturally connected with our question about K. An equivalent
(and sometimes more convenient) approach is the following: we fix the Euclidean
structure in Rn, and given K we ask for a suitable “position” uK of K, where u is a
linear isomorphism of Rn. That is, instead of keeping the body fixed and choosing
the “right ellipsoid” we fix the Euclidean norm and choose the “right position” of
the body.

Most of the times the starting point is a question of the following type: we
are given a functional f on convex bodies and a convex body K and we ask for
the maximum or minimum of f(uK) over all volume preserving transformations u.
We shall describe some very important positions of K which solve such extremal
problems. What is interesting is that there is a simple variational method which
leads to a description of the solution, and that in most cases the resulting position of
K is isotropic. Moreover, isotropic conditions are closely related to the Brascamp-
Lieb inequality [34] and its reverse [19], a fact that was discovered and used by K.
Ball in the case of John’s representation of the identity. For more information on
this very important connection, see the article [18] in this collection.
(a) John’s position. A classical result of F. John [94] states that d(X, `n

2 ) ≤ √
n for

every n-dimensional normed space X. This estimate is a by-product of the study
of the following extremal problem:

Let K be a body in Rn. Maximize |detu| over all u : `n
2 → XK with ‖u‖ = 1.

If u0 is a solution of this problem, then u0Dn is the ellipsoid of maximal volume
which is inscribed in K. Existence and uniqueness of such an ellipsoid are easy to
check. An equivalent formulation of the problem is the following:

Let K be a body in Rn. Minimize ‖u : `n
2 → XK‖ over all volume preserving

transformations u.
We assume that the identity map I is a solution of this problem, and normalize so
that

(1) ‖I : `n
2 → XK‖ = 1 = min{‖u : `n

2 → XK‖ : |detu| = 1}.
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This means that the Euclidean unit ball Dn is the maximal volume ellipsoid of K.
We shall use a simple variational argument [82] to give necessary conditions on K:
Theorem 2.3.1. Let Dn be the maximal volume ellipsoid of K. Then, for every
T ∈ L(Rn,Rn) we can find a contact point x of K and Dn (i.e. |x| = ‖x‖ = 1)
such that

(2) 〈x, Tx〉 ≥ trT
n

.

Proof: We may assume that K is smooth enough. Let S ∈ L(Rn,Rn). We first
claim that

(3) ‖Sx‖ ≥ trS
n

for some contact point x of K and Dn. Let ε > 0 be small enough. From (1) we
have

(4) ‖I + εS‖ ≥ [det(I + εS)]1/n = 1 + ε
trS
n

+ O(ε2).

Let xε ∈ Sn−1 be such that ‖xε + εSxε‖ = ‖I + εS‖. Since Dn ⊆ K, we have
‖xε‖ ≤ 1. Then, the triangle inequality for ‖ · ‖ shows that

(5) ‖Sxε‖ ≥ trS
n

+ O(ε).

We can find x ∈ Sn−1 and a sequence εm → 0 such that xεm → x. By (5) we
obviously have ‖Sx‖ ≥ trS

n . Also, ‖x‖ = lim ‖xεm + εmSxεm‖ = ‖I‖ = 1. This
proves (3).

Now, let T ∈ L(Rn,Rn) and write S = I + εT , ε > 0. We can find xε such that
‖xε‖ = |xε| = 1 and

(6) ‖xε + εTxε‖ ≥ tr(I + εT )
n

= 1 + ε
trT
n

.

Since ‖xε + εTxε‖ = 1 + ε〈∇‖xε‖, Txε〉+ O(ε2), we obtain 〈∇‖xε‖, Txε〉 ≥ trT
n +

O(ε). Choosing again εm → 0 such that xεm → x ∈ Sn−1, we readily see that x is
a contact point of K and Dn, and

(7) 〈∇‖x‖, Tx〉 ≥ trT
n

.

But, ∇‖x‖ is the point on the boundary of K◦ at which the outer unit normal is
parallel to x (see [177, pp. 44]). Since x is a contact point of K and Dn, we must
have ∇‖x‖ = x. This proves the theorem. 2

As a consequence of Theorem 2.3.1 we get John’s upper bound for d(X, `n
2 ):

Theorem 2.3.2. Let X be an n-dimensional normed space. Then,

d(X, `n
2 ) ≤ √

n.
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Proof: By the definition of the Banach-Mazur distance we may clearly assume that
the unit ball K of X satisfies the assumptions of Theorem 2.3.1. In particular,
‖x‖ ≤ |x| for every x ∈ Rn.

Let x ∈ Rn and consider the map Ty = 〈y, x〉x. Theorem 2.3.1 gives us a
contact point z of K and Dn such that

(8) 〈z, Tz〉 ≥ trT
n

=
|x|2
n

.

On the other hand,

(9) 〈z, Tz〉 = 〈z, x〉2 ≤ ‖z‖2∗‖x‖2 = ‖x‖2,

since one can check that ‖z‖∗ = 1. Therefore, ‖x‖ ≤ |x| ≤ √
n‖x‖. This shows that

Dn ⊆ K ⊆ √
nDn. 2

Remark. The estimate given by John’s theorem is sharp. If X = `n
1 or `n

∞, one can
check that d(X, `n

2 ) =
√

n.
Theorem 2.3.1 gives very precise information on the distribution of contact

points of K and Dn on the sphere Sn−1, which can be put in a quantitative form:
Theorem 2.3.3. (Dvoretzky-Rogers Lemma [53]). Let Dn be the maximal volume
ellipsoid of K. Then, there exist pairwise orthogonal vectors y1, . . . , yn in Rn such
that

(10)
(

n− i + 1
n

)1/2

≤ ‖yi‖ ≤ |yi| = 1 , i = 1, . . . , n.

Proof: We define the yi’s inductively. The first vector y1 can be any contact
point of K and Dn. Assume that y1, . . . , yi−1 have been defined. Let Fi =
span{y1, . . . , yi−1}. Then, tr(PF⊥i

) = n− i+1 and using Theorem 2.3.1 we can find
a contact point xi for which

(11) |PF⊥i
xi|2 = 〈xi, PF⊥i

xi〉 ≥ n− i + 1
n

.

We set yi = PF⊥i
xi/|PF⊥i

xi|. Then,

(12) 1 = |yi| ≥ ‖yi‖ = ‖yi‖ · ‖xi‖∗ ≥ 〈xi, yi〉 = |PF⊥i
xi| ≥

(
n− i + 1

n

)1/2

. 2

Finally, a separation argument and Theorem 2.3.1 give us John’s representation
of the identity:
Theorem 2.3.4. Let Dn be the maximal volume ellipsoid of K. There exist contact
points x1, . . . , xm of K and Dn, and positive real numbers λ1, . . . , λm such that

I =
m∑

i=1

λixi ⊗ xi.
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Proof: Consider the convex hull C of all operators x⊗x, where x is a contact point
of K and Dn. We need to prove that I/n ∈ C. If this is not the case, there exists
T ∈ L(Rn,Rn) such that

(13) 〈T, I/n〉 > 〈x⊗ x, T 〉
for every contact point x. But, 〈T, I/n〉 = trT

n and 〈x⊗x, T 〉 = 〈x, Tx〉. This would
contradict Theorem 2.3.1. 2

Definition. A Borel measure µ on Sn−1 is called isotropic if

(14)
∫

Sn−1
〈x, θ〉2dµ(x) =

µ(Sn−1)
n

for every θ ∈ Sn−1.
John’s representation of the identity implies that

m∑

i=1

λi〈xi, θ〉2 = 1

for every θ ∈ Sn−1. This means that if we consider the measure ν on Sn−1 which
gives mass λi at the point xi, i = 1, . . . , m, then ν is isotropic. In this sense,
John’s position is an isotropic position. One can actually prove that the existence
of an isotropic measure supported by the contact points of K and Dn characterizes
John’s position in the following sense (see [16], [82]):

“Assume that Dn is contained in the body K. Then, Dn is the maximal volume
ellipsoid of K if and only if there exists an isotropic measure ν supported by the
contact points of K and Dn.”
Note. The argument given for the proof of Theorem 2.3.1 can be applied in a more
general context: If K and L are (not necessarily symmetric) convex bodies in Rn,
we say that L is of maximal volume in K if L ⊆ K and, for every w ∈ Rn and
T ∈ SLn, the affine image w + T (L) of L is not contained in the interior of K.
Then, one has a description of this maximal volume position, which generalizes
John’s representation of the identity:
Theorem 2.3.5. Let L be of maximal volume in K. For every z ∈ int(L), we
can find contact points v1, . . . , vm of K − z and L − z, contact points u1, . . . , um

of (K − z)◦ and (L − z)◦, and positive reals λ1, . . . , λm, such that
∑

λjuj = o,
〈uj , vj〉 = 1, and

I =
m∑

j=1

λjuj ⊗ vj . 2

This was observed by Milman in the symmetric case with z = 0 (see [195,
Theorem 14.5]). For the extension to the non-symmetric case see [88], where it is
also shown that under mild conditions on K and L there exists an optimal choice of
the “center” z so that, setting z = 0, we simultaneously have

∑
λjuj =

∑
λjvj = 0

in the statement above.
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(b) Isotropic position – Hyperplane conjecture. A notion coming from classical
mechanics is that of the Binet ellipsoid of a body K (actually, of any compact set
with positive Lebesgue measure). The norm of this ellipsoid EB(K) is defined by

(15) ‖x‖2EB(K) =
1
|K|

∫

K

|〈x, y〉|2dy.

The Legendre ellipsoid EL(K) of K is defined by

(16)
∫

EL(K)

〈x, y〉2dy =
∫

K

〈x, y〉2dy

for every x ∈ Rn, and satisfies (see [146])

(17) EB(K) = (n + 2)1/2|EL(K)|−1(EL(K))◦.

That is, EL(K) has the same moments of inertia as K with respect to the axes.
A body K is said to be in isotropic position if |K| = 1 and its Legendre ellipsoid
EL(K) (equivalently, its Binet ellipsoid EB(K)) is homothetical to Dn. This means
that there exists a constant LK such that

(18)
∫

K

〈y, θ〉2dy = L2
K

for every θ ∈ Sn−1 (K has the same moment of inertia in every direction θ). It is
not hard to see that every body K has a position uK which is isotropic. Moreover,
this position is uniquely determined up to an orthogonal transformation. Therefore,
LK is an affine invariant which is called the isotropic constant of K.

An alternative way to see this isotropic position in the spirit of our present
discussion is to consider the following minimization problem:

Let K be a body in Rn. Minimize
∫

uK
|x|2dx over all volume preserving trans-

formations u.
Then, we have the following theorem [146]:
Theorem 2.3.6. Let K be a body in Rn with |K| = 1. The identity map minimizes∫

uK
|x|2dx over all volume preserving transformations u if and only if K is isotropic.

Moreover, this isotropic position is unique up to orthogonal transformations.
Proof: We shall use the same variational argument as for John’s position. Let
T ∈ L(Rn,Rn) and ε > 0 be small enough. Then, u = (I + εT )/[det(I + εT )]1/n is
volume preserving, and since

∫
uK

|x|2dx ≥ ∫
K
|x|2dx we get

(19)
∫

K

|x + εTx|2dx ≥ [det(I + εT )]
2
n

∫

K

|x|2dx.

But, |x+ εTx|2 = |x|2 +2ε〈x, Tx〉+O(ε2) and [det(I + εT )]
2
n = 1+2ε trT

n +O(ε2).
Therefore, (19) implies

(20)
∫

K

〈x, Tx〉dx ≥ trT
n

∫

K

|x|2dx.
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By symmetry we see that

(21)
∫

K

〈x, Tx〉dx =
trT
n

∫

K

|x|2dx

for every T ∈ L(Rn,Rn). This is equivalent to

(22)
∫

K

〈x, θ〉2dx =
1
n

∫

K

|x|2dx , θ ∈ Sn−1.

Conversely, if K is isotropic and if T is any volume preserving transformation, then
(23)∫

TK

|x|2dx =
∫

K

|Tx|2dx =
∫

K

〈x, T ∗Tx〉dx =
tr(T ∗T )

n

∫

K

|x|2dx ≥
∫

K

|x|2dx,

which shows that K solves our minimization problem. We can have equality in (23)
if and only if T ∈ O(n). 2

It is easily proved that LK ≥ LDn ≥ c > 0 for every body K in Rn, where c > 0
is an absolute constant. An important open question having its origin in [22] is the
following:
Problem. Does there exist an absolute constant C > 0 such that LK ≤ C for every
body K?

A simple argument based on John’s theorem shows that LK ≤ c
√

n for every
body K. Uniform boundedness of LK is known for some classes of bodies: unit balls
of spaces with a 1-unconditional basis, zonoids and their polars, etc. For partial
answers to the question, see [13], [47], [48], [95], [96], [106], [146]. The best known
general upper estimate is due to Bourgain [24]: LK ≤ c 4

√
n log n for every body K

in Rn. In the Appendix we give a brief presentation of Bourgain’s result.
The problem we have just stated has many equivalent reformulations, which are

deeply connected with problems from classical convexity. For a detailed discussion,
see [146]. An interesting property of the isotropic position is that if K is isotropic
then all central sections K∩θ⊥, θ ∈ Sn−1 are equivalent up to an absolute constant.
This comes from the fact that

(24)
∫

K

〈x, θ〉2dx = L2
K ' 1

|K ∩ θ⊥|2 , θ ∈ Sn−1

a consequence of the log-concavity of µK . This was first observed in [91]. Then, uni-
form boundedness of LK is equivalent to the statement that an isotropic body has
all its (n− 1)-dimensional central sections bounded below by an absolute constant.
This is equivalent to the
Hyperplane Conjecture: Is it true that a body K of volume 1 must have an
(n − 1)-dimensional central section with volume bounded below by an absolute
constant?
(c) Minimal surface position. Let K be a convex body in Rn with normalized
volume |K| = 1. We now consider the following minimization problem:
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Find the minimum of ∂(uK) over all volume preserving transformations u.
This minimum is attained for some u0 and will be denoted by ∂K (the minimal
surface invariant of K). We say that K has minimal surface if ∂(K) = ∂K |K|n−1

n .
Recall that the area measure σK of K is defined on Sn−1 and corresponds to

the usual surface measure on K via the Gauss map: For every Borel A ⊆ Sn−1, we
have

(25) σK(A) = ν ({x ∈ bd(K) : the outer normal to K at x is in A}) ,

where ν is the (n − 1)-dimensional surface measure on K. We obviously have
∂(K) = σK(Sn−1).

A characterization of the minimal surface position through the area measure
was given by Petty [157]:
Theorem 2.3.7. Let K be a convex body in Rn with |K| = 1. Then, ∂(K) = ∂K

if and only if σK is isotropic. Moreover, this minimal surface position is unique up
to orthogonal transformations.
The proof makes use of the same variational argument. The basic observation is
that if u is any volume preserving transformation, then

(26) ∂((u−1)∗K) =
∫

Sn−1
|ux|σK(dx).

K. Ball [15] has proved that the minimal surface invariant ∂K is maximal when
K is a cube in the symmetric case, and when K is a simplex in the general case.
It follows that ∂K ≤ 2n for every body K in Rn. For applications of the minimal
surface position to the study of hyperplane projections of convex bodies, see [85]
(also, [14] for an approach through the notion of volume ratio).
(d) Minimal mean width position. Let K be a convex body in Rn. The mean width
of K is defined by

(27) w(K) = 2
∫

Sn−1
hK(u)σ(du),

where hK(x) = maxy∈K〈x, y〉 is the support function of K. We say that K has
minimal mean width if w(TK) ≥ w(K) for every volume preserving linear trans-
formation T of Rn. Our standard variational argument gives the following charac-
terization of the minimal mean width position:
Proposition 2.3.8. A smooth body K in Rn has minimal mean width if and only
if

(28)
∫

Sn−1
〈∇hK(u), Tu〉σ(du) =

trT
n

w(K)
2

for every linear transformation T . Moreover, this minimal mean width position is
uniquely determined up to orthogonal transformations. 2
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Consider the measure wK on Sn−1 with density hK with respect to σ. If we
define

(29) IK(θ) =
∫

Sn−1
〈∇hK(u), θ〉〈u, θ〉σ(du) , θ ∈ Sn−1,

an application of Green’s formula shows that

(30)
w(K)

2
+ IK(θ) = (n + 1)

∫

Sn−1
hK(u)〈u, θ〉2σ(du).

Combining this identity with Proposition 2.3.8, we obtain an isotropic characteri-
zation of the minimal mean width position (see [82]):
Theorem 2.3.9. A convex body K in Rn has minimal mean width if and only if
wK is isotropic. Moreover, the position is uniquely determined up to orthogonal
transformations. 2

Note. It is natural to ask for an upper bound for the minimal width parameter, if
we restrict ourselves to bodies of fixed volume. It is known that every body K has
a linear image K̃ with |K̃| = |Dn| such that

(31) w(K̃) ≤ c log(2d(XK , `n
2 )) ≤ c log(2n),

where c > 0 is an absolute constant. This statement follows from an inequality
of Pisier [159] after work of Lewis [109], Figiel and Tomczak-Jaegermann [60], and
plays a central role in the theory. We shall use the minimal mean width position
and come back to the estimate (31) in Section 5.

3 Background from classical convexity

3.1 Steiner’s formula and Urysohn’s inequality

3.1.1. Let Kn denote the set of all non-empty, compact convex subsets of Rn. We
may view Kn as a convex cone under Minkowski addition and multiplication by
nonnegative real numbers. Minkowski’s theorem (and the definition of the mixed
volumes) asserts that if K1, . . . , Km ∈ Kn, m ∈ N, then the volume of t1K1 + . . . +
tmKm is a homogeneous polynomial of degree n in ti ≥ 0 (see [35], [177]). That is,

|t1K1 + . . . + tmKm| =
∑

1≤i1,...,in≤m

V (Ki1 , . . . ,Kin)ti1 . . . tin ,

where the coefficients V (Ki1 , . . . ,Kin) are chosen to be invariant under permuta-
tions of their arguments. The coefficient V (K1, . . . ,Kn) is called the mixed volume
of K1, . . . ,Kn.
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Steiner’s formula, which was already considered in 1840, may be seen as a special
case of Minkowski’s theorem. The volume of K + tDn, t > 0, can be expanded as
a polynomial in t:

(1) |K + tDn| =
n∑

i=0

(
n

i

)
Wi(K)ti,

where Wi(K) = V (K; n− i,Dn; i) is the i-th Quermassintegral of K. It is easy to
see that the surface area of K is given by

(2) ∂(K) = nW1(K).

Kubota’s integral formula

(3) Wi(K) =
|Dn|

|Dn−i|n−i

∫

Gn,n−i

|PξK|n−idνn,n−i(ξ)

applied for i = n− 1 shows that

(4) Wn−1(K) =
|Dn|

2
w(K).

3.1.2. The Alexandrov-Fenchel inequalities constitute a far reaching general-
ization of the Brunn-Minkowski inequality and its consequences:

If K, L,K3, . . . , Kn ∈ Kn, then

(5) V (K,L, K3, . . . , Kn)2 ≥ V (K, K, K3, . . . ,Kn)V (L,L, K3, . . . ,Kn).

The proof is due to Alexandrov [1], [2] (Fenchel sketched an alternative proof, see
[58]). From (5) one can recover the Brunn-Minkowski inequality as well as the
following generalization for the quermassintegrals:

(6) Wi(K + L)
1

n−i ≥ Wi(K)
1

n−i + Wi(L)
1

n−i , i = 0, . . . , n− 1

for any pair of convex bodies in Rn.
If we take L = tDn, t > 0, then Steiner’s formula and the Brunn-Minkowski

inequality give

(7)
n∑

i=0

(
n

i

)
Wi(K)
|Dn| ti =

|K + tDn|
|Dn| ≥

(( |K|
|Dn|

)1/n

+ t

)n

=
n∑

i=0

(
n

i

)( |K|
|Dn|

)n−i
n

ti

for every t > 0. Since the first and the last term are equal on both sides of this
inequality, we must have

(8)
W1(K)
|Dn| ≥

( |K|
|Dn|

)n−1
n
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which is the isoperimetric inequality for convex bodies, and

(9) w(K) = 2
Wn−1(K)
|Dn| ≥ 2

( |K|
|Dn|

) 1
n

,

which is Urysohn’s inequality. Both inequalities are special cases of the set of
Alexandrov inequalities

(10)
(

Wi(K)
|Dn|

) 1
n−i

≥
(

Wj(K)
|Dn|

) 1
n−j

, n > i > j ≥ 0.

3.1.3. Let K be a body in Rn. We define

(11) M∗(K) =
∫

Sn−1
‖x‖∗σ(dx) =

w(K)
2

.

The Blaschke-Santaló inequality asserts that the volume product |K||K◦| is maxi-
mized over all symmetric convex bodies in Rn exactly when K is an ellipsoid:

(12) |K||K◦| ≤ |Dn|2.

A proof of this fact via Steiner symmetrization was given in [12] (see also [129], [130]
where the non-symmetric case is treated). Hölder’s inequality and polar integration
show that

(13)
1

M∗(K)
≤

(∫

Sn−1
‖x‖−n

∗

)1/n

=
( |K◦|
|Dn|

)1/n

.

Combining with (12) and applying (13) for K instead of K◦, we obtain

(14)
1

M(K)
≤

( |K|
|Dn|

)1/n

≤ M∗(K),

that is, Urysohn’s inequality.
3.1.4. A third proof of Urysohn’s inequality can be given as follows: Let

ui ∈ O(n), i = 1, . . . ,m and αi > 0 with
∑m

i=1 αi = 1. It is easily checked that
M∗(∑m

i=1 αiui(K)
)

= M∗(K). It follows that

(15) M∗
(∫

O(n)

u(K)dµ(u)

)
= M∗(K).

But, T =
∫

O(n)
u(K)dµ(u) is a ball of radius (|T |/|Dn|)1/n, and the Brunn-Minkowski

inequality implies that |T | ≥ |K|. Therefore,

(16) M∗(K) =
( |T |
|Dn|

)1/n

≥
( |K|
|Dn|

)1/n

.
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3.1.5. For any (n− 1)-tuple C = K1, . . . , Kn−1 ∈ Kn, the Riesz representation
theorem shows the existence of a Borel measure S(C, ·) on the unit sphere Sn−1

such that

(17) V (L,K1, . . . , Kn−1) =
1
n

∫

Sn−1
hL(u)dS(C, u)

for every L ∈ Kn. If K ∈ Kn, the j-th area measure of K is defined by Sj(K, ·) =
S(K; j,Dn; n − j − 1, ·), j = 0, 1, . . . , n − 1. It follows that the quermassintegrals
Wi(K) can be written in the form

(18) Wi(K) =
1
n

∫

Sn−1
hK(u)dSn−i−1(K,u) , i = 0, 1, . . . , n− 1

or, alternatively,

(19) Wi(K) =
1
n

∫

Sn−1
dSn−i(K, u) , i = 1, . . . , n.

If we assume that hK is twice continuously differentiable, then Sj(K, ·) has a con-
tinuous density sj(K,u), the j-th elementary symmetric function of the eigenvalues
of the Hessian of hK at u.

In the spirit of 2.3, we say that a body K minimizes Wi if Wi(K) ≤ Wi(TK)
for every volume preserving linear transformation T of Rn. The cases i = 1 and i =
n−1 correspond to the minimal surface area and minimal mean width respectively.
For every i = 1, . . . , n − 1 one can prove that, if K minimizes Wi then Sn−i(K, ·)
is isotropic (see [82], where other necessary isotropic conditions are also given).

3.2 Geometric inequalities of “hyperbolic” type

The Alexandrov-Fenchel inequalities are the most advanced representatives of a
series of very important inequalities. They should perhaps be called “hyperbolic”
inequalities in contrast to the more often used in analysis “elliptic” inequalities:
Cauchy-Schwarz, Hölder, and their consequences (various triangle inequalities). A
consequence of “hyperbolic” inequalities is concavity of some important quantities.

3.2.1. Let us start this short review by recalling some old and classical, but
not well remembered, inequalities due to Newton. Let x1, . . . , xn be real numbers.
We define the elementary symmetric functions e0(x1, . . . , xn) = 1, and

(1) ei(x1, . . . , xn) =
∑

1≤j1<...<ji≤n

xj1xj2 . . . xji , 1 ≤ i ≤ n.

In particular, e1(x1, . . . , xn) =
∑n

i=1 xi, en(x1, . . . , xn) =
∏n

i=1 xi. We then con-
sider the normalized functions

(2) Ei(x1, . . . , xn) =
1(
n
i

)ei(x1, . . . , xn).
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Newton proved that, for k = 1, . . . , n− 1,

(3) E2
k(x1, . . . , xn) ≥ Ek−1(x1, . . . , xn)Ek+1(x1, . . . , xn),

with equality if and only if all the xi’s are equal. An immediate corollary of (3),
observed by Newton’s student Maclaurin, is the string of inequalities

(4) E1(x1, . . . , xn) ≥ E
1/2
2 (x1, . . . , xn) ≥ . . . ≥ E1/n

n (x1, . . . , xn),

which holds true for any n-tuple (x1, . . . , xn) of positive reals. Note the similarity
between (3), (4) and the Alexandrov-Fenchel and Alexandrov inequalities 3.1.2(5)
and (10) respectively.

To prove (3) we consider the polynomial

(5) P (x) =
n∏

i=1

(x− xi) =
n∑

j=0

(−1)j

(
n

j

)
Ej(x1, . . . , xn)xn−j ,

or in homogeneous form,

(6) Q(t, τ) = τnP (
t

τ
) =

n∑

j=0

(−1)j

(
n

j

)
Ej(x1, . . . , xn)tn−jτ j .

Since P has only real roots, the same is true for the derivatives of P (with respect
to t or τ) of any order. If we differentiate (6) (n − k − 1)-times with respect to t
and then (k − 1)-times with respect to τ , we obtain the polynomial

(7)
n!
2

Ek−1(x1, . . . , xn)t2 − n!Ek(x1, . . . , xn)tτ +
n!
2

Ek+1(x1, . . . , xn)τ2,

which has two real roots for fixed τ = 1. This is exactly Newton’s inequality (3).
We refer to [167] for a very nice different proof and generalizations.
3.2.2. Let us now turn to a multidimensional, but still numerical, analogue of

Newton’s inequalities. Consider the space Sn of real symmetric n×n matrices. We
polarize the function A → detA to obtain the symmetric multilinear form

(8) D(A1, . . . , An) =
1
n!

∑

ε∈{0,1}n

(−1)n+
P

εidet
(∑

εiAi

)
,

where Ai ∈ Sn. Then, if t1, . . . , tm > 0 and A1, . . . , Am ∈ Sn, the determinant of
t1A1 + . . . + tmAm is a homogeneous polynomial of degree n in ti:

(9) det(t1A1 + . . . + tmAm) =
∑

1≤i1≤...≤in≤m

n!D(Ai1 , . . . , Ain)ti1 . . . tin .

The coefficient D(A1, . . . , An) is called the mixed discriminant of A1, . . . , An. The
fact that the polynomial P (t) = det(A+tI) has only real roots for any A ∈ Sn plays
the central role in the proof of a number of very interesting inequalities connecting
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mixed discriminants, which are quite similar to Newton’s inequalities. They were
first discovered by Alexandrov [2] in one of his approaches to what is now called
Alexandrov-Fenchel inequalities. Today, they are part of a more general theory (see
e.g. [93]). We mention some of them: If Ai, i = 1, . . . , n are positive, then

(10) D(A1, A2, . . . , An) ≥
n∏

i=1

[detA]
1
n .

Also, the following concavity principle (reverse triangle inequality) is true: The
function [detA]1/n is concave in the positive cone of Sn. This is in fact easy to
demonstrate directly. We want to show that, if A1, A2 are positive then

(11) [det(A1 + A2)]
1
n ≥ [detA1]

1
n + [detA2]

1
n .

We may bring two positive matrices to diagonal form without changing their de-
terminants. Then, we should show that for λi, µi > 0,

(12)

(
n∏

i=1

(λi + µi)

)1/n

≥
(

n∏

i=1

λi

)1/n

+

(
n∏

i=1

µi

)1/n

,

which is a consequence of the arithmetic-geometric means inequality.
3.2.3. We now return to convex sets. The results of 3.2.1 and 3.2.2 have their

analogues in this setting, but the parallel results for mixed volumes are much more
difficult and look unrelated. Even the fact that the volume of t1K1 + . . . + tmKm

is a homogeneous polynomial in ti ≥ 0 is a non-trivial statement, while the parallel
result for determinants follows by definition.

To see the connection between the two theories we follow [11]. Consider n fixed
convex open bounded bodies Ki with normalized volume |Ki| = 1. As in Section
2.2(a), consider the Brenier maps

(13) ψi : (Rn, γn) → Ki,

where γn is the standard Gaussian probability density on Rn. We have ψi = ∇fi,
where fi are convex functions on Rn. By Caffarelli’s regularity result, all the ψi’s
are smooth maps. Then, Fact 2 from 2.2(a) shows that the image of (Rn, γn) by∑

tiψi is the interior of
∑

tiKi. Since each ψi is a measure preserving map, we
have

(14) det
(

∂2fi

∂xk∂xl

)
(x) = γn(x) , i = 1, . . . , n.

It follows that

(15)
∣∣∣

n∑

i=1

tiKi

∣∣∣ =
∫

Rn

det

(
n∑

i=1

ti(
∂2fi

∂xk∂xl
)

)
dx
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=
n∑

i1,...,in=1

ti1 . . . tin

∫

Rn

D

(
∂2fi1(x)
∂xk∂xl

, . . . ,
∂2fin(x)
∂xk∂xl

)
dx.

In particular, we recover Minkowski’s theorem on polynomiality of |∑ tiKi|, and
see the connection between the mixed discriminants D(Hessfi1 , . . . , Hessfin) and
the mixed volumes

(16) V (Ki1 , . . . , Kin
) =

∫

Rn

D(Hessfi1(x), . . . , Hessfin
(x))dx.

The Alexandrov-Fenchel inequalities do not follow from the corresponding mixed
discriminant inequalities, but the deep connection between the two theories is ob-
vious. Also, some particular cases are indeed simple consequences. For example, in
[11] it is proved (as a consequence of (16)) that

(17) V (K1, . . . ,Kn) ≥
n∏

i=1

|Ki|1/n.

3.3 Continuous valuations on compact convex sets

(a) Polynomial valuations. We denote by Kn the set of all non-empty compact
convex subsets of Rn and write L for a finite dimensional vector space over R or C.

A function ϕ : Kn → L is called a valuation, if ϕ(K1 ∪ K2) + ϕ(K1 ∩ K2) =
ϕ(K1) + ϕ(K2) whenever K1,K2 ∈ Kn are such that K1 ∪ K2 ∈ Kn. We shall
consider only continuous valuations: valuations which are continuous with respect
to the Hausdorff metric.

The notion of valuation may be viewed as a generalization of the notion of
measure defined only on the class of compact convex sets. Mixed volumes provide
a first important example of valuations.

A valuation ϕ : Kn → L is called polynomial of degree at most l if ϕ(K + x) is
a polynomial in x of degree at most l for every K ∈ Kn. The following theorem of
Khovanskii and Pukhlikov [105] generalizes Minkowski’s theorem on mixed volumes
(see also [126], [4]):
Theorem 3.3.1. Let ϕ : Kn → L be a continuous valuation, which is polynomial of
degree at most l. Then, if K1, . . . , Km ∈ Kn, ϕ(t1K1 + . . .+ tmKm) is a polynomial
in tj ≥ 0 of degree at most n + l. 2

Let K̃ = (K1, . . . ,Ks) be an s-tuple of compact convex sets in Rn, and F :
Rn → C be a continuous function. Alesker studied the Minkowski operator MK̃

which maps F to MK̃F : Rs
+ → C with

(MK̃F )(λ1, . . . , λs) =
∫
P

i≤s λiKi

F (x)dx.

Let A(Cn) be the Frechet space of entire functions of n variables and Cr(Rn) be
the Frechet space of r-times differentiable functions on Rn, with the topology of
uniform convergence on compact sets. The following facts are established in [3]:
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(i) If F ∈ A(Cn), then MK̃F has a unique extension to an entire function on
Cs, and the operator MK̃ : A(Cn) → A(Cs) is continuous. It follows that if F is a
polynomial of degree d then MK̃F is a polynomial of degree at most d + n.

(ii) If F ∈ Cr(Rn), then MK̃F ∈ Cr(Rs
+), and MK̃ is a continuous operator.

Moreover, continuity of the map K̃ 7→ MK̃ with respect to the Hausdorff metric
is established.
(b) Translation invariant valuations. A valuation of degree 0 is simply trans-
lation invariant. If ϕ(uK) = ϕ(K) for every K ∈ Kn and every u ∈ SO(n), we say
that ϕ is SO(n)-invariant. Hadwiger [89] characterized the translation and SO(n)
invariant valuations as follows (see also [101] for a simpler proof):
Theorem 3.3.2. A valuation ϕ is translation and SO(n)-invariant if and only if
there exist constants ci, i = 0, . . . , n such that

(1) ϕ(K) =
n∑

i=0

ciWi(K)

for every K ∈ Kn. 2

After Hadwiger’s classical result, two natural questions arise: to character-
ize translation invariant valuations without any assumption on rotations, and to
characterize O(n) or SO(n) invariant valuations without any assumption on trans-
lations. Both questions are of obvious interest in translative integral geometry and
in the asymptotic theory of finite dimensional normed spaces respectively (consider,
for example, the valuation ϕ(K) =

∫
K
|x|2dx which was discussed in 2.3(b)).

It is a conjecture of McMullen [127] that every continuous translation invariant
valuation can be approximated (in a certain sense) by linear combinations of mixed
volumes. This is known to be true in dimension n ≤ 3. In [126], [127] it is proved
that every translation invariant valuation ϕ can be uniquely expressed as a sum
ϕ =

∑n
i=0 ϕi, where ϕi are translation invariant continuous valuations satisfying

ϕi(tK) = tiϕ(K) (homogeneous of degree i). Moreover, in the case L = R, ho-
mogeneous valuations ϕi as above can be described in some cases: ϕ0 is always a
constant, ϕn is always a multiple of volume, ϕn−1 is always of the form

(2) ϕn−1(K) =
∫

Sn−1
f(u)dSn−1(K, u),

where f : Sn−1 → R is a continuous function (which can be chosen to be orthogonal
to every linear functional, and then it is uniquely determined).

Under the additional assumption that ϕ is simple (ϕ(K) = 0 if dimK < n), a
recent theorem of Schneider [178] completely describes ϕ:
Theorem 3.3.3. Every simple, continuous translation invariant valuation ϕ :
Kn → R has the form

(3) ϕ(K) = c|K|+
∫

Sn−1
f(u)dSn−1(K,u),
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where f : Sn−1 → R is a continuous odd function. 2

Remark: McMullen’s conjecture was recently proved by Alesker [5] in dimension
n = 4.
Added in Proofs: Even more recently, Alesker [6] gave a description of transla-
tion invariant valuations on convex sets, which in particular confirms McMullen’s
conjecture in all dimensions.
(c) Rotation invariant valuations. Alesker [4] has recently obtained a char-
acterization of O(n) (respectively SO(n)) invariant continuous valuations. The
first main point is that every such valuation can be approximated uniformly on
the compact subsets of Kn by continuous polynomial O(n) (or SO(n)) invariant
valuations.

Then, one can describe polynomial rotation invariant valuations in a concrete
way. To this end, let us introduce some specific examples of such valuations. We
write ν for the (n − 1)-dimensional surface measure on K and n(x) for the outer
normal at bd(K) (this is uniquely determined ν-almost everywhere). If p, q are
non-negative integers, we consider a valuation ψp,q : Kn → R with

(4) ψp,q(K) =
∫

bd(K)

〈x, n(x)〉p|x|2qdν(x).

All ψp,q are continuous, polynomial of degree at most p+2q+n, and O(n)-invariant.
Theorem 3.3.1 shows that, for every K ∈ Kn, ψp,q(K + εDn) is a polynomial in
ε ≥ 0, therefore it can be written in the form

(5) ψp,q(K + εDn) =
p+2q+n∑

i=0

ψ(i)
p,q(K)εi.

All ψ
(i)
p,q are continuous, polynomial and O(n)-invariant. These particular valuations

suffice for a description of all rotation invariant polynomial valuations [4]:
Theorem 3.3.4. If n ≥ 3, then every SO(n)-invariant continuous polynomial
valuation ϕ : Kn → R is a linear combination of the ψ

(i)
p,q. 2

Since ψ
(i)
p,q are O(n)-invariant, Theorem 3.3.4 describes O(n)-invariant valua-

tions as well. The case n = 2 is also completely described in [4] (and the same
statements hold true if R is replaced by C).

4 Dvoretzky’s theorem and concentration of mea-
sure

4.1 Introduction

A version of the Dvoretzky-Rogers Lemma [53] asserts that for every body K whose
maximal volume ellipsoid is Dn, there exist k ' √

n and a k-dimensional subspace
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Ek of Rn such that Dk ⊆ K ∩ Ek ⊆ 2Qk, where Dk denotes the Euclidean ball in
Ek and Qk the unit cube in Ek (for an appropriately chosen coordinate system).
Inspired by this, Grothendieck asked whether Qk can be replaced by Dk in this
statement. He did not specify what the dependence of k on n might be, asking just
that k should increase to infinity with n. A short time after, Dvoretzky [51], [52]
proved Grothendieck’s conjecture:
Theorem 4.1.1. Let ε > 0 and k be a positive integer. There exists N = N(k, ε)
with the following property: Whenever X is a normed space of dimension n ≥ N
we can find a k-dimensional subspace Ek of X with d(Ek, `k

2) ≤ 1 + ε.
Geometrically speaking, every high-dimensional body has central sections of

high dimension which are almost ellipsoidal. The dependence of N(k, ε) on k and
ε became a very important question, and Dvoretzky’s theorem took a much more
precise quantitative form:
Theorem 4.1.2. Let X be an n-dimensional normed space and ε > 0. There
exist an integer k ≥ cε2 log n and a k-dimensional subspace Ek of X which satisfies
d(Ek, `k

2) ≤ 1 + ε.
This means that Theorem 4.1.1 holds true with N(k, ε) = exp(cε−2k). Dvoret-

zky’s original proof gave an estimate N(k, ε) = exp(cε−2k2 log k). Later, Milman
[131] established the estimate N(k, ε) = exp(cε−2| log ε|k) with a different approach.
The logarithmic in ε term was removed by Gordon [68], and then by Schechtman
[174]. Other proofs and extensions of Dvoretzky’s theorem in different directions
were given in [59], [185], [112] (see also the surveys [110], [113], [142]).

The logarithmic dependence of k on n is best possible for small values of ε. One
can see this by analyzing the example of `n

∞. Every k-dimensional central section of
Qn is a polytope with at most 2n facets. If we assume that we can find a subspace
Ek of `n

∞ with d(Ek, `k
2) ≤ 1+ε, then there exists a polytope Pk in Rk with m ≤ 2n

facets satisfying Dk ⊆ Pk ⊆ (1+ε)Dk. The hyperplanes supporting the facets of Pk

create m spherical caps J1, . . . , Jm on (1+ε)Sk−1 such that (1+ε)Sk−1 ⊆ ⋃m
i=1 Ji.

On the other hand, since Dk ⊆ Pk, if we assume that ε is small, then each Ji

has angular radius of the order of
√

ε. An elementary computation shows that the
normalized measure of such a cap does not exceed (cε)

k−1
2 . Therefore, we must

have 2n ≥ (cε)−
k−1
2 which shows that

(1) k ≤ c log n/ log(1/ε).

The same argument shows that if P is a symmetric polytope and f(P ) is the number
of its facets, then k ≤ c(ε) log f(P ).

The right dependence of N(k, ε) on ε for a fixed (even small) positive integer k
is not clear. It seems reasonable that `n

∞ is the worst case and that the computation
we have just made gives the correct order:

Question 4.1.3. Can we take N(k, ε) = c(k)ε−
k−1
2 in Theorem 4.1.1?

Using ideas from the theory of irregularities of distribution, Bourgain and Lin-
denstrauss [29] have shown that the choice N(k, ε) = c(k)ε−

k−1
2 | log ε| is possible
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for spaces X with a 1-symmetric basis. There are numerous connections of this
question with other branches of mathematics (algebraic topology, number theory,
harmonic analysis). For instance, an affirmative answer to Question 4.1.3 would
be a consequence of the following hypothesis of Knaster: Let f : Sk−1 → R be a
continuous function and x1, . . . , xk be points on Sk−1. Does there exist a rotation
u such that f is constant on the set {uxi : i ≤ k}? This hypothesis has been settled
only in special cases (see [137] for a discussion of this and other problems related
to Question 4.1.3).
Note. Bourgain and Szarek [33] proved a stronger form of the Dvoretzky-Rogers
Lemma: If Dn is the ellipsoid of minimal volume containing K, then for every
δ ∈ (0, 1) one can choose x1, . . . , xm, m ≥ (1− δ)n, among the contact points of K
and Dn such that for every choice of scalars (ti)i≤m,

(2) f(δ)

(
m∑

i=1

t2i

)1/2

≤
∣∣∣

m∑

i=1

tixi

∣∣∣≤
www

m∑

i=1

tixi

www
K
≤

m∑

i=1

|ti|.

This is a Dvoretzky-Rogers Lemma for arbitrary proportion of the dimension. It
can also be stated as a factorization result: For any n-dimensional normed space
X and any δ ∈ (0, 1), one can find m ≥ (1 − δ)n and two operators α : `m

2 → X,
β : X → `n

∞ such that the identity id2,∞ : `m
2 → `m

∞ can be written as id2,∞ = β ◦α
and ‖α‖‖β‖ ≤ 1/f(δ). For an extension to the non-symmetric case see [116].

Using this result, Bourgain and Szarek answered in the negative the question
of uniqueness, up to a constant, of the centre of the Banach-Mazur compactum,
and gave the first non-trivial estimate o(n) for the Banach-Mazur distance from an
n-dimensional space X to `n

∞. It is now known [186], [63] that (2) holds true with
f(δ) = cδ. The question about the best possible exponent of δ in the Dvoretzky-
Rogers factorization is also open. By [63], [169] it must lie between 1/2 and 1.

In the Appendix we give a brief account on these and other questions related
to the geometry of the Banach-Mazur compactum.

4.2 Concentration of measure on the sphere and a proof of
Dvoretzky’s theorem

We shall outline the approach of [131] to Dvoretzky’s theorem. The method uses
the concentration of measure on the sphere and was further developed in [61]. We
need to introduce the average parameter

(1) M = M(XK) =
∫

Sn−1
‖x‖ σ(dx),

the average on the sphere Sn−1 of the norm that K induces on Rn.
Remarks on M . (i) It is clear from the definition that M depends not only on the
body K but also on the Euclidean structure we have chosen in Rn. If we assume
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that 1
a |x| ≤ ‖x‖ ≤ b|x| and that a, b > 0 are the smallest constants for which this

is true for all x ∈ Rn, then we have the trivial bounds 1
a ≤ M ≤ b.

(ii) For every p > 0 we define

(2) Mp = Mp(XK) =
(∫

Sn−1
‖x‖pσ(dx)

) 1
p

.

In this notation M = M1 and as a consequence of the Kahane-Khinchine inequality
one can check that M1 ' M2 independently from the dimension and the norm. It
can be actually shown [118] that, for every 1 ≤ p ≤ n,

(3) max
{

M1, c1

b
√

p√
n

}
≤ Mp ≤ max

{
2M1, c2

b
√

p√
n

}
,

where c1, c2 > 0 are absolute constants.
(iii) Let g1, . . . , gn be independent standard Gaussian random variables on some

probability space Ω and {e′1, . . . , e′n} be any orthonormal basis in Rn. Integration
in polar coordinates establishes the identity

(4)

(∫

Ω

www
n∑

i=1

gi(ω)e′i
www

2

dω

)1/2

=
√

nM2.

Using the symmetry of the gi’s and the triangle inequality for ‖ · ‖ we get

(5)
∫

Ω

www
k∑

i=1

gi(ω)e′i
www dω ≤

∫

Ω

www
n∑

i=1

gi(ω)e′i
www dω,

for every 1 ≤ k ≤ n, and combining with the previous observations we have

(6) M(Ek) ≤ c
√

n/kM

for every k-dimensional subspace Ek of XK .
• The main step for our proof of Theorem 4.1.2 will be the following [131]:

Theorem 4.2.1. Let X be an n-dimensional normed space satisfying 1
a |x| ≤ ‖x‖ ≤

b|x|. For every ε ∈ (0, 1) there exist k ≥ cε2n(M/b)2 and a k-dimensional subspace
Ek of Rn such that

1
1 + ε

L|x| ≤ ‖x‖ ≤ (1 + ε)L|x| , x ∈ Ek.

The constant L appearing in the statement above is the Lévy mean (or median)
of the function f(x) = ‖x‖ on Sn−1. This is the unique real number L = Lf for
which

σ({x : f(x) ≥ L}) ≥ 1
2

and σ({x : f(x) ≤ L}) ≥ 1
2
.

A few observations arise directly from this statement: Assume that x ∈ Sn−1

has maximal norm ‖x‖ = b. Consider the one-dimensional subspace E1 spanned by
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x. We have b = M(E1) ≤ c
√

nM , and this shows that n(M/b)2 ≥ c > 0 for every
norm. This is of course not enough for a proof of Dvoretzky’s theorem.

On the other hand, recall that M ≥ 1/a. By Theorem 4.2.1, every X has
a subspace of dimension k ≥ cε2n/(ab)2 on which ‖ · ‖ is (1 + ε)-equivalent to
the Euclidean norm. Since we can choose a linear transformation of KX so that
ab ≤ d(X, `n

2 ), we obtain the following corollary [131]:
Corollary 4.2.2. For every n-dimensional space X and every ε ∈ (0, 1) we can find
a subspace Ek of X with dimEk = k ≥ cε2n/d2(X, `n

2 ) such that d(Ek, `k
2) ≤ 1 + ε.

2

This already shows that spaces with small Banach-Mazur distance from `n
2

have Euclidean sections of dimension much larger than log n (even proportional to
n). However, since John’s theorem is sharp this observation is not enough for the
general case.

• The proof of Theorem 4.2.1 is based on the concentration of measure on the
sphere. Recall that as a consequence of the spherical isoperimetric inequality we
have the following fact:

If A ⊆ Sn−1 and σ(A) = 1
2 , then σ(Aε) ≥ 1− c1 exp(−c2ε

2n).
This inequality explains the term “concentration of measure”: However small ε > 0
may be, the measure of the set outside a “strip” of width ε around the boundary
of any subset of the sphere of half measure is less than 2c1 exp(−c2ε

2n), which de-
creases exponentially fast to 0 as the dimension n grows to infinity. This surprising
fact was observed and used by P. Lévy [108]:

Let f be a continuous function on the sphere. By ωf (·) we denote the modulus
of continuity of f :

ωf (t) = max{|f(x)− f(y)| : ρ(x, y) ≤ t, x, y ∈ Sn−1}.

Consider the Lévy mean Lf of f . It is not hard to see that

{x : f = Lf}ε = ({x : f ≥ Lf})ε ∩ ({x : f ≤ Lf})ε.

Since |f(x)− Lf | ≤ ωf (ε) on {x : f = Lf}ε, the spherical isoperimetric inequality
has the following direct consequence:
Fact 1. For every continuous function f : Sn−1 → R and every ε > 0,

(7) σ
(
x ∈ Sn−1 : |f(x)− Lf | ≥ ωf (ε)

) ≤ c1 exp(−c2ε
2n). 2

If the modulus of continuity of f behaves well, then Fact 1 implies strong
concentration of the values of f around its median. Moreover, from a set of big
measure on which f is almost constant we can extract a subspace of high dimension,
on the sphere of which f is almost constant:
Fact 2. Let f : Sn−1 → R be a continuous function and δ, θ > 0. There exists a
subspace F of Rn with dimF = k ≥ cδ2n/ log(3/θ) such that

|f(x)− Lf | ≤ ωf (δ) + ωf (θ)
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for every x ∈ S(F ) := Sn−1 ∩ F .
Proof: Fix k < n (to be determined) and Fk ∈ Gn,k. A standard argument
shows that there exists a θ-net N of S(Fk) with cardinality |N | ≤ (1 + 2

θ )k ≤
exp(k log(3/θ)). If x ∈ N , then

(8) µ (u ∈ O(n) : |f(ux)− Lf | > ωf (δ)) ≤ c1 exp(−c2δ
2n).

Therefore, if c1|N | exp(−c2δ
2n) < 1 then most u ∈ O(n) satisfy

(9) |f(ux)− Lf | ≤ ωf (δ)

for every x ∈ N . It follows that |f(x)−Lf | ≤ ωf (δ) + ωf (θ) for every x ∈ S(uFk).
A simple computation shows that the necessary condition will be satisfied for some
k ≥ cδ2n/ log(3/θ). 2

For the proof of Theorem 4.2.1 we are going to apply this fact to the norm
f(x) = ‖x‖. In this case, one can say even more (see [149, pp. 12]):
Fact 3. Let X = (Rn, ‖ · ‖) and assume that ‖x‖ ≤ b|x|. For every ε ∈ (0, 1) there
exists a subspace Ek with dimEk = k ≥ cε2

log(1/ε)n(Lf

b )2 such that

1
1 + ε

Lf |x| ≤ ‖x‖ ≤ (1 + ε)Lf |x|
for every x ∈ Ek. 2

The proof of Theorem 4.2.1 is now complete. We just have to observe that if
f(x) = ‖x‖ on Sn−1, then Lf ' M . By Markov’s inequality, σ(x : f(x) ≥ 2M) ≤ 1

2
and this shows that Lf ≤ 2M . It can be checked that Lf ≥ cM as well, where
c > 0 is an absolute constant [149]. It follows that we can have almost spherical
sections of dimension k ≥ cε2

log(1/ε)n(M
b )2 in Theorem 4.2.1. In order to remove the

logarithmic in ε term, one needs to put additional effort (see [68], [174]). 2

From Theorem 4.2.1 we may deduce Dvoretzky’s theorem (Theorem 4.1.2): For
every n-dimensional space X and any ε ∈ (0, 1) there exists a subspace Ek of X
with dimEk = k ≥ cε2 log n, such that d(Ek, `k

2) ≤ 1 + ε.
Proof: We may assume that Dn is the maximal volume ellipsoid of KX . Then,
‖x‖ ≤ |x| on Rn and in view of Theorem 4.2.1 we only need to show that M2 ≥
c log n/n. This is a consequence of the Dvoretzky-Rogers lemma: There exists an
orthonormal basis y1, . . . , yn in Rn with ‖yi‖ ≥ (n−i+1

n )1/2. In particular, ‖yi‖ ≥ 1
2 ,

i = 1, . . . , n
4 .

From the equivalence of M1 and M2 we see that

(10) M ≥ c√
n

∫

Ω

www
n∑

i=1

gi(ω)yi

www dω ≥ c√
n

∫

Ω

www
n/4∑

i=1

gi(ω)yi

www dω

≥ c√
n

∫

Ω

max
i≤n/4

www gi(ω)yi

www dω ≥ c′√
n

∫

Ω

max
i≤n/4

|gi(ω)|dω ≥ c′′
√

log n√
n

,

where we have used the fact (see e.g. [115, pp. 79]) that if g1, . . . , gm are inde-
pendent standard Gaussian random variables on Ω then

∫
Ω

maxi≤m |gi| '
√

log m.
2
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4.3 Probabilistic and global form of Dvoretzky’s Theorem

The proof of Theorem 4.2.1, being probabilistic in nature, gives that a subspace Ek

of X with dimEk = [cε2n(M/b)2] is (1 + ε)-Euclidean with high probability. This
leads to the definition of the following characteristic of X:
Definition. Let X be an n-dimensional normed space. We set k(X) to be the largest
positive integer k ≤ n for which

(1) Prob
(

Ek ∈ Gn,k :
1
2
M |x| ≤ ‖x‖ ≤ 2M |x|, x ∈ Ek

)
≥ 1− k

n + k
.

In other words, k(X) is the largest possible dimension k ≤ n for which the
majority of k-dimensional subspaces of X are 4-Euclidean. Note that the presence
of M in the definition corresponds to the right normalization, since the average of
M(Ek) over Gn,k is equal to M for all 1 ≤ k ≤ n.

Theorem 4.2.1 implies that k(X) ≥ cn(M/b)2. What is surprisingly simple
is the observation [151] that an inverse inequality holds true. The estimate in
Theorem 4.2.1 is sharp in full generality:
Theorem 4.3.1. k(X) ≤ 4n(M/b)2.
Proof: Fix orthogonal subspaces E1, . . . , Et of dimension k(X) such that Rn =∑t

i=1 Ei (there is no big loss in assuming that k(X) divides n). By the definition of
k(X), most orthogonal images of each Ei are 4-Euclidean, so we can find u ∈ O(n)
such that

(2)
1
2
M |x| ≤ ‖x‖ ≤ 2M |x| , x ∈ uEi

for every i = 1, . . . , t. Every x ∈ Rn can be written in the form x =
∑t

i=1 xi, where
xi ∈ uEi. Since the xi’s are orthogonal, we get

(3) ‖x‖ ≤ 2M

t∑

i=1

|xi| ≤ 2M
√

t|x|.

This means that b ≤ 2M
√

t, and since t = n/k(X) we see that k(X) ≤ 4n(M/b)2.
2

In other words, the following asymptotic formula holds true:
Theorem 4.3.2. Let X be an n-dimensional normed space. Then,

k(X) ' n(M/b)2. 2

Dvoretzky’s theorem gives information about the central sections of a body, or
equivalently, about the local structure of the corresponding normed space. By a
global result we mean a statement about the full body or space. In order to describe
the global version of Dvoretzky’s theorem, we need to introduce a new quantity:
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Definition. Let X = (Rn, ‖ · ‖). We define t(X) to be the smallest positive integer
t for which there exist u1, . . . , ut ∈ O(n) such that

1
2
M |x| ≤ 1

t

t∑

i=1

‖uix‖ ≤ 2M |x|

for every x ∈ Rn.
Geometrically speaking, t(X) is the smallest integer t for which there exist rota-

tions v1, . . . , vt such that the average Minkowski sum of viK
◦ is 4-Euclidean. Once

again, the presence of M in the definition corresponds to the correct normalization.
It is proved in [38] that t(X) ≤ c(b/M)2 (we postpone a proof of this fact until

Section 4.5). It was recently observed in [151] that a reverse inequality is true in
full generality:
Theorem 4.3.3. t(X) ≥ 1

4 (b/M)2.
For the proof of this assertion we shall make use of the following lemma:
Lemma. Let x1, . . . , xt ∈ Sn−1. There exists y ∈ Sn−1 such that

∑t
i=1 |〈y, xi〉| ≥√

t.
Proof: We consider all vectors of the form z(ε) =

∑t
i=1 εixi, where εi = ±1.

If z = z(ε) has maximal length among them, the parallelogram law shows that
|z| ≥ √

t. Also,

(4)
t∑

i=1

|〈z, xi〉| ≥
t∑

i=1

〈z, εixi〉 = |z|2 ≥ |z|
√

t.

Choosing y = z/|z| we conclude the proof. 2

Proof of Theorem 4.3.3: Assume that we can find t orthogonal transformations
u1, . . . , ut such that 1

t

∑t
i=1 ‖uix‖ ≤ 2M |x| for every x ∈ Rn. We find x0 ∈ Sn−1

with ‖x0‖ = b (minimal distance from the origin). It is clear that 1 = ‖x0‖∗‖x0‖ =
b‖x0‖∗. We set xi = u−1

i x0 and use the Lemma to find y ∈ Sn−1 such that∑t
i=1 |〈y, xi〉| ≥

√
t. Then, we have

(5)
√

t ≤
t∑

i=1

|〈y, u−1
i x0〉| =

t∑

i=1

|〈uiy, x0〉| ≤ ‖x0‖∗
t∑

i=1

‖uiy‖ ≤ 2Mt

b
.

This shows that 4t ≥ (b/M)2. 2

Combining Theorem 4.3.3 with the upper bound for t(X) we obtain a second
asymptotic formula:
Theorem 4.3.4. For every finite dimensional normed space X we have

t(X) ' (b/M)2. 2

Theorems 4.3.2 and 4.3.4 give a very precise asymptotic relation between a local
and a global parameter of X [151]:
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Fact. There exists an absolute constant c > 0 such that

1
c
n ≤ k(X)t(X) ≤ cn

for every n-dimensional normed space X. 2

4.4 Applications of the concentration of measure on the sphere

We used the concentration of measure on Sn−1 for the proof of Dvoretzky’s theorem.
The same principle applies in very different situations. We shall demonstrate this
by two more examples.
(a) Banach-Mazur distance. Recall that by John’s theorem d(X, `n

2 ) ≤ √
n for

every n-dimensional space X. Then, the multiplicative triangle inequality for d
shows that d(X,Y ) ≤ n for every pair of spaces X and Y . On the other hand,
E.D. Gluskin [64] has proved that the diameter of the Banach-Mazur compactum
is roughly equal to n:

There exists an absolute constant c > 0 such that for every n we can find two
n-dimensional spaces Xn, Yn with d(Xn, Yn) ≥ cn.

The spaces Xn, Yn in Gluskin’s example are random and of the same nature:
random symmetric polytopes with αn vertices. We shall show that spaces whose
unit balls are geometrically quite different objects have “small” distance [55]:
Theorem 4.4.1. Let X and Y be two n-dimensional normed spaces such that
#Extr(KX) ≤ nα and #Extr(KY ∗) ≤ nβ for some α, β > 0, where #Extr(·)
denotes the number of extreme points. Then,

d(X,Y ) ≤ c
√

α + β
√

n log n.

[In other words, if a body has few extreme points and a second body has few facets,
then their distance is not more than

√
n log n.]

Proof: We may assume that 1√
n
Dn ⊆ KX ⊆ Dn ⊆ KY ⊆ √

nDn. Then, KY ∗ ⊆ Dn.
If u ∈ O(n), it is clear that ‖u−1 : Y → X‖ ≤ n. We are going to show that
‖u : X → Y ‖ is small for a random u.

We estimate the norm of u as follows:

‖u : X → Y ‖ = sup
x∈KX

‖ux‖Y = max
x∈Extr(KX)

max
y∗∈Extr(KY ∗ )

|〈ux, y∗〉|.

Observe that if x ∈ Extr(KX) and y∗ ∈ Extr(KY ∗), then ux, y∗ ∈ Dn. It follows
that

µ(u ∈ O(n) : |〈ux, y∗〉| ≥ ε) ≤ c exp(−ε2n/2).

Therefore, if cnα+β exp(−ε2n/2) < 1, we can find u ∈ O(n) such that ‖u : X →
Y ‖ ≤ ε. Solving for ε we see that we can choose

ε '
√

α + β
√

log n/n.
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Hence, there exists u ∈ O(n) for which

d(X, Y ) ≤ ‖u : X → Y ‖ ‖u−1 : Y → X‖ ≤ c
√

α + β
√

n log n. 2

(b) Random projections. Let 1 ≤ k ≤ n, and E ∈ Gn,k. A simple computation
shows that ∫

Sn−1
|PE(x)|2σ(dx) =

k

n
,

and since PE is a 1-Lipschitz function, concentration of measure on the sphere
shows that

σ
(
x ∈ Sn−1 : | |PE(x)| −

√
k/n | > ε

)
≤ c1 exp(−c2ε

2n)

for every ε > 0. Double integration and the choice ε = δ
√

k/n show that for any
fixed subset {y1, . . . , yN} of Sn−1 and any δ ∈ (0, 1) we have

νn,k

(
E ∈ Gn,k : (1− δ)

√
k/n < |PE(yj)| < (1 + δ)

√
k/n , j ≤ N

)

> 1− c1N exp(−c2δ
2k).

If N ≤ c−1
1 exp(c2δ

2k), then we can find a k-dimensional subspace E such that

|PE(yj)| '
√

k
n for every j ≤ N . It can be also arranged so that the distances of

the yj ’s will shrink in a uniform way under PE (this application comes from [97]).

4.5 The concentration phenomenon: Lévy families

The concentration of measure on the sphere is just an example of the concentration
phenomenon of invariant measures on high-dimensional structures. Assume that
(X, d, µ) is a compact metric space with metric d and diameter diam(X) ≥ 1,
which is also equipped with a Borel probability measure µ. We then define the
concentration function (or “isoperimetric constant”) of X by

α(X; ε) = 1− inf
{
µ(Aε) : A Borel subset of X, µ(A) ≥ 1

2
}
,

where Aε = {x ∈ X : d(x,A) ≤ ε} is the ε-extension of A. As a consequence of the
isoperimetric inequality on Sn+1 we saw that

α(Sn+1; ε) ≤
√

π/8 exp(−ε2n/2),

an estimate which was crucial for the proof of Dvoretzky’s theorem and the appli-
cations in Section 4.4.

P. Lévy [108] was the first to observe the role of the dimension in this particular
example. For this reason, a family (Xn, dn, µn) of metric probability spaces is called
a normal Lévy family with constants (c1, c2) (see [84] and [9]) if

α(Xn, ε) ≤ c1 exp(−c2ε
2n),
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or, more generally, a Lévy family if for every ε > 0

α(Xn; ε) → 0

as n →∞. There are many examples of Lévy families which have been discovered
and used for local theory purposes. In most cases, new and very interesting tech-
niques were invented in order to estimate the concentration function α(X; ε). We
list some of them (and refer the reader to [175] in this volume for more information;
see also [73], [74] for a development in a different direction):

(1) The family of the orthogonal groups (SO(n), ρn, µn) equipped with the
Hilbert-Schmidt metric and the Haar probability measure is a Lévy family with
constants c1 =

√
π/8 and c2 = 1/8.

(2) The family Xn =
∏mn

i=1 Sn with the natural Riemannian metric and the
product probability measure is a Lévy family with constants c1 =

√
π/8 and c2 =

1/2.
(3) All homogeneous spaces of SO(n) inherit the property of forming Lévy

families. In particular, any family of Stiefel manifolds Wn,kn or any family of
Grassman manifolds Gn,kn is a Lévy family with the same constants as in (1).

[All these examples of normal Lévy families come from [84].]
(4) The space Fn = {−1, 1}n with the normalized Hamming distance d(η, η′) =

#{i ≤ n : ηi 6= η′i}/n and the normalized counting measure is a Lévy family with
constants c1 = 1/2 and c2 = 2. This follows from an isoperimetric inequality of
Harper [90], and was first put in such form and used in [8].

(5) The group Πn of permutations of {1, . . . , n} with the normalized Hamming
distance d(σ, τ) = #{i ≤ n : σ(i) 6= τ(i)}/n and the normalized counting measure
satisfies α(Πn; ε) ≤ 2 exp(−ε2n/64). This was proved by Maurey [119] with a
martingale method, which was further developed in [172].

• We shall give two more examples of situations where Lévy families are used.
In particular, we shall complete the proof of the global form of Dvoretzky’s theorem
using the concentration phenomenon for products of spheres.
(a) A topological application. Let 1 ≤ k ≤ n and Vk = {(ξ, x) : ξ ∈ Gn,k, x ∈
S(ξ)} be the canonical sphere bundle over Gn,k. Assume that f : Sn−1 → R is a
Lipschitz function with the following property:

For every ξ ∈ Gn,k we can find x ∈ S(ξ) such that f(x) = 0.
One can easily check that Vk is a homogeneous space of SO(n) whose concentration
function satisfies

α(Vk; ε) ≤
√

π/8 exp(−ε2n/8).

A standard argument shows that given δ > 0, if k ≤ cδ2n/ log(3/δ) then we can
find a subspace ξ ∈ Gn,k and a δ-net N of S(ξ) such that f(x) = 0 for every x ∈ N .
Assuming that the Lipschitz constant of f is not large, we get [84]:

There exists ξ ∈ Gn,k such that |f(x)| ≤ cδ for every x ∈ S(ξ).
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(b) Global form of Dvoretzky’s Theorem. Recall that t(X) is the least positive
integer for which there exist u1, . . . , ut ∈ O(n) such that 1

2M |x| ≤ 1
t

∑t
i=1 ‖uix‖ ≤

2M |x| for every x ∈ Rn.
We saw that 4t(X) ≥ (b/M)2. We shall now prove the reverse inequality (which

is stated in Theorem 4.3.4) following [118]:
Consider the space S̃t = {x = (x1, . . . , xt) : xi ∈ Sn−1}. Define f(x) =

1
t

∑t
i=1 ‖xi‖. Then, for every x, y ∈ S̃t we have:

|f(x)− f(y)| ≤ 1
t

t∑

i=1

‖xi − yi‖ ≤
(

1
t

t∑

i=1

‖xi − yi‖2
)1/2

≤ b√
t
ρ(x, y).

The concentration estimate for products of spheres gives

Prob

(∣∣∣ 1
t

t∑

i=1

‖xi‖ − Lf

∣∣∣> δLf

)
≤ exp(−cδ2tL2

fn/b2)

for every δ ∈ (0, 1). Equivalently, if x ∈ Sn−1 then

(1− δ)Lf ≤ 1
t

t∑

i=1

‖uix‖ ≤ (1 + δ)Lf

for all (ui)i≤t in a subset of [O(n)]t of measure greater than 1− exp(−cδ2tL2
fn/b2).

IfN is a δ-net for Sn−1, we can find u1, . . . , ut ∈ O(n) such that 1
t

∑ ‖uix‖ ' Lf for
all x ∈ N , provided that n/ log(3/δ) ≤ cδ2tL2

fn/b2. We choose δ > 0 small enough
so that successive approximation will give 1

t

∑ ‖uix‖ ' Lf for all x ∈ Sn−1, and
we verify that the condition will be satisfied for some t ≤ c′(b/Lf )2. Since M ' Lf

up to a multiplicative constant, the proof is complete. 2

4.6 Dvoretzky’s theorem and duality

4.6.1. Recall that if X = (Rn, ‖ · ‖) is a normed space, then the dual norm is
defined by ‖x‖∗ = sup{|〈x, y〉| : ‖y‖ ≤ 1}. It is clear that 1

b |x| ≤ ‖x‖∗ ≤ a|x|, hence
if we define k∗ = k(X∗) and M∗ = M(X∗) then Theorem 4.3.2 shows that

k∗ ' n(M∗/a)2.

On the other hand, it is a trivial consequence of the Cauchy-Schwarz inequality
that

(1) MM∗ ≥
(∫

Sn−1
‖x‖

1
2∗ ‖x‖ 1

2 σ(dx)
)2

≥
(∫

Sn−1
|〈x, x〉| 12 σ(dx)

)2

= 1.

Multiplying the estimates for k and k∗ we obtain

(2) kk∗ ≥ cn2 (MM∗)2

(ab)2
≥ cn2/(ab)2.
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Since we can always assume that ab ≤ √
n, we have proved:

Theorem 4.6.1. [61] Let X be an n-dimensional normed space. Then,

k(X)k(X∗) ≥ cn. 2

This already shows that for every pair (X, X∗) at least one of the quantities
k, k∗ is greater than c

√
n. Recall that for X = `n

∞ we have k(`n
∞) ' log n, therefore

k(`n
1 ) ≥ cn/ log n – almost proportional to n. In fact, a direct computation shows

that M(`n
1 ) ' b(`n

1 ) ' √
n, therefore k(`n

1 ) ' n. Although d(X, `n
1 ) is the maximal

possible, `n
1 has Euclidean sections of dimension proportional to n.

4.6.2. Let k = min{k, k∗}. Since Dvoretzky’s theorem holds for random sub-
spaces of the appropriate dimension, we can find a subspace E ∈ Gn,k on which we
have

(3)
1
2
M |x| ≤ ‖x‖ ≤ 2M |x| ,

1
2
M∗|x| ≤ ‖x‖∗ ≤ 2M∗|x|

simultaneously. This implies that ‖PE : X → E‖ ≤ 4MM∗. We see this as follows:
let x ∈ Rn. Then,

(4) |PE(x)|2 = 〈PE(x), x〉 ≤ ‖PE(x)‖∗‖x‖ ≤ 2M∗|PE(x)| ‖x‖,
since PE(x) ∈ E. For the same reason,

(5) ‖PE(x)‖ ≤ 2M |PE(x)| ≤ 4MM∗‖x‖.
But then,

(6) kk∗ ' n2 (MM∗)2

(ab)2
≥ cn2 ‖PE‖2

(ab)2
,

which is a strengthening of Theorem 4.6.1 [61]. In the example of X = `n
∞ we know

that k ' log n, therefore our estimate shows that for a random subspace E(log n)
of dimension roughly equal to log n we must have

k(`n
1 ) log n ≥ cn‖PE(log n)‖2.

On the other hand, the norm of a random projection of `n
∞ of rank log n is known

to exceed
√

log n, so we get the correct estimate k(`n
1 ) ≥ cn.

4.6.3. Another example where the preceding computation gives precise infor-
mation on several parameters of X is the case X = `n

p , 1 < p < 2. Let q be the
conjugate exponent of p. We need the following result [43] (see also [149, pp. 22]):
Theorem 4.6.2. k(`n

q ) ≤ c(q)n2/q. 2

It is a simple consequence of Hölder’s inequality that (ab)2 ≤ n1− 2
q for X = `n

p .
Our computation in 4.6.2 and Theorem 4.6.2 show that if k = min{k(`n

p ), k(`n
q )},

then

(7) c(q)n2/qk(`n
p ) ≥ n1+ 2

q ‖PE(k)‖2.
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Since k(`n
p ) ≤ n (!), we immediately get:

Theorem 4.6.3. Let 1 < p < 2 and q be its conjugate exponent. Then,

k(`n
p ) ' n , k(`n

q ) ' √
qn2/q , d(`n

p , `n
2 ) = d(`n

q , `n
2 ) ' n

1
2− 1

q . 2

4.6.4. A combinatorial application. We saw that the log n estimate in
Dvoretzky’s theorem is optimal by studying the example of `n

∞. The argument we
used for the cube shows something more general: Let P be a symmetric polytope,
and denote its number of facets by f(P ) and its number of vertices by v(P ). Then,
k ≤ log f(P ) and since v(P ) = f(P ◦) we also get k∗ ≤ log v(P ). We have seen that
kk∗ ≥ cn, and this proves the following fact [61]:
Theorem 4.6.4. Let P be a symmetric polytope in Rn. Then,

log f(P ) log v(P ) ≥ cn. 2

4.7 Isomorphic versions of Dvoretzky’s Theorem

4.7.1. Bounded volume ratio. Let K be a body in Rn. The volume ratio of K
is the quantity

vr(K) = inf
{( |K|

|E|
)1/n

: E ⊆ K
}

,

where the inf is over all ellipsoids contained in K. It is easily checked that vr(K)
is an affine invariant.

We shall show that if a body K has small volume ratio, then the space XK has
subspaces F of dimension proportional to n which are “well-isomorphic” to `dimF

2 :
Theorem 4.7.2. Let K be a body in Rn with vr(K) = A. Then, for every k ≤ n
there exists a k-dimensional subspace F of XK such that

d(F, `k
2) ≤ (cA)

n
n−k .

Proof: We may assume that Dn is the maximal volume ellipsoid of K. Then,
‖x‖ ≤ |x| for every x ∈ Rn. Given k ≤ n, double integration shows that there
exists F ∈ Gn,k satisfying

(1)
∫

Sn−1∩F

‖x‖−nσk(dx) ≤ vr(K)n = An.

Then, Markov’s inequality shows that for any r > 0, σk{x ∈ Sn−1∩F : ‖x‖ < r} ≤
(rA)n. If we consider just one point x in Sn−1 ∩F , then the r/2 neighbourhood of
x with respect to | · | has σk measure greater than (cr)k, for some absolute constant
c > 0. This means that if (rA)n < (cr)k then the set {x ∈ Sn−1 ∩ F : ‖x‖ ≥ r} is
an r/2 net for Sn−1 ∩ F : if y ∈ Sn−1 ∩ F , we can find x with |x − y| ≤ r/2 and
‖x‖ ≥ r, and the triangle inequality shows that

(2) ‖y‖ ≥ ‖x‖ − ‖x− y‖ ≥ r − |x− y| ≥ r/2.
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This shows that d(F, `k
2) ≤ 2

r . Analyzing the necessary condition on r we obtain

(3) d(F, `k
2) ≤ (cA)

n
n−k . 2

Theorem 4.7.2 has its origin in the work of Kashin [100], who proved that there
exist c(α)-Euclidean subspaces of `n

1 of dimension [αn], for every α ∈ (0, 1). Szarek
[180] realized the fact that bounded volume ratio is responsible for this property
of `n

1 , while the notion of volume ratio was formally introduced somewhat later in
[187].

4.7.3. A natural question related to Dvoretzky’s theorem is to give an estimate
for

max
dimX=n

min{d(F, `k
2) : F ⊂ X, dimF = k}.

for each 1 ≤ k ≤ n. Such an “isomorphic” version was proved by Milman and
Schechtman [150] who showed the following:
Theorem 4.7.4. There exists an absolute constant C > 0 such that, for every n and
every k ≥ C log n, every n-dimensional normed space X contains a k-dimensional
subspace F for which

d(F, `k
2) ≤ C

√
k/ log(n/k). 2

For an extension to the non-symmetric case, see [75], [86].

5 The Low M ∗-estimate and the Quotient of Sub-
space Theorem

5.1 The Low M∗-estimate

Dvoretzky’s theorem gives very strong information about the Euclidean structure of
k-dimensional subspaces of an arbitrary n-dimensional space when their dimension
k is up to the order of log n. In some cases one can find Euclidean subspaces of
dimension even proportional to n, but no “proportional theory” can be expected in
such a strong sense. However, surprisingly enough, there is non trivial Euclidean
structure in subspaces of dimension λn, λ ∈ (0, 1), even for λ very close to 1. The
first step in this direction is the Low M∗-estimate:
Theorem 5.1.1. There exists a function f : (0, 1) → R+ such that for every
λ ∈ (0, 1) and every n-dimensional normed space X, a random subspace E ∈ Gn,[λn]

satisfies

(1)
f(λ)
M∗ |x| ≤ ‖x‖ , x ∈ E,

where c > 0 is an absolute constant.
Theorem 5.1.1 was originally proved in [132] and a second proof using the

isoperimetric inequality on Sn−1 was given in [133], where (1) was shown to hold
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with f(λ) ≥ c(1 − λ) for some absolute constant c > 0 (and with an estimate
f(λ) ≥ 1 − λ + o(λ) as λ → 0+). This was later improved to f(λ) ≥ c

√
1− λ in

[164] (see also [139] for a different proof with this best possible
√

1− λ dependence).
Finally, it was proved in [69] that one can have

(2) f(λ) ≥
√

1− λ

(
1 + O(

1
(1− λ)n

)
)

.

Geometrically speaking, Theorem 5.1.1 says that for a random λn-dimensional sec-
tion of KX we have

(3) KX ∩ E ⊆ M∗

f(λ)
Dn ∩ E,

that is, the diameter of a random section of a body of dimension proportional to
n is controlled by the mean width M∗ of the body (a random section does not feel
the diameter a of KX but the radius M∗ which is roughly the level r at which half
of the supporting hyperplanes of rDn cut the body KX).

The dual formulation of the theorem has an interesting geometric interpretation.
A random λn-dimensional projection of KX contains a ball of radius of the order
of 1/M . More precisely, for a random E ∈ Gn,λn we have

(4) PE(KX) ⊇ f(λ)
M

Dn ∩ E.

We shall present the proof from [133] which gives linear dependence in λ and
is based on the isoperimetric inequality for Sn−1:
Proof of the Low M∗-estimate: Consider the set A = {y ∈ Sn−1 : ‖y‖∗ ≤ 2M∗}.
We obviously have σ(A) ≥ 1

2 .
Claim:For every λ ∈ (0, 1) there exists a subspace E of dimension k = [λn] such
that

(5) E ∩ Sn−1 ⊆ A( π
2−δ),

where δ ≥ c(1− λ).

Proof of the claim: We have σ(Aπ/4) ≥ 1 − c
√

n
∫ π/4

0
sinn−2 tdt, and double inte-

gration through Gn,k shows that a random E ∈ Gn,k satisfies

(6) σk(Aπ/4 ∩ E) ≥ 1− c
√

n

∫ π/4

0

sinn−2 tdt.

On the other hand, for every x ∈ Sn−1 ∩ E we have

(7) σk(B(x,
π

4
− δ)) '

√
k

∫ π
4−δ

0

sink−2 tdt.
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This means that if

(8)
√

λ

∫ π
4−δ

0

sink−2 tdt '
∫ π

4

0

sinn−2 tdt,

then Aπ/4∩B(x, π
4−δ) 6= ∅, and hence x ∈ Aπ

2−δ. Analyzing the sufficient condition
(8) we see that we can choose δ ≥ c(1− λ). 2

We complete the proof of Theorem 5.1.1 as follows: Let x ∈ Sn−1 ∩ E. There
exists y ∈ A such that

(9) sin δ ≤ |〈x, y〉| ≤ ‖y‖∗‖x‖ ≤ 2M∗‖x‖,

and since sin δ ≥ 2
π δ ≥ c′(1− λ), the theorem follows. 2

5.2 The `-position

Let X be an n-dimensional normed space. Figiel and Tomczak-Jaegermann [60]
defined the `-norm of T ∈ L(`n

2 , X) by

(1) `(T ) =
√

n

(∫

Sn−1
‖Ty‖2σ(dy)

)1/2

.

Alternatively, if {ej} is any orthonormal basis in Rn, and if g1, . . . , gn are indepen-
dent standard Gaussian random variables on some probability space Ω, we have

(2) `(T ) =

(
E

ww
n∑

i=1

giT (ei)
ww

)1/2

,

where E denotes expectation.
Let now RadnX be the subspace of L2(Ω, X) consisting of functions of the

form
∑n

i=1 gi(ω)xi where xi ∈ X (the notation here is perhaps not canonical, but
convenient). The natural projection from L2(Ω, X) onto RadnX is defined by

(3) Radnf =
n∑

i=1

(∫

Ω

gif

)
gi.

We write ‖Radn‖X for the norm of this projection as an operator in L2(Ω, X).
The dual norm `∗ is defined on L(X, `n

2 ) by

(4) `∗(S) = sup{ tr(ST ) : T ∈ L(`n
2 , X), `(T ) ≤ 1}.

From a general result of Lewis [109] it follows that for some T ∈ L(`n
2 , X) one has

`(T )`∗(T−1) = n. Using this fact, Figiel and Tomczak-Jaegermann proved that for
every n-dimensional space X there exists T : `n

2 → X such that

(5) `(T )`((T−1)∗) ≤ n‖Radn‖X .

42



The norm of the projection Radn was estimated by Pisier [159]: For every n-
dimensional space X,

(6) ‖Radn‖X ≤ c log[d(X, `n
2 ) + 1].

This implies that for every X = (Rn, ‖ · ‖) we can define a Euclidean structure 〈·, ·〉
(called the `-structure) on Rn, for which

(7) M(X)M∗(X) ≤ c log[d(X, `n
2 ) + 1].

Equivalently, we can state the following theorem:
Theorem 5.2.1. Let K be a symmetric convex body in Rn. There exists a position
K̃ of K for which

(8) M(K̃)M∗(K̃) ≤ c log[d(XK , `n
2 ) + 1],

where c > 0 is an absolute constant. 2

Pisier’s argument uses symmetry in an essential way, therefore one cannot trans-
fer directly this line of thinking to the non-symmetric case. For recent progress on
the non-symmetric MM∗-estimate, see Appendix 7.2.

5.3 The quotient of subspace theorem

The quotient of subspace theorem [134] states that by performing two operations
on an n-dimensional space, taking first a subspace and then a quotient of it, we can
always arrive at a new space of dimension proportional to n which is (independently
of n) close to Euclidean:
Theorem 5.3.1.(Milman) Let X be an n-dimensional normed space and α ∈ [ 12 , 1).
Then, there exist subspaces E ⊃ F of X for which

(1) k = dim(E/F ) ≥ αn , d(E/F, `k
2) ≤ c(1− α)−1| log(1− α)|.

Geometrically, this means that for every body K in Rn and any α ∈ [ 12 , 1), we can
find subspaces G ⊂ E with dimG ≥ αn and an ellipsoid E such that

(2) E ⊂ PG(K ∩ E) ⊂ c(1− α)−1| log(1− α)|E .

The proof of the theorem is based on the Low M∗-estimate and an iteration pro-
cedure which makes essential use of the `-position.
Proof: We may assume that KX is in `-position: then, by Theorem 5.2.1 we have
M(X)M∗(X) ≤ c log[d(X, `n

2 ) + 1].
Step 1: Let λ ∈ (0, 1). We shall show that there exist a subspace E of X,
dimE ≥ λn, and a subspace F of E∗, dimF = k ≥ λ2n, such that d(F, `k

2) ≤
c(1− λ)−1 log[d(X, `n

2 ) + 1].
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The proof of this fact is a double application of the Low M∗-estimate. By
Theorem 5.1.1, a random λn-dimensional subspace E of X satisfies

(3)
c1

√
1− λ

M∗(X)
|x| ≤ ‖x‖ ≤ b|x| , x ∈ E.

Moreover, since (3) holds for a random E ∈ Gn,λn, we may also assume that
M(E) ≤ c2M(X). Therefore, repeating the same argument for E∗, we may find a
subspace F of E∗ with dimF = k ≥ λ2n and

(4)
c3

√
1− λ

M(X)
|x| ≤ c1

√
1− λ

M∗(E∗)
|x| ≤ ‖x‖E∗ ≤ M∗(X)

c1

√
1− λ

|x|

for every x ∈ F . Since KX is in `-position, we obtain

(5) d(F, `k
2) ≤ c4(1− λ)−1M(X)M∗(X) ≤ c(1− λ)−1 log[d(X, `n

2 ) + 1].

Step 2: Denote by QS(X) the class of all quotient spaces of a subspace of X, and
define a function f : (0, 1) → R+ by

(6) f(α) = inf{d(F, `k
2) : F ∈ QS(X), dimF ≥ αn}.

Then, what we have really proved in Step 1 is the estimate

(7) f(λ2α) ≤ c(1− λ)−1 log f(α).

An iteration lemma (see [134] or [162, pp. 130]) allows us to conclude that

f(α) ≤ c(1− α)−1| log(1− α)|. 2

5.4 Variants and applications of the Low M∗-estimate

1. An almost direct consequence of the Low M∗-estimate is the existence of a
function f : (0, 1) → R+ with the following property [141]:

If K is a body in Rn and if λ ∈ (0, 1), then a random λn-dimensional section
K ∩ F of K satisfies diam(K ∩ F ) ≤ 2r, where r is the solution of the equation

(1) M∗(K ∩ rDn) = f(λ)r.

One can choose f(λ) = (1−ε)
√

1− λ for any ε ∈ (0, 1), and then (1) is satisfied
for all F in a subset of Gn,[λn] of measure greater than 1− c1 exp(−c2ε

2(1− λ)n).
2. Let t(r) = t(XK ; r) be the greatest integer k for which a random subspace

F ∈ Gn,k satisfies diam(K ∩ F ) ≤ 2r. The following linear duality relation was
proved in [140]:

If t∗(r) = t(X∗; r), then for any ζ > 0 and any r > 0 we have

(2) t(r) + t∗
(

1
ζr

)
≥ (1− ζ)n− C,
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where C > 0 is an absolute constant.
This surprisingly precise connection between the structure of proportional sec-

tions of a body and its polar is also expressed as follows [81]:
Let ζ > 0 and k, l be integers with k + l ≤ (1− ζ)n. Then, for every body K in

Rn we have

(3)
∫

Gn,k

M∗(K ∩ F )dνn,k(F )
∫

Gn,l

M∗(K◦ ∩ F ′)dνn,l(F ′) ≤ C

ζ
,

where C > 0 is an absolute constant.
3. An estimate dual to (1) was established in [79]. There exists a second

function g : (0, 1) → R such that: for every body K in Rn and every λ ∈ ( 1
2 , 1), a

random λn-dimensional section K ∩F of K satisfies diam(K ∩F ) ≥ 2r, where r is
the solution of the equation

(4) M∗(K ∩ rDn) = g(λ)r.

This double sided estimate provided by (1) and (4) may be viewed as an (incom-
plete) asymptotic formula for the diameter of random proportional sections of K,
which is of interest from the computational geometry point of view since the func-
tion r → M∗(K ∩ rDn) is easily computable.

4. The diameter of proportional dimensional sections of K is connected with
the following global parameter of K: For every integer t ≥ 2 we define rt(K) to be
the smallest r > 0 for which there exist rotations u1, . . . , ut such that u1(K)∩ . . .∩
ut(K) ⊆ rDn.

If Rt(K) is the smallest R > 0 for which most of the [n/t]-dimensional sections
of K satisfy diam(K ∩F ) ≤ 2R, then it is proved in [141] that r2t(K) ≤ √

tRt(K).
The fact that a reverse comparison of these two parameters is possible was estab-
lished in [80]: There exists an absolute constant C > 1 such that

(5) RCt(K) ≤ Ctrt(K)

for every t ≥ 2.
5. Fix an orthonormal basis {e1, . . . , en} of Rn. Then, for every non empty

σ ⊆ {1, . . . , n} we define the coordinate subspace Rσ = span{ej : j ∈ σ}.
We are often interested in analogues of the Low M∗-estimate with the addi-

tional restriction that the subspace E should be a coordinate subspace of a given
proportional dimension (see [63] for applications to Dvoretzky-Rogers factorization
questions). Such estimates are sometimes possible [78]:

If K is an ellipsoid in Rn, then for every λ ∈ (0, 1) we can find σ ⊆ {1, . . . , n}
of cardinality |σ| ≥ (1− λ)n such that

(6) PRσ (K) ⊇ [λ/ log(1/λ)]1/2

MK
Dn ∩ Rσ.

Analogues of this hold true if the volume ratio of K or the cotype-2 constant of
XK is small.
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Finally, let us mention that Bourgain’s solution of the Λ(p) problem [23] (see
also [189] and [25]) is closely related to the following “coordinate” result:

Let (φi)i≤n be a sequence of functions on [0, 1] which is orthogonal in L2. If
‖φi‖∞ ≤ 1 and ‖φi‖2 ≥ c > 0 for every i ≤ n, then for every p > 2 most of the
subsets σ ⊆ {1, . . . , n} of cardinality [n2/p] satisfy

(7) c

(∑

i∈σ

t2i

)1/2

≤
www

∑

i∈σ

tiφi

www
p
≤ K(p)

(∑

i∈σ

t2i

)1/2

for every choice of reals (ti)i∈σ. We refer the reader to the article [99] in this
collection for the results of Bourgain-Tzafriri on restricted invertibility, which are
closely related to the above.

6 Isomorphic symmetrization and applications to
classical convexity

6.1 Estimates on covering numbers

Let K1 and K2 be convex bodies in Rn. The covering number N(K1,K2) of K1 by
K2 is the least positive integer N for which there exist x1, . . . , xN ∈ Rn such that

(1) K1 ⊆
N⋃

i=1

(xi + K2).

We shall formulate and sketch the proofs of a few important results on covering
numbers which we need in the next section.

The well known Sudakov inequality [179] estimates N(K, tDn):
Theorem 6.1.1. Let K be a body in Rn. Then,

(2) N(K, tDn) ≤ exp(cn(M∗/t)2)

for every t > 0, where c > 0 is an absolute constant.
The dual Sudakov inequality, proved by Pajor and Tomczak-Jaegermann [163],

gives an upper bound for N(Dn, tK):
Theorem 6.1.2. Let K be a symmetric convex body in Rn. Then,

(3) N(Dn, tK) ≤ exp(cn(M/t)2)

for every t > 0, where c > 0 is an absolute constant.
We shall give a simple proof of Theorem 6.1.2 which is due to Talagrand (see

[115, pp. 82]).
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Proof of Theorem 6.1.2: We consider the standard Gaussian probability measure
γn on Rn, with density

dγn = (2π)−n/2 exp(−|x|2/2)dx.

A direct computation shows that
∫ ‖x‖dγn(x) = αnM , where αn/

√
n → 1 as

n →∞. Markov’s inequality shows that

(4) γn(x : ‖x‖ ≤ 2Mαn) ≥ 1
2
.

Let {x1, . . . , xN} be a subset of Dn which is maximal under the requirement that
‖xi − xj‖ ≥ t, i 6= j. Then, the sets xi + t

2K have disjoint interiors. The same
holds true for the sets yi + 2MαnK, yi = (4Mαn/t)xi. Therefore,

(5)
N∑

i=1

γn(yi + 2MαnK) ≤ 1.

Using the convexity of e−s, the symmetry of K and (4), we can then estimate
γn(yi + 2MαnK) from below as follows:

(6) γn(yi + 2MαnK) ≥ 1
2

exp(−(4Mαn/t)2).

Now, (5) shows that

(7) N ≤ 2 exp((4Mαn/t)2),

and since αn '
√

n we conclude the proof. 2

Sudakov’s inequality (Theorem 6.1.1) can be deduced from Theorem 6.1.2 with
a duality argument of Tomczak-Jaegermann [194]: Let

(8) A = sup
t>0

t(log N(Dn, tK◦))1/2.

We check that 2K ∩ ( t2

2 K◦) ⊆ tDn for every t > 0, and this implies that

(9) N(K, tDn) ≤ N(K, 2K ∩ (
t2

2
K◦)) = N(K,

t2

4
K◦)

≤ N(K, 2tDn)N(Dn,
t

8
K◦).

This shows that

(10) t(log N(K, tDn))1/2 ≤ t(log N(K, 2tDn))1/2 + 8A,

from which we easily get

(11) sup
t>0

t(log N(K, tDn))1/2 ≤ 16A.
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This is equivalent to the assertion of Theorem 6.1.1 (just observe that M∗(K) =
M(K◦)). 2

A weaker version of Sudakov’s inequality can be proved if we use Urysohn’s
inequality: For every body K and any t > 0, we have

(12) N(K, tDn) ≤ exp(2nM∗/t).

Proof: Consider a set {x1, . . . , xN} ⊂ K which is maximal under the requirement
int(xi + t

2Dn) ∩ int(xj + t
2Dn) = ∅. Then,

(13) N(K, tDn) ≤ N ≤ |K + t
2Dn|

| t2Dn|
=

(
2
t

)n |K + t
2Dn|

|Dn| ,

and Urysohn’s inequality shows that

(14) N(K, tDn) ≤
(

2
t

)n

(M∗(K + (t/2)Dn))n

=
(

2
t

)n (
M∗ +

t

2

)n

=
(

1 +
2M∗

t

)n

≤ exp(2nM∗/t). 2

Using the covering numbers one can compare volumes of convex bodies in vari-
ous situations. A main ingredient of the proof of the lemmas below (which may be
found in [138]) is the Brunn-Minkowski inequality:
Lemma 1. Let K, T , and P be symmetric convex bodies in Rn. Then,

(15) |K ∩ (T + x) + P | ≤ |K ∩ T + P |
for every x ∈ Rn.
Proof: Let Tx = K ∩ (T + x) + P . We easily check that Tx + T−x ⊆ 2T0, and then
apply the Brunn-Minkowski inequality. 2

Lemma 2. Let K and P be symmetric convex bodies in Rn. If t > 0, then

(16) |K + P | ≤ N(K, tDn)|(K ∩ tDn) + P |.

Proof: If K ⊆ ⋃
i≤N K ∩ (xi + tDn), then K + P ⊆ ⋃

i≤N [(xi + tDn)∩K + P ]. We
compare volumes using the information from Lemma 1. 2

Lemma 3. Let K and L be symmetric convex bodies in Rn. Assume that L ⊆ bK
for some b ≥ 1. Then,

(17) N

(
co(K ∪ L), (1 +

1
n

)K
)
≤ 2bnN(L,K). 2

Using Lemma 3 with L = 1
t Dn and combining with Lemma 2, we have:

Lemma 4. Let K and P be symmetric convex bodies in Rn. Assume that Dn ⊆ tbK
for some t > 0. Then,

(18) |co(K ∪ (1/t)Dn) + P ) ≤ 2ebnN(Dn, tK)|K + P |. 2
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6.2 Isomorphic symmetrization and applications to classical
convexity

The functional analytic approach and the methods of local theory lead to new
isomorphic geometric inequalities. In this way, the ideas we described in previous
sections find applications to classical convexity theory in Rn. We shall describe two
results in this direction:
6.2.1. The inverse Blaschke-Santaló inequality[32] There exists an absolute
constant c > 0 such that

(1) 0 < c ≤
( |K||K◦|
|Dn||Dn|

) 1
n

≤ 1

for every body in Rn.
The inequality on the right is the Blaschke-Santaló inequality: the volume

product s(K) = |K||K◦| is maximized (among symmetric convex bodies) exactly
when K is an ellipsoid. A well-known conjecture of Mahler states that s(K) ≥ 4n/n!
for every K. This has been verified for some classes of bodies, e.g. zonoids and
1-unconditional bodies (see [165], [128], [171], [87]). The left handside inequality
comes from [32] and answers the question of Mahler in the asymptotic sense: For
every body K, the affine invariant s(K)1/n is of the order of 1/n.
6.2.2. The inverse Brunn-Minkowski inequality[135] There exists an absolute
constant C > 0 with the following property: For every body K in Rn there exists
an ellipsoid MK such that |K| = |MK | and for every body T in Rn

(2)
1
C

∣∣MK + T
∣∣1/n ≤

∣∣K + T
∣∣1/n ≤ C

∣∣MK + T
∣∣1/n

.

This implies that for every body K in Rn there exists a position K̃ = uK(K)
of volume |K̃| = |K| such that the following reverse Brunn-Minkowski inequality
holds true:

“If K1 and K2 are bodies in Rn, then

(3) |t1K̃1 + t2K̃2|1/n ≤ C
(
t1|K̃1|1/n + t2|K̃2|1/n

)
,

for all t1, t2 > 0, where C > 0 is an absolute constant”.
The ellipsoid MK in 6.2.2 is called an M -ellipsoid for K. Analogously, the body

K̃ = uK(K) is called an M -position of K (and then, one may take MK̃ = ρDn).
The symmetry of K is not really needed in 6.2.1 and 6.2.2 (see e.g. [147]).

Both results were originally proved by a dimension descending procedure which
was based on the quotient of subspace theorem. We shall present a second approach,
which appeared in [138] and introduced an “isomorphic symmetrization” technique.
This is a symmetrization scheme which is in many ways different from the classical
symmetrizations. In each step, none of the natural parameters of the body is being
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preserved, but the ones which are of interest remain under control. After a finite
number of steps, the body has come close to an ellipsoid and this is sufficient for
our purposes, but there is no natural notion of convergence to an ellipsoid.
6.2.3. Remarks. Applying (2) for T = MK we get

(4) |K + MK |1/n ≤ C|K|1/n.

This is equivalent to Theorem 6.2.2 and to each one of the following statements:
(i) There exists a constant C > 0 such that for every body K we can find an

ellipsoid MK with |MK | = |K| and

N(K,MK) ≤ exp(Cn).

(ii) There exists a constant C > 0 such that for every body K we can find an
ellipsoid MK with |MK | = |K| and

N(MK ,K) ≤ exp(Cn).

We can also pass to polars and show that for every body T in Rn,

1
C
|M◦

K + T |1/n ≤ |K◦ + T |1/n ≤ C|M◦
K + T |1/n.

Since the M -position is isomorphically defined, one may ask for stronger regularity
on the covering numbers estimates (i) and (ii): Pisier proved (see [162, Chapter
7]) that, for every α > 1/2 and every body K there exists an affine image K̃ of K
which satisfies |K̃| = |Dn| and

max{N(K, tDn), N(Dn, tK), N(K◦, tDn), N(Dn, tK◦)} ≤ exp(c(α)nt−1/α)

for every t ≥ 1, where c(α) is a constant depending only on α, with c(α) = O((α−
1
2 )−1/2) as α → 1

2 . We then say that K is in M -position of order α (α-regular in
the terminology of [162]).
Proof of the Theorems: Since s(K) is an affine invariant, we may assume that K is
in a position such that M(K)M∗(K) ≤ c log[d(XK , `n

2 )+1]. We may also normalize
so that M(K) = 1. We define

(5) λ1 = M∗(K)a1 , λ′1 = M(K)a1,

for some a1 > 1, and consider the new body

(6) K1 = co[(K ∩ λ1Dn) ∪ 1
λ′1

Dn].

Using Sudakov’s inequality and Lemma 2 with P = {0}, we see that

(7) |K1| ≥ |K ∩ λ1Dn| ≥ |K|/N(K,λ1Dn) ≥ |K| exp(−cn/a2
1),
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while using the dual Sudakov inequality and Lemma 3 we get

(8) |K1| ≤ |co(K ∪ 1
λ′1

Dn)| ≤ 2e
b

λ′1
nN(Dn, λ′1K)|K| ≤ exp(cn/a2

1).

The same computation can be applied to K◦
1 , and this shows that

(9) exp(−cn/a2
1) ≤

s(K1)
s(K)

≤ exp(cn/a2
1).

We continue in the same way. We now know that d(XK1 , `
n
2 ) ≤ M(K)M∗(K)a2

1

and, since s(K1) is an affine invariant, we may assume that M(K1)M∗(K1) ≤
c log[d(XK1 , `

n
2 ) + 1] and M(K1) = 1. We then define

(10) λ2 = M∗(K1)a2 , λ′2 = M(K1)a2,

and consider the body K2 = co[(K1 ∩ λ2Dn) ∪ 1
λ′2

Dn]. Estimating volumes, we see
that

(11) exp(−cn/a2
2) ≤

s(K2)
s(K1)

≤ exp(cn/a2
2).

We iterate this scheme, choosing a1 = log n, a2 = log log n, . . . , at = log(t) n – the
t-iterated logarithm of n, and stop the procedure at the first t for which at < 2. It
is easy to check that d(XKt , `

n
2 ) ≤ C, therefore

(12)
1
C
≤ s(Kt)1/n ≤ C.

On the other hand, combining our volume estimates we see that

(13) c1 ≤ exp(−c(
1
a2
1

+ . . . +
1
a2

t

)) ≤ s(Kt)1/n

s(K)1/n
≤ exp(c(

1
a2
1

+ . . . +
1
a2

t

)),

which proves Theorem 6.1.1 since the series 1
a2
1
+ . . .+ 1

a2
t
+ . . . remains bounded by

an absolute constant. 2

The proof of Theorem 6.2.2 follows the same pattern. In each step, we verify
that for every convex body T

(14) exp(−cn/a2
s) ≤

|Ks + T |
|Ks−1 + T | ≤ exp(cn/a2

s),

and the same holds true for K◦
s . At the t-th step, we arrive at a body Kt which

is C-isomorphic to an ellipsoid M , and (14) shows that |Kt|1/n ' |K|1/n up to an
absolute constant. If we define MK = ρM where ρ > 0 is such that |MK | = |K|,
then ρ ' 1 and using (14) we conclude the proof. 2

Note. The existence of the M -ellipsoid MK of K in the non-symmetric case was
established in [147]. The key lemma is the observation that if 0 is the centroid of
the convex body K, then |K ∩ (−K)| ≥ 2−n|K|.
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We close this section with a few geometric consequences of the M -position:
1. Every body K has a position K̃ with the following property: there exist

u, v ∈ SO(n) such that if we set P = K̃ + u(K̃) and Q = P ◦ + v(P ◦), then Q is
equivalent to a Euclidean ball up to an absolute constant. Actually, this statement
is satisfied for a random pair (u, v) ∈ SO(n)× SO(n). This double operation may
be called isomorphic Euclidean regularization.

Compare with the following examples: If K is the unit cube, then P is already
equivalent to a ball for most u ∈ SO(n) (this follows from [100], see 4.7.1). If K is
the unit ball of `n

1 , the second operation is certainly needed.
A closely related result from [141] is the following isomorphic inequality con-

necting K with K◦:
Let ρt(K) = max{ρ > 0 : ρDn ⊂ 1

t

∑t
i=1 ui(K) , ui ∈ O(n)}. Then, there

exists an absolute constant c > 0 such that

ρ2(K)ρ3(K◦) ≥ c

for every body K in Rn. Observe that Kashin’s result is a consequence of this fact:
if K is the cube, then ρ3(K◦) ≤ c/

√
n. Therefore, K + u(K) ⊃ c

√
nDn for some

u ∈ O(n). It is not clear if two rotations of K◦ suffice for a similar statement.
2. One may use the M -position in order to obtain a random version of the

quotient of subspace theorem: If K is in M -position, then using Remark 6.2.3(i)
we see that every λn-dimensional projection PE(K) of K has finite volume ratio
(which depends on λ). We can therefore apply Theorem 4.7.2 to conclude that a
random λ2n-dimensional section PF (K)∩E of PF (K) has distance depending only
on λ from the corresponding Euclidean ball.

7 Appendix

7.1 The hyperplane conjecture

In 2.3 we saw that every body in Rn has an isotropic position K with |K| = 1,
which satisfies

(1)
∫

K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. This position is uniquely determined up to orthogonal transfor-
mations, and the affine invariant LK is called the isotropic constant of K. It is an
open problem whether there exists an absolute constant C > 0 such that LK ≤ C
for every body K.

Let K be a body in Rn. Using Theorem 2.3.6, one can easily check that

(2) nL2
K ≤ |detu|

|uK|1+ 2
n

∫

K

|ux|2dx
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for every invertible linear transformation u. For the same reason,

(3) nL2
K◦ ≤ |det(u−1)∗|

|(u−1)∗(K◦)|1+ 2
n

∫

K◦
|(u−1)∗(x)|2dx.

We may choose u : XK → `n
2 such that d(XK , `n

2 ) = ‖u‖ ‖u−1‖. Then, (2) and (3)
imply that

(4) n2L2
KL2

K◦ ≤ d2(XK , `n
2 )

(|uK| |(u−1)∗(K◦)|)−2/n
,

and an application of the inverse Santaló inequality shows that

(5) LKLK◦ ≤ cd(XK , `n
2 ).

Therefore, duality gives the following first estimates on the isotropic constant:
Theorem 7.1.1. Let K be a body in Rn. Then, LK ≤ cd(XK , `n

2 ) ≤ c
√

n. More-
over, either LK ≤ c 4

√
n or LK◦ ≤ c 4

√
n. 2

Bourgain [24] has proved that LK ≤ c 4
√

n log n, where c > 0 is an absolute
constant, for every body K. We shall give a proof of this fact following Dar’s
presentation in [46]. Recall that for every θ ∈ Sn−1 and p > 1 we have

(6)
(

1
|K|

∫

K

|〈x, θ〉|pdx

)1/p

≤ cp
1
|K|

∫

K

|〈x, θ〉|dx,

where c > 0 is an absolute constant. This is a consequence of Borell’s lemma (see
2.3). It follows from 2.3 (25) that if K is isotropic, then

(7)
∫

K

exp(|〈x, θ〉|/cLK)dx ≤ 2,

for every θ ∈ Sn−1, where c > 0 is an absolute constant. We shall use this infor-
mation in the following form:
Lemma 1. Let K be an isotropic body. If N is a finite subset of Sn−1, then

(8)
∫

K

max
θ∈N

|〈x, θ〉|dx ≤ cLK log |N |. 2

Starting with an isotropic body K, we see from Theorem 2.3.6 that

(9) nL2
K ≤ trT

n

∫

K

|x|2dx =
∫

K

〈x, Tx〉dx

≤
∫

K

‖Tx‖K◦dx =
∫

K

max
y∈TK

|〈x, y〉|dx

for every symmetric, positive-definite volume preserving transformation T of Rn.
In order to estimate this last integral, we first reduce the problem to a discrete one
using the Dudley-Fernique decomposition:
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Lemma 2. Let A be a body in Rn, and R be its diameter. For every r and
j = 1, . . . , r, we can find finite subsets Nj of A with log |Nj | ≤ cn(w(A)2j/R)2 with
the following property: every x ∈ A can be written in the form

x = z1 + . . . + zr + wr,

where zj ∈ Zj = (Nj −Nj−1)∩ (3R/2j)Dn and wr ∈ (R/2r)Dn (we set N0 = {o}).
2

The proof of this decomposition is simple. The estimate on the cardinality of
Nj comes from Sudakov’s inequality (Theorem 6.1.1). We now choose T in (9) so
that A = TK will have minimal mean width: Theorem 5.2.1 allows us to assume
that w(TK) ≤ c

√
n log n.

From Lemma 2, we see that for every x ∈ K,

(10) max
y∈TK

|〈y, x〉| ≤
r∑

j=1

max
z∈Zj

|〈z, x〉|+ max
w∈(R/2r)Dn

|〈w, x〉|

≤
r∑

j=1

3R

2j
max
z∈Zj

|〈z̃, x〉|+ R

2r
|x|,

where z̃ = z/|z| ∈ Sn−1. Now, Lemma 1 and the estimate on |Nj | imply that

(11)
∫

K

max
z∈Zj

|〈z̃, x〉|dx ≤ cLK log |Zj | ≤ cnLK

(
w(TK)2j

R

)2

for every j = 1, . . . , r. Going back to (9), we conclude that

(12) nL2
K ≤ cLK




r∑

j=1

nw2(TK)
2j

R
+

R

2r

√
n




≤ c′LK

(
nw2(TK)

2r

R
+

R

2r

√
n

)
,

and the optimal choice for r gives

(13) nL2
K ≤ c 4

√
nw(TK)

√
nLK .

Since w(TK) ≤ c
√

n log n, the proof is complete:
Theorem 7.1.2. For every body K in Rn we have LK ≤ c 4

√
n log n. 2

Remark: The same holds true for non-symmetric convex bodies as well (see [155]).

54



7.2 Geometry of the Banach-Mazur compactum

1. Consider the set Bn of all equivalence classes of n-dimensional normed spaces
X = (Rn, ‖ · ‖), where X is equivalent to X ′ if and only if X and X ′ are isometric.
Then, Bn becomes a compact metric space with the metric log d, where d is the
Banach-Mazur distance (the Banach-Mazur compactum).

There are many interesting questions about the structure of the Banach-Mazur
compactum, and most of them remain open. Below, we describe some fundamental
results and problems in this area. The interested reader will find more information
in the book [195] and the surveys [67], [183].

2. John’s theorem shows that d(X,Y ) ≤ n for every X, Y ∈ Bn. Therefore,
diam(Bn) ≤ n. The natural question of the exact order of diam(Bn) remained open
for many years and was finally answered by Gluskin [64]: diam(Bn) ≥ cn.

Gluskin does not describe a pair X,Y ∈ Bn with d(X, Y ) ≥ cn explicitely
(in fact, there is no concrete example of spaces with distance of order greater
than

√
n). The idea of the proof is probabilistic: a random T : `n

1 → `n
1 satisfies

‖T‖ ‖T−1‖ ≥ cn, and this suggests that by “spoiling” `n
1 it is possible to obtain

X and Y with distance cn. The spaces which were used in [64] have as their unit
ball a body of the form K = co{±ei,±xj : 1 ≤ j ≤ 2n}, where {ei} is the standard
orthonormal basis of Rn and the xj ’s are chosen uniformly and independently from
the unit sphere Sn−1. A random pair of such spaces has the desired property.

This method of considering random spaces proved to be very fruitful in prob-
lems where one needed to establish “pathological behavior”. We mention Szarek’s
finite dimensional analogue of Enflo’s example [56] of a space failing the approx-
imation property: there exist n-dimensional normed spaces whose basis constant
is of the order of

√
n [181]. See also [65], [124] and subsequent work of Szarek

and Mankiewicz where random spaces play a central role. The article [152] in this
collection covers this topic.

3. Another natural question about the geometry of the Banach-Mazur com-
pactum is that of the uniqueness of its center: If dimX = n and d(X,Y ) ≤ c

√
n

for every Y ∈ Bn, is it then true that X is “close” (depending on c) to `n
2 ?

This question was answered in the negative by Bourgain and Szarek [33]: Let
X0 = `s

2 ⊕ `n−s
1 , where s = [n/2]. Then, d(X0, Y ) ≤ c

√
n for every Y ∈ Bn (and,

clearly, d(X0, `
n
2 ) ≥ c′

√
n). The proof of the fact that X0 is an asymptotic center

of the compactum is based on the proportional version of the Dvoretzky-Rogers
lemma (see 4.1).

4. Fix X ∈ Bn. Then, one can define the radius of Bn with respect to X by
R(X) = max{d(X,Y ) : Y ∈ Bn}. Many problems of obvious geometric interest
arise if one wants to give the order of the radius with respect to important concrete
centers. For example, the problem of the distance to the cube R(`n

∞) remains open.
It is known that R(`n

∞) ≤ cn5/6 (see [33], [186] and [62]). On the other hand, Szarek
has proved [182] that R(`n

∞) ≥ c
√

n log n, therefore `n
1 and `n

∞ are not asymptotic
centers of the compactum (these are actually the only concrete examples of spaces
for which this property has been established).
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5. If we restrict ourselves to subclasses of Bn, then the diameter may be signif-
icantly smaller than n: Let An be the family of all 1-symmetric spaces. Tomczak-
Jaegermann [192] (see also [66]) proved that d(X, Y ) ≤ c

√
n whenever X, Y ∈ An.

This result is clearly optimal: recall that d(`n
1 , `n

2 ) =
√

n. The analogous problem for
the family of 1-unconditional spaces remains open. Lindenstrauss and Szankowski
[114] have shown that in this case d(X, Y ) ≤ cnα, where α is a constant close to
2/3. It is conjectured that the right order is close to

√
n.

The diameter of other subclasses of Bn was estimated with the method of ran-
dom orthogonal factorizations. The idea (which has its origin in work of Tomczak-
Jaegermann [190], and was later developped and used by Benyamini and Gordon
[27]) is to use the average of ‖T‖X→Y ‖T−1‖Y→X with respect to the probability
Haar measure on SO(n) as an upper bound for d(X,Y ). Using this method one
can prove a general inequality in terms of the type-2 constants of the spaces [27],
[55]:

d(X, Y ) ≤ c
√

n[T2(X) + T2(Y ∗)]

for every X, Y ∈ Bn. This was further improved by Bourgain and Milman [31] to

d(X,Y ) ≤ c
(
d(Y, `n

2 )T2(X) + d(X, `n
2 )T2(Y ∗)

)
.

In [31] it is also shown that d(X, X∗) ≤ c(log n)γn5/6 for every X ∈ Bn. All
these results indicate that the distance between spaces whose unit balls are “quite
different” should be significantly smaller than diam(Bn).

6. The Banach-Mazur distance d(K, L) between two not necessarily symmetric
convex bodies K and L is the smallest d > 0 for which there exist z1, z2 ∈ Rn and
T ∈ GLn such that K − z1 ⊆ T (L− z2) ⊆ d(K − z1).

The question of the maximal distance between non-symmetric bodies is open.
John’s theorem implies that d(K,L) ≤ n2. Better estimates were obtained with
the method of random orthogonal factorizations and recent progress on the non-
symmetric analogue of the MM∗-estimate (Theorem 5.2.1). In [42] it was proved
that every convex body K has an affine image K1 such that M(K1)M∗(K1) ≤ c

√
n,

a bound which was improved to cn1/3 logβ n, β > 0 in [170]. Using this fact,
Rudelson showed that d(K, L) ≤ cn4/3 logβ n for any K,L ∈ Kn. See also recent
work of Litvak and Tomczak-Jaegermann [116] for related estimates in the non-
symmetric case.

7. Milman and Wolfson [153] studied spaces X whose distance from `n
2 is

extremal. They showed that if d(X, `n
2 ) =

√
n, then X has a k-dimensional subspace

F with k ≥ c log n which is isometric to `k
1 . The example of X = `n

∞ shows that
this estimate is exact.

An isomorphic version of this result is also possible [153]: If d(X, `n
2 ) ≥ α

√
n

for some α ∈ (0, 1), then X has a k-dimensional subspace F (with k = h(n) → ∞
as n → ∞) which satisfies d(F, `k

1) ≤ c(α), where c(α) depends only on α. The
original estimate for k in [153] was later improved to k ≥ c1(α) log n through work
of Kashin, Bourgain and Tomczak-Jaegermann (see [195, Section 31] for details).
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An extension of this fact appears in [158]: Recall that a Banach space X
contains `n

1 ’s uniformly if X contains a sequence of subspaces Fn, n ∈ N with
d(Fn, `n

1 ) ≤ C. Then, the following are equivalent:
(i) X does not contain `n

1 ’s uniformly.
(ii) sup{d(F, `n

2 ) : F ⊂ X , dimF = n} = o(
√

n).
(iii) There exists a sequence αn = o(

√
n) with the following property: If F is an

n-dimensional subspace of X, there exists a projection P : X → F with ‖P‖ ≤ αn.
In the non-symmetric case the extremal distance to the ball is n. Palmon [156]

showed that d(K,Dn) = n if and only if K is a simplex.
8. Tomczak-Jaegermann [193] defined the weak distance wd(X,Y ) of two n-

dimensional normed spaces X and Y by wd(X, Y ) = max{q(X, Y ), q(Y, X)}, where

q(X, Y ) = inf
∫

Ω

‖S(ω)‖ ‖T (ω)‖ dω,

and the inf is taken over all measure spaces Ω and all maps T : Ω → L(X, Y ),
S : Ω → L(Y, X) such that

∫
Ω

S(ω) ◦ T (ω)dω = idX . It is not hard to check that
wd(X, Y ) ≤ d(X,Y ) and that with high probability the weak distance between
two Gluskin spaces is bounded by c

√
n. In fact, Rudelson [168] has proved that

wd(X, Y ) ≤ cn13/14 log15/7 n for all X, Y ∈ Bn. It is conjectured that the weak
distance in Bn is always bounded by c

√
n.

7.3 Symmetrization and approximation

Symmetrization procedures play an important role in classical convexity. The ques-
tion of how many successive symmetrizations of a certain type are needed in order
to obtain from a given body K a body K̃ which is close to a ball was extensively
studied with the methods of local theory. This study led to the surprising fact that
only few such operations suffice:

Let K ∈ Kn and u ∈ Sn−1. Consider the reflection πu with respect to the
hyperplane orthogonal to u. The Minkowski symmetrization of K with respect
to u is the convex body 1

2 (K + πuK). Observe that this operation is linear and
preserves mean width. A random Minkowski symmetrization of K is a body πuK,
where u is chosen randomly on Sn−1 with respect to the probability measure σ.

In [38] it was proved that for every ε > 0 there exists n0(ε) such that for every
n ≥ n0 and K ∈ Kn, if we perform N = Cn log n + c(ε)n independent random
Minkowski symmetrizations on K we receive a convex body K̃ such that

(1− ε)w(K)Dn ⊂ K̃ ⊂ (1 + ε)w(K)Dn

with probability greater than 1 − exp(−c1(ε)n). The method of proof is closely
related to the concentration phenomenon for SO(n).

The same question for Steiner symmetrization was studied in [39]. Mani [123]
has proved that, starting with a body K ∈ Kn, if we choose an infinite random
sequence of directions uj ∈ Sn−1 and apply successive Steiner symmetrizations σuj
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of K in these directions, then we almost surely get a sequence of convex bodies
converging to a ball. The number of steps needed in order to bring K at a fixed
distance from a ball is much smaller [39]: If K ∈ Kn with |K| = |Dn|, we can find
N ≤ c1n log n and u1, . . . , uN ∈ Sn−1 such that

(1) c−1
2 Dn ⊆ (σuN

◦ . . . ◦ σu1)(K) ⊆ c2Dn,

where c1, c2 > 0 are absolute constants. It is not clear what the bound f(n, ε) on
N would be if we wanted to replace c2 by 1−ε, ε ∈ (0, 1). The proof of (1) is based
on the previous result about Minkowski symmetrizations.

Results of the same nature concern questions about approximation of convex
bodies by Minkowski sums. The global form of Dvoretzky’s theorem is an isomor-
phic statement of this type.

Recall that a zonotope is a Minkowski sum of line segments, and a zonoid is a
body in Rn which is the Hausdorff limit of a sequence of zonotopes. A body is a
zonoid if and only if its polar body is the unit ball of an n-dimensional subspace of
L1(0, 1) (for this and other characterizations of zonoids, see [20]).

The unit ball of `n
p is a zonoid if and only if 2 ≤ p ≤ ∞ (see [50]). In partic-

ular, the Euclidean unit ball Dn can be approximated arbitrarily well by sums of
segments. The question of how many segments are needed in order to come (1+ε)-
close to Dn is equivalent to the problem of embedding `n

2 into `N
1 . From the results

in [61] it follows that N ≤ c(ε)n segments are enough. In [40] it was shown that the
same bound on N allows us to choose the segments having the same length. The
linear dependence of N on n is optimal, but the best possible answer if we view N
as a function of both n and ε is not known (see [28], [30], [40], [111], [196]).

If we replace the ball Dn by an arbitrary zonoid Z, then the same approxi-
mation problem is equivalent to the question of embedding an n-dimensional sub-
space of L1(0, 1) into `N

1 . Bourgain, Lindenstrauss and Milman [40] proved, by
an adaptation of the empirical distribution method of Schechtman [173], that for
every ε ∈ (0, 1) there exist N ≤ cε−2n log n and segments I1, . . . , IN such that
(1− ε)Z ⊂ ∑

Ij ⊂ (1 + ε)Z. Moreover, if the norm of Z is strictly convex then N
can be chosen to be of the order of n up to a factor which depends on ε and the
modulus of convexity of ‖ · ‖Z . Later, Talagrand [188] showed (with a considerably
simpler approach) that one can have N ≤ c‖Radn‖2Xε−2n.

For more information on this topic, we refer the reader to the surveys [110],
[113] and [99].

7.4 Quasi-convex bodies

Many of the results that we presented about symmetric convex bodies can be ex-
tended to a much wider class of bodies. We have already discussed extensions of the
main facts to the non-symmetric convex case. We now briefly discuss extensions to
the class of quasi-convex bodies.

Recall that a star body K is called quasi-convex if K + K ⊂ cK for some
constant c > 0. Equivalently, if the gauge f of K satisfies (i) f(x) > 0 if x 6= 0, (ii)
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f(λx) = |λ|f(x) for any x ∈ Rn, and (iii) f ∈ C(α) i.e. there exists α ∈ (0, 1] such
that

αf(x) ≤ (f ∗ f)(x) := inf{f(x1) + f(x2) , x1 + x2 = x} , x ∈ Rn.

A body K is called p-convex, p ∈ (0, 1), if for any x, y ∈ K and λ, µ > 0 with
λp + µp = 1 we have λx + µy ∈ K. Every p-convex body K is quasi-convex, and
K + K ⊂ 21/pK. Conversely, for every quasi-convex body K (with constant C) we
can find a q-convex body K1 such that K ⊂ K1 ⊂ 2K, where 21/q = 2C (see [166]).

Most of the basic results we described in the previous sections were extended to
this case. Versions of the Dvoretzky-Rogers lemma and Dvoretzky’s theorem were
proved by Dilworth [49]. For the low M∗-estimate and the quotient of subspace
theorem in the quasi-convex setting, see [117] and [77] respectively (see also [143]
for an isomorphic Euclidean regularization result and the random version of the QS-
theorem). The reverse Brunn-Minkowski inequality is shown in [36]. For results
on existence of M -ellipsoids, entropy estimates and asymptotic formulas, see [117],
[118] and [147]. In most of the cases, the tools which were available from the
convex case were not enough, and new techniques had to be invented: some of
them provided interesting alternative proofs of the known “convex results”.

7.5 Type and cotype

The notions of type and cotype were introduced by Hoffmann-Jorgensen [92] in
connection with limit theorems for independent Banach space valued random vari-
ables. Their importance for the study of geometric properties of Banach spaces
was realized through the work of Maurey and Pisier (see the article [120] in this
collection for a discussion of the development of this theory).

Given an n-dimensional normed space X, and 1 ≤ p ≤ 2 (2 ≤ q < ∞, respec-
tively), the type-p (cotype-q) constant Tp(X) (Cq(X)) of X is the smallest T > 0
(C > 0) such that: for every m ∈ N and x1, . . . , xm ∈ X,

(∫ 1

0

∥∥∥∥
m∑

i=1

ri(t)xi

∥∥∥∥
2

dt

)1/2

≤ T

(
m∑

i=1

‖xi‖p

)1/p

.


respectively,

(
m∑

i=1

‖xi‖q

)1/q

≤ C

(∫ 1

0

∥∥∥∥
m∑

i=1

ri(t)xi

∥∥∥∥
2
)1/2

.




Results of Tomczak-Jaegermann ([191] when p = q = 2), König ([103] for any p
and q not equal to 2, up to constants depending on p, q) and Szarek [184] show
that in order to determine the (Gaussian) type-p or cotype-q constants of X up to
an absolute constant, it is enough to consider n vectors. In the Rademacher case,
the definite answer is not yet known. It is clear that T2(`n

2 ) = C2(`n
2 ) = 1 and,

conversely, Kwapien [104] proved that d(X, `n
2 ) ≤ C2(X)T2(X).
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Let kp(X; ε), 1 ≤ p ≤ ∞, be the largest integer k ≤ n for which `k
p is 1 +

ε-isomorphic to a subspace of X (in this terminology, k(X) = k2(X; 4)). The
following results show how type and cotype enter in the study of the linear structure
of a space:

(i) In [61] it is shown that k2(X) ≥ cn/C2
2 (X) and k2(X) ≥ cn2/q/C2

q (X). This
gives another proof of the facts k2(`n

p ) ≥ cn, 1 ≤ p ≤ 2, and k2(`n
q ) ' n2/q, q ≥ 2.

(ii) In [159] it is proved that kp(X; ε) ≥ c(p, ε)Tp(X)q, where 1 < p < 2 and
1
p + 1

q = 1. This generalizes the estimate kp(`n
1 ; ε) ≥ c(p, ε)n, 1 ≤ p ≤ 2, of Johnson

and Schechtman [98].
(iii) A quantitative version of Krivine’s theorem [9] states that, for every A ≥ ε,

kp(X; ε) ≥ c(ε, A)[kp(X; A)]c1(ε/A)p

.

Gowers [70], [71] obtained related estimates on the length of (1+ε)-symmetric basic
sequences in X.

(iv) In [121] it is shown that if no cotype-q constant of X is bounded by a
number independent of n, then X contains (1+ε)-isomorphic copies of `k

∞ for large
k. Alon and Milman [7], using combinatorial methods, provided a quantitative
form of this fact: k2(X; 1)k∞(X; 1) ≥ exp(c

√
log n).

Bourgain and Milman [32] proved that vr(KX) ≤ f(C2(X)). Thus, spaces
with bounded cotype-2 constant satisfy all consequences of bounded volume ratio
(this had been independently observed, see e.g. [61],[54]). Milman and Pisier [148]
introduced the class of spaces with the weak cotype 2 property: X is weak cotype
2 if there exists δ > 0 such that k2(E) ≥ δdimE for every E ⊂ X. One can then
prove that vr(E) ≤ C(δ) for every E ⊂ X [148].

In 6.2 we saw that every n-dimensional normed space X has a subspace E with
dimE ≥ n/2 such that vr(KE∗) ≤ C. This suffices for a proof of the quotient of
subspace theorem. However, the following question remains open: does every X
contain a subspace E with dimE ≥ n/2 such that C2(E∗) ≤ C? This problem is
related to many open questions in the local theory (for a discussion see [136], [144]).

Finally, let us mention the connection between Gaussian and Rademacher aver-
ages [122]: Let X be an n-dimensional normed space, and {xj} be a finite sequence
in X. Then,

√
2
π




∫ 1

0

www
∑

j

rj(t)xj

www
2

dt




1/2

≤



∫

Ω

www
∑

j

gj(ω)xj

www
2

dω




1/2

≤ c(1 + log n)1/2




∫ 1

0

www
∑

j

rj(t)xj

www
2

dt




1/2

.

If X has bounded cotype-q constant Cq(X) for some q ≥ 2, then the constant in
the right hand side inequality may be replaced by c

√
qCq(X).
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7.6 Non-linear type theory

Let (T, d) be a metric space, and Fn = {−1, 1}n with the normalized counting
measure µn. An n-dimensional cube in T is a function f : Fn → T . For any such
f and i ∈ {1, . . . , n}, we define

(∆if)(ε) = d(f(ε1, . . . , εi, . . . , εn), f(ε1, . . . ,−εi, . . . , εn)).

A metric space (T, d) has metric type p, 1 ≤ p ≤ 2, if there exists a constant C > 0
such that, for every n ∈ N and every f : Fn → T we have

(∫

F n

d(f(ε), f(−ε))2dµn

)1/2

≤ Cn
1
p− 1

2




n∑

j=1

∫

F n

(∆jf(ε))2dµn




1/2

.

Every metric space has type 1, and if 1 ≤ p1 ≤ p2 ≤ 2, metric type p2 implies
metric type p1.

Let φ : (T1, d1) → (T2, d2) be a map between metric spaces. The Lipschitz
norm of φ is defined by

‖φ‖Lip = sup
t 6=s

d2(φ(t), φ(s))
d1(t, s)

.

Let Fn
p be the space Fn equipped with the metric induced by `n

p . We say that a
metric space (T, d) contains Fn

p ’s (1 + ε)-uniformly if for every n ∈ N there exist a
subset Tn ⊂ T and a bijection φn : Fn

p → Tn such that ‖φn‖Lip‖φ−1
n ‖Lip ≤ 1 + ε.

Bourgain, Milman and Wolfson [41] (see also [154]) proved the following:
Theorem 7.6.1. A metric space (T, d) has metric type p for some p > 1 if and
only if there exists ε > 0 such that T does not contain Fn

1 ’s (1 + ε)-uniformly.
A natural question which arises is to compare the notions of metric type and

type in the case where T is a normed space. An answer to this question was given
in [41], see also [161]:
Theorem 7.6.2. Let X be a Banach space and let 1 < p < 2.

(i) If X has type (respectively, metric type) p, then X has metric type (respec-
tively, type) p1 for all 1 ≤ p1 < p.

(ii) X contains Fn
1 ’s uniformly if and only if X contains `n

1 ’s uniformly.
We refer the interested reader to [41], [161] for the proofs of these facts, and a

comparison with another notion of metric type which was earlier proposed by Enflo
[57]. In [41] and [37] one can find a generalization of Dvoretzky’s theorem for metric
spaces: For every ε > 0 there exists a constant c(ε) > 0 with the following property:
every metric space T of cardinality N contains a subspace S with cardinality at
least c(ε) log N such that for some S̃ ⊂ `2 with |S| = |S̃| we can find a bijection
φ : S → S̃ with ‖φ‖Lip‖φ−1‖Lip ≤ 1 + ε (this means that S is (1 + ε)-isomorphic to
a subset of a Hilbert space).
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Let us finally mention an interesting connection between non-linear problems
and a more advanced form of type and cotype, the so-called Markov type and cotype
which was introduced and studied by K. Ball [17].
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[76] O. Guédon, Kahane-Khinchine type inequalities for negative exponent, Mathe-
matika 46 (1999), 165-173.

[77] Y. Gordon and N.J. Kalton, Local structure theory for quasi-normed spaces, Bull.
Sci. Math. 118 (1994), 441-453.

[78] A.A. Giannopoulos and V.D. Milman, Low M∗-estimates on coordinate subspaces,
Journal of Funct. Analysis 147 (1997), 457-484.

[79] A.A. Giannopoulos and V.D. Milman, On the diameter of proportional sections of
a symmetric convex body, International Mathematics Research Notices (1997) 1,
5-19.

[80] A.A. Giannopoulos and V.D. Milman, How small can the intersection of a few
rotations of a symmetric convex body be?, C.R. Acad. Sci. Paris 325 (1997), 389-
394.

[81] A.A. Giannopoulos and V.D. Milman, Mean width and diameter of proportional
sections of a symmetric convex body, J. Reine angew. Math. 497 (1998), 113-139.

[82] A.A. Giannopoulos and V.D. Milman, Extremal problems and isotropic positions
of convex bodies, Israel J. Math. 117 (2000), 29-60.

[83] M. Gromov and V.D. Milman, Brunn theorem and a concentration of volume phe-
nomenon for symmetric convex bodies, GAFA Seminar Notes, Tel Aviv University
(1984).

[84] M. Gromov and V.D. Milman, A topological application of the isoperimetric in-
equality, Amer. J. Math. 105 (1983), 843-854.

[85] A.A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures, Math-
ematika 46 (1999), 1-13.
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opérateur et de son transposé, C.R. Acad. Sci. Paris 301 (1985), 743-746.

[164] A. Pajor and N. Tomczak-Jaegermann, Subspaces of small codimension of finite
dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 637-642.

[165] S. Reisner, Zonoids with minimal volume product, Math. Z. 192 (1986), 339-346.

[166] S. Rolewicz, Metric linear spaces, Monografie Matematyczne 56, PWN-Polish Sci-
entific Publishers, Warsaw (1972).

[167] S. Rosset, Normalized symmetric functions, Newton’s inequalities, and a new set of
Stringer inequalities, Amer. Math. Monthly 96 (1989), 815-819.

70



[168] M. Rudelson, Estimates on the weak distance between finite-dimensional Banach
spaces, Israel J. Math. 89 (1995), 189-204.

[169] M. Rudelson, Contact points of convex bodies, Israel J. Math. 101 (1997), 93-124.

[170] M. Rudelson, Distances between non-symmetric convex bodies and the MM∗-
estimate, Positivity 4 (2000), 161-178.

[171] J. Saint-Raymond, Sur le volume des corps convexes symétriques, Sem. d’Initiation
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