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1 Introduction

In this article we outline a rapidly developing theory of high dimensional normed
spaces and convex bodies. The classical Convex Geometry, sometimes called Brunn-
Minkowski theory, studies the geometry of convex bodies and related geometric
inequalities in Euclidean space of a fixed dimension (because of this, it is an iso-
metric theory). The classical Functional Analysis is standardly understood as the
theory of infinite dimensional spaces. However, it is a relatively recent discovery
that there is a theory “in between”, which is concerned with the geometric and lin-
ear properties of finite dimensional normed spaces or convex bodies, the emphasis
now being on the asymptotic behaviour of various quantitative parameters as the
dimension grows to infinity. We call it Asymptotic Geometric Analysis, but also
Asymptotic Convex Geometry (actually, more names are associated to it: history
has not yet selected the right one). In the framework of this theory, very unex-
pected phenomena, hidden structures and forms of behaviour were discovered, new
intuition was built and many new tools were developed. It is now clear that the
theory provides the right questions to reveal the underlying “order” and structures
which accompany high dimensional spaces.

The quantitative study of high dimensional normed spaces used many of the
tools of convex geometry. However, these tools were now used under a different
point of view. The isometric questions which were typical in classical convexity
were replaced by isomorphic ones, which were most natural for functional analysis
but alien to convexity. Isoperimetric type problems provide a bold example of this
transformation. Isomorphic versions of such problems, which make sense only from
the asymptotic point of view, led to the discovery of the concentration of measure
phenomenon, which plays a crucial role in the proof of Dvoretzky type theorems.
Later, the method spread and influenced the development of other “asymptotic”
theories in Probability, Asymptotic Combinatorics and Complexity, where much
more general high parametric systems arise.

After this major step on the conceptual level, many unsolved problems of clas-
sical convexity were put in asymptotic form and were studied systematically. In
this way, the two theories started to interact with many deep consequences in both
analysis and geometry. Typical examples are the reverse Brunn-Minkowski inequal-
ity and the reverse Santaló inequality, which provides an affirmative answer - at
least in the asymptotic sense - to a classical conjecture of Mahler.

The article is organized as follows: Section 2 gives a brief synopsis of the major
results of asymptotic convex geometry (the concept of concentration, Dvoretzky
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type theorems, Pisier’s inequality on the Rademacher projection, Milman’s low
M∗-estimate and the quotient of subspace theorem, entropy estimates) and of some
more recent important directions (global theory, asymptotic formulas and phase
transition behaviour, “coordinate theory”).

Section 3 contains background material from classical convexity: the Brunn-
Minkowski inequality and its functional forms, the Alexandrov-Fenchel inequality
and related geometric inequalities about mixed volumes of convex bodies, volume
preserving transformations (Knöthe and Brenier maps).

Section 4 describes classical positions of convex bodies such as John’s position,
the minimal surface area and the minimal mean width positions. They are all char-
acterized as isotropic ones, an observation which relates them to the Brascamp-Lieb
inequality and its reverse form. Some sharp geometric inequalities are applications
of this point of view, a fact which was first observed and successfully exploited by
Ball. We also give a short account on the challenging slicing problem.

Section 5 gives some classical and recent examples of the interaction between
the asymptotic convex geometry point of view and classical convexity. The reverse
Santaló inequality and the reverse Brunn-Minkowski inequality are proved with
the method of isomorphic symmetrization. This discussion introduces M -ellipsoids
and their basic properties. Recent results of Klartag and Milman on the number of
Minkowski or Steiner symmetrizations that are needed in order to bring an arbitrary
convex body close to a ball give another example of use of the asymptotic theory
in questions with classical convexity flavor.

Section 6, which is closer to the spirit of geometric functional analysis, is devoted
to the geometry of the Banach-Mazur compactum and some questions on the local
structure of high-dimensional normed spaces. Random spaces, which were first
introduced by Gluskin, play an important role in this discussion.

A number of surveys on different aspects of the theory were recently published
(see [14], [86], [87], [109] and [110]). In particular, [54] gives a more geometrically
directed point of view on the theory. However, this article was written before
1999 and a new stream of results is now available. We cannot avoid repeating
the very basic and already classical line of development we described, but we refer
to [54] for many proofs which are outlined there in a very condense form. General
references on the Brunn-Minkowski theory and geometric inequalities are the books
of Schneider [134] and Burago-Zalgaller [34]. The reader may consult the books of
Milman-Schechtman [113], Pisier [121] and Tomczak-Jaegermann [147] for various
aspects of the asymptotic theory of finite dimensional normed spaces.

2 Asymptotic Convex Geometry

We study finite-dimensional real normed spaces X = (Rn, ‖ · ‖). The unit ball KX

of such a space is a symmetric (with respect to the origin) convex body in Rn.
Conversely, if K is a symmetric convex body, then ‖x‖K = min{λ ≥ 0 : x ∈ λK} is

3



a norm defining a space XK with K as its unit ball. If K1 and K2 are symmetric
convex bodies in Rn, their geometric distance d(K1,K2) is defined by

d(K1,K2) = inf{ab : a, b > 0, K1 ⊆ bK2,K2 ⊆ aK1}.

The natural distance between the n-dimensional spaces XK1 and XK2 is the Banach-
Mazur distance

d(XK1 , XK2) = inf{d(K1, T (K2)) : T ∈ GL(n)}.

Note that d(XK1 , XK2) is the smallest positive number d for which we can find
T ∈ GL(n) such that K1 ⊆ T (K2) ⊆ dK1. In the language of geometric functional
analysis, if X and Y are two n-dimensional normed spaces, then

d(X, Y ) = min{‖T‖ ‖T−1‖ : T : X → Y is an isomorphism}.

We assume that Rn is equipped with a Euclidean structure 〈·, ·〉 and denote the
corresponding Euclidean norm by | · |. Bn

2 is the Euclidean unit ball and Sn−1 is
the unit sphere. The rotationally invariant probability measure on Sn−1 will be
denoted by σ. The unit ball of `n

p is denoted by Bn
p . By a classical theorem of John

[73] one has d(X, `n
2 ) ≤ √

n for every n-dimensional normed space X (see also §4.1).
If K is a symmetric convex body in Rn, its polar body is defined by ‖y‖K◦ =

maxx∈K |〈x, y〉|. Note that XK◦ = X∗
K : K◦ is the unit ball of the dual space of X.

Let K be a convex body in Rn with 0 ∈ int(K). The radial function ρK :
Rn\{0} → R+ of K is defined by ρK(x) = max{λ > 0 : λx ∈ K}. The support
function hK : Rn → R of K is defined by hK(x) = max{〈x, y〉 : y ∈ K}. The width
of K in the direction of θ ∈ Sn−1 is the quantity w(K, θ) = hK(θ) + hK(−θ), and
the mean width of K is defined by

w(K) =
1
2

∫

Sn−1
w(K, θ)σ(dθ) =

∫

Sn−1
hK(θ)σ(dθ).

Note that if K is symmetric then ρK(x) = 1/‖x‖K and hK(x) = ‖x‖K◦ .

2.1 Isomorphic isoperimetric inequalities and concentration
of measure

Concentration of measure was understood and developed as a method for the goals
of geometric functional analysis, but it was soon realized that it was very well
adapted to the needs of probability theory, asymptotic combinatorics and complex-
ity. General references on concentration, from various viewpoints, are the following
surveys and books: [14], [68], [69], [80], [81], [104], [110], [132].

The general framework is a probability space (X,A, d, µ), where A is the Borel
σ-algebra with respect to a given metric d on X. For every A ∈ A, we consider the
t-extension At = {x ∈ X : d(x,A) ≤ t} of A. One can then formulate the abstract
isoperimetric problem for metric probability spaces as follows: Given 0 < α < 1
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and t > 0, find inf{µ(At) : A ∈ A, µ(A) ≥ α} and describe the sets A on which this
infimum is possibly attained. The complete answer to the isoperimetric problem is
available for a few but very important geometric examples.
Spherical isoperimetric inequality: Consider the sphere Sn−1 as a metric prob-
ability space, with the geodesic distance ρ and the O(n)-invariant probability mea-
sure σ. The spherical isoperimetric inequality states that spherical caps of the form
B(x, r) are the extremal sets: if A is a Borel subset of Sn−1 and σ(A) = σ(B(x0, r))
for some x0 ∈ Sn−1 and r > 0, then

(2.1.1) σ(At) ≥ σ(B(x0, r + t))

for every t > 0. This is proved by spherical symmetrization (see e.g. [44]). Since
spherical caps are easy to work with, one can use (2.1.1) to obtain a good lower
bound for the measure of the t-extension of an arbitrary subset of the sphere in
terms of its measure. The most important case is when σ(A) = 1/2 (see [113]).

Theorem 2.1 If A is a Borel subset of Sn+1 and σ(A) = 1/2, then

(2.1.2) σ(At) ≥ 1−
√

π/8 exp(−t2n/2)

for every t > 0. 2

Isoperimetric inequality in Gauss space: Consider Rn as a metric probabil-
ity space, with the Euclidean distance | · | and the standard Gaussian probability
measure γn. The isoperimetric inequality in Gauss space (proved by Borell and
Sudakov-Tsirelson, see [80] or [81] for references) states that halfspaces are the ex-
tremal sets: if α ∈ (0, 1), θ ∈ Sn−1 and H = {x ∈ Rn : 〈x, θ〉 ≤ s} is a halfspace
in Rn with γn(H) = α, then, for every t > 0 and every Borel subset A of Rn with
γn(A) = α, one has

(2.1.3) γn(At) ≥ γn(Ht).

A direct computation shows the following.

Theorem 2.2 If γn(A) ≥ 1/2 then for every t > 0

(2.1.4) γn(At) ≥ 1− 1
2

exp(−t2/2). 2

These examples lead to the definition of the concentration function of a metric
probability space. For every t ≥ 0 we set

(2.1.5) α(X, t) := 1− inf{µ(At) : µ(A) ≥ 1/2}.

P. Lévy [82] realized the role of the dimension in the spherical isoperimetric in-
equality (2.1.2): if we fix α = 1/2 and t > 0, as the dimension n increases to
infinity the measure of the complement of At decreases exponentially to zero for
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every subset A of Sn−1 with σ(A) = 1/2. Following this basic example, we say that
a sequence (Xn,An, dn, µn) of metric probability spaces is a normal Lévy family
with constants (c1, c2) if

(2.1.6) α(Xn, t) ≤ c1 exp(−c2t
2n).

There are many examples of normal Lévy families which have found applications
in the asymptotic theory of finite dimensional normed spaces. For some important
metric probability spaces X, the exact solution to the isoperimetric problem was
(and still is) unknown: new and very interesting techniques were invented in order to
estimate the concentration function α(X, t). Natural families of obvious geometric
importance are the following.
1. The family of the orthogonal groups (SO(n), ρn, µn) equipped with the Hilbert-
Schmidt metric and the Haar probability measure is a Lévy family with constants
c1 =

√
π/8 and c2 = 1/8.

2. The family Xn =
∏mn

i=1 Sn with the natural Riemannian metric and the product
probability measure is a Lévy family with constants c1 =

√
π/8 and c2 = 1/2.

3. All homogeneous spaces of SO(n) inherit the property of forming Lévy families.
In particular, any family of Stiefel manifolds Wn,kn or any family of Grassman
manifolds Gn,kn is a Lévy family with the same constants as in 1. These first three
examples appear in [70].
4. The spaces En

2 = {−1, 1}n with the normalized Hamming distance d(η, η′) =
#{i ≤ n : ηi 6= η′i}/n and the normalized counting measure form a Lévy family
with constants c1 = 1/2 and c2 = 2. This follows from an isoperimetric inequality
of Harper [72] and it was first stated in this form and used in [5].
5. The group Πn of permutations of {1, . . . , n} equipped with the normalized
Hamming distance d(σ, τ) = #{i ≤ n : σ(i) 6= τ(i)}/n and the normalized counting
measure satisfies α(Πn, t) ≤ 2 exp(−t2n/64). This was proved by Maurey [94] with
a martingale method, which was further developed by Schechtman [131].
An equivalent way to express concentration is by means of Lipschitz functions (see
[80] or [113]).

Theorem 2.3 Let (X,A, d, µ) be a metric probability space. If f : X → R is a
Lipschitz function with constant 1, then

(2.1.7) µ ({x ∈ X : |f(x)−Mf | > t}) ≤ 2α(X, t)

where Mf is the Lévy median of f . 2

Therefore, if the concentration function of X is small, Lipschitz functions are almost
constant on almost all space. This observation has very important applications to
the study of the normal Lévy families above.

Many problems which arise in the asymptotic geometric analysis require the
proof of the existence of some geometric structure with prescribed behaviour. The
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basic idea of the probabilistic method is to show that a random element of a suitable
metric probability space has the required properties. The method (which was first
used in combinatorial geometry and graph theory) works because the desirable
structure is quite often the typical one. The concentration phenomenon provides a
powerful tool for the probabilistic method, since it enables us to identify the typical
structure in many situations. The first appearance of this idea in Analysis was in
the proof of Dvoretzky’s theorem in [97], which we discuss in the next subsection.

2.2 Dvoretzky type theorems

Dvoretzky’s theorem [40], [41] states that every high-dimensional normed space has
a subspace of “large dimension” which is well isomorphic to the Euclidean space. We
use the terminology “Dvoretzky type theorems” for a wide family of results which
exhibit large nice substructures inside normed spaces of sufficiently high dimension.
The concrete estimates regarding the different parameters which enter in this type
of results have become a crucial and important topic in the theory. There are many
theorems which provide such estimates and even asymptotic formulas depending
on different parameters.

The starting point for Dvoretzky’s original theorem is a lemma of Dvoretzky
and Rogers [42], which shows that for every symmetric convex body K whose
maximal volume ellipsoid is Bn

2 (see §4.1), there exist k ' √
n and a k-dimensional

subspace Ek of Rn such that Bn
2 ∩Ek ⊆ K ∩Ek ⊆ 2Qk, where Qk is the unit cube

in Ek with respect to a suitable coordinate system. Grothendieck asked whether
it is possible to replace Qk by Bn

2 ∩ Ek in this statement, so that k will be still
increasing to infinity with n. Dvoretzky’s theorem provides an affirmative answer
to this question. The best known version can be stated in the language of geometric
functional analysis as follows.

Theorem 2.4 Let X be an n-dimensional normed space and ε > 0. There exist
an integer k ≥ cε2 log n and a k-dimensional subspace Ek of X which satisfies
d(Ek, `k

2) ≤ 1 + ε. 2

The example of `n
∞ shows that the logarithmic dependence of k on n is best

possible for small values of ε. The exact relation between n, ε and k has not been
settled. It seems reasonable that `n

∞ represents the worst case. This would mean
that, for fixed k and ε, every n-dimensional normed space has a k-dimensional
subspace which is (1 + ε)-isomorphic to `k

2 , provided that n ≥ c(k)ε−
k−1
2 . The

problem is very interesting even for small values of k (actually, it is completely
understood only in the case k = 2) and has connections with other branches of
mathematics (algebraic topology, number theory, harmonic analysis, see [103] for a
discussion).

The proof of Theorem 2.4 given in [97] (with a slightly worse dependence on
ε) uses the concentration of measure on Sn−1. We start with an n-dimensional
normed space X, and we may assume that Bn

2 is the ellipsoid of maximal volume
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inscribed in the unit ball K of X. Then, the function r : Sn−1 → R defined by
r(x) = ‖x‖ is Lipschitz continuous with constant 1. If Lr is the Lévy median of r,
Theorems 2.1 and 2.3 imply that for every t ∈ (0, 1),

(2.2.1) σ
(
x ∈ Sn−1 : |r(x)− Lr| ≥ tLr

) ≤ 2c1 exp(−c2t
2L2

rn).

where c1, c2 > 0 are absolute constants. Since the function r(x) = ‖x‖ is almost
constant and equal to Lr on a subset of the sphere whose measure is practically
equal to 1, one can extract a subsphere on which r is almost constant. This is
done by a discretization argument via nets of spheres (see [54] for an outline of the
argument).

Theorem 2.5 Let X = (Rn, ‖ · ‖) and assume that ‖x‖ ≤ |x| for all x ∈ Rn. For
every ε ∈ (0, 1) we can find k ≥ c3ε

2L2
rn and a k-dimensional subspace F of Rn

such that

(2.2.3) (1 + ε)−1/2Lr|x| ≤ ‖x‖ ≤ Lr(1 + ε)1/2|x|
for every x ∈ F . 2

If Y = (F, ‖ · ‖), it is clear that d(Y, `k
2) ≤ 1 + ε, and what remains is to give a

lower bound for Lr. It is easier to work with the expectation

(2.2.4) M = M(X) =
∫

Sn−1
‖x‖ σ(dx),

of the norm on the sphere, and a simple computation shows that Lr ' M .
We now make full use of the fact that Bn

2 is the ellipsoid of maximal volume
inscribed in K. By the Dvoretzky-Rogers lemma (see [42]), we can find an or-
thonormal basis {v1, . . . , vn} with ‖vi‖ ≥ 1/2 for all i ≤ n/2. One may check
that

(2.2.5) M =
∫

Sn−1
‖

n∑

i=1

aivi‖σ(da) ≥ 1
2

∫

Sn−1
max

1≤i≤n/2
|ai|σ(da) ≥ c

√
log n/n,

where c > 0 is an absolute constant. Going back to Theorem 2.5 we conclude the
proof of Theorem 2.4. 2

Let X = (Rn, ‖ · ‖) be an n-dimensional normed space. We denote by b the
smallest constant for which ‖x‖ ≤ b|x| holds for every x ∈ Rn. Let k(X) be the
largest positive integer k ≤ n for which Ek ∈ Gn,k satisfies

(2.2.6) (M/2)|x| ≤ ‖x‖ ≤ (2M)|x|, x ∈ Ek

with probability greater than 1− e−k. The proof of Theorem 2.4 shows that there
exists k ≥ c1n(M/b)2 such that a random k-dimensional subspace Ek of X has
this property. In other words, k(X) ≥ c1n(M/b)2. It was observed in [115] that
this inequality is in fact an “asymptotic formula”: for every n-dimensional normed
space X one has k(X) ≤ Cn(M/b)2.
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Theorem 2.6 Let X be an n-dimensional normed space. Then, k(X) ' n(M/b)2.
2

The estimate k(X) ≥ cn(M/b)2 allows one to check that in several situations
the dimension of “spherical sections” of high-dimensional convex bodies may be
much larger than logarithmic in the dimension. For example, one has k(`n

p ) ' n if
1 < p < 2 and k(`n

q ) ' √
qn2/q if q > 2 (see [44] or [113]).

It is interesting to check the strength of Theorem 2.5 in the particular example
of `n

1 . For every ε ∈ (0, 1) there exists c(ε) > 0 such that `n
1 has a subspace Ek of

dimension k ≥ c(ε)n with d(Ek, `k
2) ≤ 1+ε. Because of the nature of the argument,

we have subspaces of `n
1 of some dimension proportional to n which are “almost

isometric” to Euclidean, but no information on d(Ek, `k
2) if k exceeds some fixed

proportion of n. An isomorphic Dvoretzky type theorem for `n
1 was proved by

Kashin [74]: there exist c(α)-Euclidean subspaces of `n
1 of dimension [αn], for every

α ∈ (0, 1). Szarek realized that this property of `n
1 is a consequence of the fact that

its unit ball has bounded “volume ratio”. This notion was formally introduced in
[143]: The volume ratio of a symmetric convex body K in Rn is the parameter

(2.2.7) vr(K) = inf
{( |K|

|E|
)1/n

: E ⊆ K

}
,

where the inf is taken over all ellipsoids E contained in K. A simple computation
shows that vr(Bn

1 ) ≤ C for some absolute constant C > 0. Then, Kashin’s theorem
admits the following generalization [136], [143].

Theorem 2.7 Let K be a symmetric convex body in Rn with vr(K) = A. For
every k ≤ n there exists a k-dimensional subspace Ek of XK such that

(2.2.8) d(Ek, `k
2) ≤ (cA)

n
n−k ,

where c > 0 is an absolute constant. 2

Isomorphic versions of Dvoretzky’s theorem for arbitrary n-dimensional normed
spaces were studied by Milman and Schechtman [114]. There exists an absolute
constant C > 0 such that if dimX = n and C log n ≤ k < n, then X has a
k-dimensional subspace Ek with d(Ek, `k

2) ≤ C
√

k/ log(n/k).

We close this subsection with a recent result of Rudelson and Vershynin [129],
which is different in nature but very close in spirit to the Dvoretzky type theorems
we discussed. Let (T, µ, d) be a metric probability space whose concentration func-
tion satisfies the “normal Lévy estimate” α(T, t) ≤ c1 exp(−c2t

2n) for some n and
all t > 0. In order to avoid degenerate cases we also assume that there exist ε, δ > 0
such that the ε-neighborhood of any point in T has measure smaller than 1− δ (T
is (ε, δ)-regular). We say that (T, d) is K-Lipschitz embedded into a normed space
X if there exists F : T → X such that d(x, y) ≤ ‖F (x) − F (y)‖ ≤ K · d(x, y) for
all x, y ∈ T . Assume that X is n-dimensional. If an (ε, δ)-regular metric proba-
bility space as above is K-Lipschitz embedded into X, then k(X) ≥ c

(
εδ
K

)4
n. In
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other words, X must have Euclidean subspaces of proportional dimension. This
fact underlines the importance of the concentration of measure phenomenon on the
sphere: if some metric probability space with a normal concentration function well
embeds into a normed space, this must be also true for the Euclidean space.

2.3 The `-position and Pisier’s inequality

One of the fundamental facts in the local theory of normed spaces is Pisier’s estimate
on the K-convexity constant. Combined with important results of Lewis, Figiel and
Tomczak-Jaegermann, it leads to the following geometric statement: every convex
body K in Rn has an affine image TK of volume 1 whose mean width satisfies the
“reverse Urysohn inequality”

(2.3.1) w(TK) ≤ c
√

n log n,

where c > 0 is an absolute constant. In this subsection we give a very concise
description of this circle of ideas.

Let X be an n-dimensional normed space, and let α be a norm on L(`n
2 , X).

The trace dual norm α∗ of α is defined on L(X, `n
2 ) by

(2.3.2) α∗(v) = sup{tr(vu) : α(u) ≤ 1}.
The lemma of Lewis [83] applies to any pair of trace dual norms.

Theorem 2.8 For any norm α on L(`n
2 , X), there exists u : `n

2 → X such that
α(u) = 1 and α∗(u−1) = n. 2

The `-norm on L(`n
2 , X) was defined by Figiel and Tomczak-Jaegermann in [45]:

Let {g1, . . . , gn} be a sequence of independent standard Gaussian random variables
on some probability space, and let {e1, . . . , en} be the standard orthonormal basis
of Rn. If u : `n

2 → X, the `-norm of u is defined by

(2.3.3) `(u) =

(
E‖

n∑

i=1

giu(ei)‖2
)1/2

.

A standard computation gives

(2.3.4) `(u) ' √
nw((u−1)∗(K◦)),

where K is the unit ball of X. This formula connects the `-norm to the mean
width. It is more instructive to replace the Gaussians by the Rademacher functions
ri : En

2 → {−1, 1} defined by ri(ε) = εi, where En
2 = {−1, 1}n is viewed as a

probability space with the uniform measure. An inequality of Maurey and Pisier
(see [113] or [147]) shows that

(2.3.5) `(u) '
(∫

En
2

‖
n∑

i=1

ri(ε)u(ei)‖2dε

)1/2
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up to a
√

log n-term.
Consider the Walsh functions wA(ε) =

∏
i∈A ri(ε), where A ⊆ {1, . . . , n}. It is

not hard to see that every function f : En
2 → X is uniquely represented in the form

(2.3.6) f(ε) =
∑

A

wA(ε)xA,

for some xA ∈ X. The space of all functions f : En
2 → X becomes a Banach space

with the norm

(2.3.7) ‖f‖L2(X) =

(∫

En
2

‖f(ε)‖2dε

)1/2

The Rademacher projection Rn : L2(X) → L2(X) is the operator sending f =∑
wAxA to the function Rnf :=

∑n
i=1 rix{i}. Denote by Rad(X) the norm of

this projection. Pisier [119] gave a sharp estimate in terms of the Banach-Mazur
distance d(X, `n

2 ).

Theorem 2.9 Let X be an n-dimensional normed space. Then,

(2.3.8) Rad(X) ≤ c log[d(X, `n
2 ) + 1],

where c > 0 is an absolute constant. 2

Figiel and Tomczak-Jaegermann [45] had previously shown the relevance of this
estimate to the study of the `-norm.

Theorem 2.10 Let X be an n-dimensional normed space. There exists u : `n
2 → X

such that

(2.3.9) `(u)`((u−1)∗) ≤ nRad(X).

Let us briefly sketch the proof. From Theorem 2.8, we can find an isomorphism
u : `n

2 → X such that `(u)`∗(u−1) = n. On the other hand,

(2.3.10) `
(
(u−1)∗

)
=

(∫

En
2

‖
n∑

i=1

ri(ε)(u−1)∗(ei)‖2∗dε

)1/2

.

There exists a function φ : En
2 → X, which can be represented in the form φ =∑

A wAxA and has norm ‖φ‖L2(X) = 1, such that

(2.3.11) `((u−1)∗) =
〈 n∑

i=1

ri(u−1)∗(ei), φ
〉

=
n∑

i=1

〈(u−1)∗(ei), x{i}〉.

If we define v : `n
2 → X by v(ei) = x{i}, we easily check that

(2.3.12) `((u−1)∗) = tr(u−1v) ≤ `∗(u−1)`(v).

11



On observing that

(2.3.13) `(v) = ‖Rn(φ)‖L2(X) ≤ Rad(X)‖φ‖L2(X) = Rad(X),

we get

(2.3.14) `(u)`((u−1)∗) ≤ `(u)`∗(u−1)Rad(X) = nRad(X).

This concludes the proof. 2

Combining the above with John’s estimate d(X, `n
2 ) ≤ √

n [73], we can give an
upper bound for the “minimal mean width” of a symmetric convex body (see §4.1
for a discussion on different “positions” of convex bodies).

Theorem 2.11 If K is a symmetric convex body in Rn, there exists a linear image
K̃ of K with volume |K̃| = 1 and mean width

(2.3.15) w(K̃) ≤ c
√

n log n,

where c > 0 is an absolute constant.

For the proof, consider the operator u : `n
2 → XK in Theorem 2.10 and set

K̃ = (u−1)∗(K). In view of (2.3.4), John’s theorem and Theorem 2.9, we have

(2.3.16) w(K̃)w(K̃◦) ≤ c1 log n.

Computing the volume of K̃ in polar coordinates and using Hölder’s inequality, we
check that w(K̃◦)−1 ≤ c2

√
n|K̃|1/n. It follows that

(2.3.17) w(K̃) ≤ c3

√
n log n|K̃|1/n.

Normalizing the volume we obtain the assertion of the theorem. A simple argument
based on the Rogers-Shephard inequality [125] shows that the symmetry of K is
not necessary.

2.4 Low M∗-estimate and the quotient of subspace theorem

The Low M∗-estimate is the first step towards a general theory of sections and
projections of symmetric convex bodies in Rn with dimension proportional to n.
In geometric terms, it says that for fixed λ ∈ (0, 1), the diameter of a random
[λn]-dimensional section of the body K is controlled by its mean width

(2.4.1) M∗ := M(X∗) =
∫

Sn−1
‖x‖∗σ(dx)

up to a function depending only on λ.
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Theorem 2.12 (Milman, [98], [99]) There exists a function f : (0, 1) → R+ with
the following property: for every λ ∈ (0, 1) and every n-dimensional normed space
X, a random subspace H ∈ Gn,[λn] satisfies

(2.4.2)
f(λ)
M∗ |x| ≤ ‖x‖

for every x ∈ H.

The precise dependence on λ was established in a series of papers. Theorem 2.12
was originally proved in [98] and a second proof using the isoperimetric inequality
on Sn−1 was given in [99], with a bound of the form f(λ) ≥ c(1 − λ). Pajor and
Tomczak-Jaegermann [123] later showed that one can take f(λ) ≥ c

√
1− λ (see

also [106] for a different proof with this dependence on λ). Finally, Gordon [64]
proved that the theorem holds true with

(2.4.3) f(λ) ≥
√

1− λ

(
1 + O

( 1
(1− λ)n

))
.

If we dualize the statement of the theorem, we get that a random [λn]-dimensional
projection of KX contains a ball whose radius is of the order of 1/M . For a random
H ∈ Gn,[λn] we have

(2.4.4) PH(KX) ⊇ f(λ)
M

Bn
2 ∩H.

The next step is the quotient of subspace theorem (Milman, [100]). In geometric
terms, it says that for every symmetric convex body K in Rn and any α ∈ [1/2, 1),
we can find subspaces G ⊂ H with dimG ≥ αn and an ellipsoid E in G such that

(2.4.5) E ⊂ PG(K ∩H) ⊂ c(1− α)−1| log(1− α)|E .

Theorem 2.13 [100] Let X be an n-dimensional normed space and let α ∈ [1/2, 1).
Then, there exist subspaces H ⊃ G of X such that k = dim(H/G) ≥ αn and

(2.4.6) d(H/G, `k
2) ≤ c(1− α)−1| log(1− α)|.

The proof of the theorem is based on the Low M∗-estimate and an iteration pro-
cedure in which Pisier’s inequality plays a crucial role. We show the idea by describ-
ing the first step. We may assume that KX satisfies the assertion of Theorem 2.10:
because of (2.3.4) this can be written in the form M(X)M∗(X) ≤ c log[d(X, `n

2 )+1].
Let λ ∈ (0, 1). Theorem 2.12 shows that on a random [λn]-dimensional subspace

H of X we have

(2.4.7)
c1

√
1− λ

M∗(X)
|x| ≤ ‖x‖ ≤ b|x|.

It is easy to check that for most H ∈ Gn,[λn] we have

(2.4.8) M(H) ≤ c2M(X).
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If H satisfies both conditions, repeating the same argument for H∗, we may find a
subspace G of H∗ with dimG = k ≥ λ2n and

(2.4.9)
c3

√
1− λ

M(X)
|x| ≤ c1

√
1− λ

M∗(H∗)
|x| ≤ ‖x‖H∗ ≤ M∗(X)

c1

√
1− λ

|x|

for every x ∈ G. In other words, F := H/G satisfies

(2.4.10) d(F, `k
2) ≤ c4(1− λ)−1M(X)M∗(X) ≤ c(1− λ)−1 log[d(X, `n

2 ) + 1].

To set up the iteration, we write QS(X) for the class of all quotient spaces of a
subspace of X, and define a function f : (0, 1) → R+ by

(2.4.11) f(α) = inf{d(F, `k
2) : F ∈ QS(X), dimF ≥ αn}.

The argument we have just described proves that

(2.4.12) f(λ2α) ≤ c(1− λ)−1 log f(α).

This is enough to estimate the function f as in Theorem 2.13. 2

It is natural to ask whether the estimate on the diameter of proportional di-
mensional sections given by Theorem 2.12 is precise in some sense. From the
computational geometry point of view it would be desirable to have a simple way
to determine the diameter of a random section of fixed proportion. One can easily
rephrase the Low M∗-estimate as follows [108]: If r1 is the solution of the equation

(2.4.13) M∗(K ∩ sBn
2 ) = f(λ)s,

then for a random [λn]-dimensional section K ∩H of K we have

(2.4.14) diam(K ∩H) ≤ 2r1.

In view of Gordon’s proof of Theorem 2.12, we can choose f(λ) = (1 − ε)
√

1− λ
for any ε ∈ (0, 1), and then (2.4.14) is satisfied for all H in a subset of Gn,[λn] of
measure greater than 1 − c1 exp(−c2ε

2(1 − λ)n). It turns out that the function
s 7→ M∗(K ∩ sBn

2 ) can be used for a dual estimate [52]. There exists a second
function g : (0, 1) → R with the following property: if λ ∈ (1/2, 1) and if r2 is the
solution of the equation M∗(K ∩ sBn

2 ) = g(λ)s, then a random [λn]-dimensional
section K ∩H of K satisfies diam(K ∩H) ≥ 2r2, This gives a “confidence interval”
[r2, r1] for diam(K ∩H), which may be viewed as an asymptotic formula. What is
essential is of course that the functions f and g can be described analytically and
they do not depend on the dimension n or on the body K.

Another consequence of the Low M∗-estimate is that very accurate linear rela-
tions hold true in full generality for the diameter of sections of a body and its polar.
This fact can be made precise in the following way [107]. Let t(r) = t(XK ; r) be the
greatest integer k for which a random subspace H ∈ Gn,k satisfies diam(K ∩H) ≤
2r. If t∗(r) = t(X∗

K ; r), then for any ζ > 0 and any r > 0 we have

(2.4.15) t(r) + t∗
(

1
ζr

)
≥ (1− ζ)n− C,

where C > 0 is an absolute constant.
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2.5 Coordinate theory

We fix an orthonormal basis {e1, . . . , en} of Rn and for every non empty σ ⊆
{1, . . . , n} we consider the coordinate subspace Rσ = span{ej : j ∈ σ}. The follow-
ing coordinate version of the Low M∗-estimate was established by Giannopoulos
and Milman in [51]: If K is an ellipsoid in Rn, then for every λ ∈ (0, 1) we can find
σ ⊆ {1, . . . , n} of cardinality |σ| ≥ (1− λ)n such that

(2.5.1) PRσ (K) ⊇ [λ/ log(1/λ)]1/2

M(K)
Bn

2 ∩ Rσ.

This observation (which has its origin in [48], [49]) has consequences for the ques-
tion of the maximal Banach-Mazur distance to the cube (see also the proportional
Dvoretzky-Rogers factorization theorem in §6.1). The proof has its roots in an iso-
morphic version of the Sauer-Shelah lemma from Combinatorics, which was proved
by Szarek and Talagrand [141] (see also [3], [142]), and is close in spirit to the
theory of restricted invertibility of operators which was developed by Bourgain and
Tzafriri [30].

As the example of the cube shows, one cannot have a coordinate low M∗-
estimate for an arbitrary convex body. Under assumptions which guarantee the
existence of “large ellipsoids” of any proportional dimension inside the body, one
can use the above ellipsoidal result and obtain analogues of (2.5.1). This is done
in [51] for bodies whose volume ratio or cotype-2 constant is well-bounded. These
results can be applied to give estimates on the number of points with “many”
integer coordinates inside a given convex body.

Very recently, Rudelson and Vershynin [130] obtained a new family of coordinate
results. Assume that K is a symmetric convex body in Rn such that the norm ‖ · ‖
induced by K satisfies the conditions ‖x‖ ≤ |x| for all x and M = M(K) ≥ δ for
some positive constant δ > 0. Then, there exist two positive numbers s and t with
cδ ≤ t ≤ 1 and st ≥ δ/ log3/2(2/δ) and a subset σ of {1, . . . , n} with cardinality
|σ| ≥ s2n, such that

(2.5.2)
∥∥ ∑

i∈σ

aiei

∥∥ ≥ ct√
n

∑

i∈σ

|ai|

for all choices of reals ai, i ∈ σ. From this statement one can recover Elton’s
theorem about spaces which contain large dimensional copies of `1’s [43] in an
optimal form.

Note that the space X = (Rn, ‖ · ‖) satisfies k(X) ' n(M/b)2 ≥ δn. In other
words, the result concerns spaces which have Euclidean subspaces of some dimension
proportional to n (depending on δ). The estimate in (2.5.2) shows that

(2.5.3) K ∩ Rσ ⊆ c(δ)
√

nBσ
1 .

This may be viewed as a coordinate version of the low M∗-estimate for this class
of bodies. The formulation is dual to the one in (2.5.1): one now considers sections
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instead of projections. The condition k(X) ' n is in some sense dual to the
assumptions on the volume ratio or the cotype-2 constant in [51].

To feel the analogy even more, we state the following “condition-free” version
of the result in [130]: Let K be a symmetric convex body in Rn with Bn

2 ⊆ K.
There exists a subset σ of {1, . . . , n} with cardinality |σ| ≥ cf(M)n, such that

(2.5.4) M · (K ∩ Rσ) ⊆
√
|σ|Bσ

1 ,

where f(x) = x log−3/2(2/x). Compare with the low M∗-estimate: one has sections
of the body inside an appropriate `1-ball on coordinate subspaces (this is weaker,
but the example of `n

1 shows that it is natural). Also, the parameter 1/M∗ is re-
placed by M (which is stronger). However, the estimates hold for some proportional
dimensions and not for any proportion.

All these are still preliminary but interesting results which show that a coor-
dinate theory may be further developed in the future. This would have several
consequences for the theory.

2.6 Covering results

Let K1 and K2 be two convex bodies in Rn. The covering number N(K1,K2) is
the minimal cardinality of a finite subset A of Rn with the property

(2.6.1) K1 ⊆ A + K2 =
⋃

x∈A

(x + K2).

Note the multiplicative inequality N(K1, stK3) ≤ N(K1, sK2)N(K2, tK3) for all
t, s > 0.

If we require A ⊂ K1 we get the variant Ñ(K1,K2). If K2 is symmetric, it is
easy to see that Ñ(K1, 2sK2) ≤ N(K1, sK2) ≤ Ñ(K1, sK2) for every s > 0. The
standard way to estimate Ñ(K1,K2) is to consider a maximal subset {x1, . . . , xN}
of K1 any two points of which are at distance greater than or equal to 1 with respect
to ‖ · ‖K2 . Then, K1 ⊆ ∪(xi + K2) and this shows that Ñ(K1,K2) ≤ N .

The most classical estimate on covering numbers is Sudakov’s inequality which
gives a bound on N(K, tBn

2 ) in terms of the mean width of K.

Theorem 2.14 Let K be a convex body in Rn. For every t > 0,

(2.6.2) log N(K, tBn
2 ) ≤ cn (w(K)/t)2 ,

where c > 0 is an absolute constant.

This fact is an immediate translation of an inequality of Sudakov [135] on
the expectation of the supremum of a Gaussian process (this in turn follows from
Slepian’s lemma). Let Y = (Yx)x∈A be a Gaussian process and let ρ denote the
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induced semimetric on T . If M(A, t) is the largest possible number of elements of
A which are t-separated, then

(2.6.3) E sup
x∈A

Yx ≥ 2−1/2ν(M(A, t)) log1/2(M(A, t))t,

where ν(n) = 0.648 for 1 ≤ n ≤ 23 and ν(n) = 21/2 − log n−1/2 for 24 ≤ n
(see [85], Section 14). Actually, the inequality is true for the sequence ν(n) =
21/2 − log log n/(23/2 log n) + O(1/ log n) as n →∞ (see [47]).

Let g1, . . . , gn be independent standard Gaussian random variables on some
probability space and let {e1, . . . , en} be an orthonormal basis in Rn. If we consider
the Gaussian process Yx = 〈∑ giei, x〉, x ∈ K, then the induced metric on K is the
Euclidean one and the estimates above show that, asymptotically,

(2.6.4) log1/2(N(K, tBn
2 ))t ≤ E‖

∑
giei‖∗,

which gives (2.6.2) with a constant c = cn → 1 as n →∞.
A dual inequality was proved by Pajor and Tomczak-Jaegermann [123].

Theorem 2.15 Let K be a symmetric convex body in Rn. For every t > 0,

(2.6.5) log N(Bn
2 , tK) ≤ cn (w(K◦)/t)2 ,

where c > 0 is an absolute constant.

A simple proof of this fact was given by Talagrand (see [81] or [54]). From
Theorem 2.15 one can deduce Sudakov’s inequality with a duality argument of
Tomczak-Jaegermann [146].

We close this subsection with some information on the duality conjecture for
the entropy numbers of operators. The conjecture, which was stated by Pietsch
[118], asserts that if X,Y are Banach spaces, if T : X → Y is a compact operator
and if N(T, ε) denotes the covering number N(T (BX), εBY ), then

(2.6.6) b−1 log N(T, a−1ε) ≤ log N(T ∗, ε) ≤ b log N(T, aε)

for every ε > 0, where a, b > 0 are absolute constants, and T ∗ is the adjoint
operator of T . Until recently, this conjecture had been verified only under strong
assumptions for both spaces X and Y (see [65] and [123]). In the case where one
of the two spaces is a Hilbert space, the conjecture is equivalent to the following
statement about covering numbers of convex bodies: There exist two constants
a, b > 0 such that

(2.6.7)
1
b

log N(Bn
2 , a−1K◦) ≤ log N(K,Bn

2 ) ≤ b log N(Bn
2 , aK◦)

for every symmetric convex body K in Rn.
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A weaker but general duality inequality was proved by König and Milman [79].
Using the reverse Santaló and Brunn-Minkowski inequalities (see §5.2) they showed
that

(2.6.8) c−1N(K◦
2 ,K◦

1 )1/n ≤ N(K1,K2)1/n ≤ cN(K◦
2 , K◦

1 )1/n

for every pair of symmetric convex bodies K1 and K2 in Rn. Note that this inequal-
ity proves the duality conjecture in the case where the logarithm of the covering
numbers is large enough with respect to the dimension n.

Very recently, Artstein, Milman and Szarek [7], [8] proved (2.6.7) in full gener-
ality. This settles the duality conjecture in the case either X or Y = H (a Hilbert
space). The proof consists of three steps: Given a symmetric convex body K in Rn,
in the first step one shows that there exists a parameter γ depending on K such
that N(K, Bn

2 ) ≤ N(Bn
2 , γ−1K◦)3 and N(Bn

2 , γK◦) ≤ N(K, Bn
2 )2, which is “the

conjecture up to γ”. The idea is to project onto a random k-dimensional subspace:
one knows that c-separated sets of points are mapped onto c

√
k/n-separated sets

under such random projections, so the information on covering numbers is kept
during this process (with the cost of γ). The dimension k is chosen so that the
result of [79] will be enough to give duality for the projected bodies.

This step can be iterated, each time applied to an intersection of some multiple
of K with a ball of suitable radius (here, a variant of Tomczak’s duality argument is
used). As a result, N(K, Bn

2 ) and N(Bn
2 ,K◦) are bounded by products of covering

numbers of polar bodies. In the last step, each product can be “telescoped” to a
product of only two or three terms, which establishes duality.

2.7 Global theory and asymptotic formulas

Let K be a (symmetric) convex body in Rn. For a fixed dimension 1 ≤ l ≤ n
consider the expected value

(2.7.1) Dl(K) =
∫

Gn,l

diam(PE(K))νn,l(dE)

of the diameter of the orthogonal projection PE(K) onto E ∈ Gn,l. Theorem 2.5
shows that there is a critical value k∗ = n

(
w(K)/diam(K)

)2 such that: if 1 ≤ l ≤ k∗

then

(2.7.2) cw(K) ≤ Dl(K) ≤ Cw(K),

while if k∗ ≤ l ≤ n, then

(2.7.3) c
√

l/n diam(K) ≤ Dl(K) ≤ C
√

l/n diam(K).

Observe the phase transition at k∗: the random diameter of l-dimensional projec-
tions is stabilized since below the critical dimension k∗ maximal symmetry has been
achieved: most projections of the body have become isomorphic Euclidean balls of
radius w(K)/2.
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The same situation appears if one considers a dual “global problem”. We want
to approximate a Euclidean ball by Minkowski averages of rotations

(2.7.4) Kt =
1
t

(
u1(K) + · · ·+ ut(K)

)

of the body K. One way is to fix an integer t ≥ 2 and ask for the infimum of
diam(Kt) or the expected value Ediam(Kt) over all choices of u1, . . . , ut ∈ O(n).
It turns out (see [115]) that both quantities are of the same order, and

(2.7.5) E diam(Kt) ' diam(K)√
t

if 1 ≤ t ≤ t∗ =
[
(diam(K)/w(K))2

]
, while

(2.7.6) E diam(Kt) ' w(K)

if t∗ ≤ t ≤ n. Again, observe the phase transition at t∗. Stabilization occurs at
t ' t∗ because above this integer Kt ' w(K)Bn

2 with very high probability: the
norm of a random Kt has already become roughly Euclidean. Note also that, in
this global process of forming averages of rotations, the “best possibility” (infimum
of the diameter) coincides with the random one (expectation of the diameter).

The fact that the “asymptotic formula” k∗t∗ ' n holds true for every convex
body K is only one instance of a remarkable duality. Local statements can be
translated to global ones, and a very useful intuition can be developed through their
comparison. However, the proofs of dual statements are not “direct translations”
of each other, and they should often be invented from the start.

We proceed to another example of phase transition in which the stabilized
behaviour is of a different nature. Let ‖ · ‖ be a norm on Rn, and let a, b be the
smallest positive constants for which (1/a)|x| ≤ ‖x‖ ≤ b|x| is satisfied for every
x ∈ Rn. For every q ≥ 1 consider the parameter

(2.7.7) Mq =
(∫

Sn−1
‖x‖qσ(dx)

)1/q

.

Then, if k(X) = n(M1/b)2 one has the following behaviour of Mq (see [89]):
(a) Mq ' M1 if 1 ≤ q ≤ k(X).
(b) Mq ' b

√
q/n if k(X) ≤ q ≤ n.

(c) Mq ' b if q > n.
The global q-approximation results are as follows: write

(2.7.8) ‖x‖q,t =

(
1
t

t∑

i=1

‖uix‖q

)1/q

,

where u1, . . . , ut ∈ O(n), and let tq be the smallest integer for which there exist
u1, . . . , ut ∈ O(n) such that

(2.7.9) (Mq/2)|x| ≤ ‖x‖q,t ≤ (2Mq)|x|.
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Then, for the optimal value of tq a random choice of u1, . . . , ut satisfies (2.7.9) up
to some universal constants, and tq ' t1 for 1 ≤ q ≤ 2, while t

2/q
q ' t1(M1/Mq)2 for

q ≥ 2. If we insert the formulas for Mq in the above relations, we check that there
are two phase transitions which occur on the interval (1, n) at the values q = k(X)
and q = 2.

In this more complicated example of process, the initial “constant behaviour”
of Mq may be viewed as a concentration phenomenon: the norm is almost constant
on the sphere and this creates “inertia” in the behaviour of Mq for small values of
q.

Our next example is a problem of approximation: write I = [−x, x] for an
interval, where x ∈ Sn−1. We would like to approximate the Euclidean ball Bn

2

by zonotopes KN = 1
N

∑N
i=1 Ii. If we fix the cardinality N of summands and ask

for the best approximation A(N, n) := inf{d(KN , Bn
2 ) : x1, . . . , xN ∈ Sn−1}, then

we have A(N, n) = ∞ if N < n, A(N, n) =
√

n if N = n, and A(N,n) = C(λ) if
N = [λn] for some λ > 1 (see Kashin, [74]). The behavior of C(λ) (say, for λ < 2)
was determined by Gluskin [62]:

C(λ) ' min
{√

n,
√(

log(1/(λ− 1))
)
/(λ− 1)

}
.

Observe that we have a sharp threshold at the value N = n.
The same problem can be generalized as follows: let ‖ · ‖ be the norm de-

fined by a symmetric convex body K on Rn. Consider bodies of the form KN =
1
N

∑N
i=1 ui(K), where ui ∈ O(n). The question is what is the minimal value of

N for which there exist u1, . . . , uN ∈ O(n) such that e.g. d(KN , Bn
2 ) ≤ 4. The

answer is N0 ' t∗ = (diam(K)/w(K))2, and typically we have a sharp threshold for
inf d(KN , Bn

2 ) at this point. So, changing our parameter of study from “minimal
diameter of KN” to “geometric distance from the Euclidean ball”, we often observe
a phase transition behaviour being replaced by a threshold type one. Again, opti-
mal and random behaviours are equivalent: if N ≥ ct∗/ε2 then a random choice of
u1, . . . , uN ∈ O(n) satisfies d(KN , Bn

2 ) ≤ 1 + ε.

3 Classical convexity connected to the asymptotic
theory

3.1 Brunn-Minkowski inequality: classical proofs and func-
tional forms

The fundamental Brunn-Minkowski inequality states that if K and T are two non-
empty compact subsets of Rn, then

(3.1.1) |K + T |1/n ≥ |K|1/n + |T |1/n.
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If we make the additional hypothesis that K and T are convex bodies, then we can
have equality only if K and T are homothetical.

The inequality expresses in a sense the fact that volume is an “n-concave”
function with respect to Minkowski addition. For this reason, it is often written in
the following form: If K, T are non-empty compact subsets of Rn and λ ∈ (0, 1),
then

(3.1.2) |λK + (1− λ)T |1/n ≥ λ|K|1/n + (1− λ)|T |1/n.

Using (3.1.2) and the arithmetic-geometric means inequality we can also write

(3.1.3) |λK + (1− λ)T | ≥ |K|λ|T |1−λ.

This weaker, but actually equivalent, form of the Brunn-Minkowski inequality has
the advantage (or disadvantage) of being dimension free.

There are many interesting proofs of the Brunn-Minkowski inequality, all of
them related to important ideas. Historically, the first proof of the Brunn-Minkowski
inequality was based on Brunn’s concavity principle:

Theorem 3.1 Let K be a convex body in Rn and let F be a k-dimensional subspace
of Rn, 1 ≤ k ≤ n. Then, the function f : F⊥ → R defined by f(x) = |K∩(F +x)|1/k

is concave on its support.

The proof goes by symmetrization. The Steiner symmetrization of K in the direc-
tion of θ ∈ Sn−1 is the set Sθ(K) consisting of all points of the form x+λθ, where x
is in the projection Pθ⊥(K) of K onto θ⊥ and |λ| ≤ 1

2 × length(x+Rθ)∩K. Steiner
symmetrization preserves convexity and volume: if K is a convex body then Sθ(K)
is also a convex body, and |Sθ(K)| = |K|. A well known fact which goes back to
Steiner and Schwarz is that for every convex body K one can find a sequence of
successive Steiner symmetrizations in directions θ ∈ F so that the limiting convex
body K̃ has the following property:

For every x ∈ F⊥, K̃ ∩ (F + x) is a ball with center at x and radius
r(x) such that |K̃ ∩ (F + x)| = |K ∩ (F + x)|.

Now, the proof of the theorem is immediate. Convexity of K̃ implies that r is
concave on its support, and this shows that f is also concave.

Brunn’s concavity principle implies the Brunn-Minkowski inequality as follows.
If K and T are convex bodies in Rn, we define K1 = K × {0} and T1 = T × {1} in
Rn+1 and consider their convex hull L. If we set L(t) = {x ∈ Rn : (x, t) ∈ L} for
all t ∈ [0, 1], we easily check that L(0) = K, L(1) = T and L(1/2) = K+T

2 . Then,
Brunn’s concavity principle for F = Rn shows that

(3.1.4)
∣∣∣K + T

2

∣∣∣
1/n

≥ 1
2
|K|1/n +

1
2
|T |1/n.

A functional form of the Brunn-Minkowski inequality is an integral inequality
which reduces to (3.1.1) by appropriate choice of the functions involved. The ad-
vantage of such functional inequalities is that they can be applied in many other
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contexts: an example is given by the Prékopa-Leindler inequality (see [121] or [14])
which is stated below: it can be applied to yield the logarithmic Sobolev inequality
and several important concentration results in Gauss space.

Theorem 3.2 Let f, g, h : Rn → R+ be measurable functions, and let λ ∈ (0, 1).
We assume that f and g are integrable, and for every x, y ∈ Rn

(3.1.5) h(λx + (1− λ)y) ≥ f(x)λg(y)1−λ.

Then,

(3.1.6)
∫

Rn

h ≥
(∫

Rn

f

)λ (∫

Rn

g

)1−λ

.

We shall only sketch the case n = 1. We may assume that f and g are continuous
and strictly positive and then define x, y : (0, 1) → R by the equations

(3.1.7)
∫ x(t)

−∞
f = t

∫
f and

∫ y(t)

−∞
g = t

∫
g.

Then, x and y are differentiable, and for every t ∈ (0, 1) we have

(3.1.8) x′(t)f(x(t)) =
∫

f and y′(t)g(y(t)) =
∫

g.

We now define z : (0, 1) → R by z(t) = λx(t) + (1 − λ)y(t). Since x and y are
strictly increasing, z is also strictly increasing, and the arithmetic-geometric means
inequality shows that

(3.1.9) z′(t) = λx′(t) + (1− λ)y′(t) ≥ (x′(t))λ(y′(t))1−λ.

Hence, we can estimate the integral of h making the change of variables s = z(t):

∫
h =

∫ 1

0

h(z(t))z′(t)dt

≥
∫ 1

0

h(λx(t) + (1− λ)y(t))(x′(t))λ(y′(t))1−λdt

≥
∫ 1

0

fλ(x(t))g1−λ(y(t))
( ∫

f

f(x(t))

)λ ( ∫
g

g(y(t))

)1−λ

dt

=
(∫

f

)λ (∫
g

)1−λ

.

Induction on the dimension completes the proof.
The Brunn-Minkowski inequality is a simple consequence of Theorem 3.2. Let

K and T be non-empty compact subsets of Rn, and let λ ∈ (0, 1). We define
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f = χK , g = χT , and h = χλK+(1−λ)T . It is easily checked that the assumptions
of Theorem 3.2 are satisfied, therefore

(3.1.10) |λK + (1− λ)T | =
∫

h ≥
(∫

f

)λ (∫
g

)1−λ

= |K|λ|T |1−λ.

There are many variants of the Prékopa-Leindler inequality. All of them can be
proved by a “transportation of measure” argument similar to the one used above.
We shall state one of them and use it to give a functional version of a proof of
Brunn’s principle which was given by Gromov and Milman [71].

We first introduce some notation: If p > 0 and λ ∈ (0, 1), for all x, y > 0 we set

Mλ
p (x, y) = (λxp + (1− λ)yp)1/p.

If x, y ≥ 0 and xy = 0, we set Mλ
p (x, y) = 0. Observe that limp→0+ Mλ

p (x, y) =
xλy1−λ.

Statement: Suppose that f, g, h : Rn → R+ are measurable functions, and let
p > 0, λ ∈ (0, 1). We assume that f and g are integrable, and for every x, y ∈ Rn

(3.1.11) h(λx + (1− λ)y) ≥ Mλ
p (f(x), g(y)).

Then,

(3.1.12)
∫

Rn

h ≥ Mλ
p/(pn+1)

(∫

Rn

f,

∫

Rn

g

)
.

The proof of the statement is quite similar to the proof of the Prékopa-Leindler
inequality given above.

We need a few more definitions: Let K be a convex set in Rn and let f : K →
R+. We say that f is α-concave for some α > 0, if f1/α is concave on K. It is easy
to see that if f, g : K → R+ and if f is α-concave and g is β-concave, then fg is
(α + β)-concave.

Let now K be a convex body in Rn and let θ ∈ Sn−1. For every y ∈ Pθ⊥(K)
we write Iy for the interval {t ∈ R : y + tθ ∈ K}. For every continuous function
f : K → R+ we define the projection Pθf of f with respect to θ by

(3.1.13) (Pθf)(y) :=
∫

Iy

f(y + tθ)dt, y ∈ Pθ⊥(K).

If we define Fy(t) = χK(y + tθ)f(y + tθ) for y ∈ Pθ⊥(K), then by the α-concavity
of f and the convexity of K we easily check that

(3.1.14) Fλy+(1−λ)w(λt + (1− λ)s) ≥ Mλ
1/α(Fy(t), Fw(s))

for all y, w ∈ Pθ⊥(K). Applying the statement, we immediately get:

Claim: If f is α-concave, then Pθf is (1 + α)-concave.
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We now finish the proof of Brunn’s principle as follows. Let F be a k-dimensional
subspace of Rn. The indicator function of K is constant on K, and hence it is α-
concave for every α > 0. We choose an orthonormal basis {θ1, . . . , θk} of F and
perform successive projections in the directions of θi. The claim shows that the
function x 7→ |K ∩ (F + x)| is (α + k)-concave on PF⊥(K), for every α > 0. It
follows that f(x) = |K ∩ (F + x)|1/k is concave.

The Prékopa–Leindler inequality and the statement above, have recently been
extended to Riemannian manifolds [37]. There, the curvature plays an essential role
(through the Ricci curvature, in particular) and a distortion coefficient has to be
added to the condition (3.1.5). We will state the spherical extension of the Prékopa–
Leindler inequality obtained in [36]. Let ρ denote the (geodesic) distance on the
sphere Sn and σ the usual rotationally invariant measure on Sn. For x, y ∈ Sn

with x 6= −y, introduce the geodesic analogue of the point tx + (1 − t)y, namely
the point z = γt(x, y) ∈ Sn verifying

(3.1.15) ρ(x, z) = (1− t)ρ(x, y) and ρ(z, y) = tρ(x, y).

If x = cos(θ)y + sin(θ)v with θ ∈ [0, π) and v ∈ Sn orthogonal to y, then γt(x, y) =
cos(tθ)y + sin(tθ)v. For t ∈ (0, 1) and d ∈ [0, π], set S(d) := d−1 sin d and

(3.1.16) Lt(d) :=
(
S(d)/S(td)

)t (
S(d)/S((1− t)d)

)1−t
.

Theorem 3.3 Let f, g, h : Sn → R+ be Borel functions and t ∈ (0, 1). We assume
that for every x 6= −y ∈ Sn,

(3.1.17) h(γt(x, y)) ≥ Lt(ρ(x, y))n−1f(x)tg(y)1−t.

Then

(3.1.18)
∫

h dσ ≥
(∫

f dσ

)t (∫
g dσ

)1−t

.

Since Lt(π) = 0, the condition (3.1.17) is always satisfied when x = −y. From
Lt(d) ≤ 1, we deduce in particular that the Brunn-Minkowski inequality holds on
the sphere for the geodesic midsum of two sets, say. It is known that Lt(d) ≤
e−t(1−t)d2/2 and thus the coefficient Lt(ρ(x, y))n−1 in (3.1.17) can be replaced by
the coefficient

e−(n−1)t(1−t)ρ2(x,y)/2.

With this form, one can recover, as in [95], the classical concentration results for
the sphere.

3.2 Geometric inequalities of hyperbolic type

We write Kn for the class of non-empty, compact convex subsets of Rn. Minkowski’s
fundamental theorem states that if K1, . . . , Km ∈ Kn, m ∈ N, there exist coeffi-
cients V (Ki1 , . . . ,Kin), 1 ≤ i1, . . . , in ≤ m which are invariant under permutations
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of their arguments, such that

(3.2.1) |t1K1 + · · ·+ tmKm| =
∑

1≤i1,... ,in≤m

V (Ki1 , . . . ,Kin
)ti1 . . . tin

for every choice of non-negative real numbers ti (see [134] or [34]). The coefficient
V (A1, . . . , An) is called the mixed volume of the compact convex sets A1, . . . , An.
A special case of Minkowski’s theorem is Steiner’s formula. If K ∈ Kn, then

(3.2.2) |K + tBn
2 | =

n∑

i=0

(
n

i

)
Vn−i(K)ti

for all t > 0, where Vn−i(K) = V (K; n− i, Bn
2 ; i) is the i-th quermassintegral of K.

A very deep and strong generalization of the Brunn-Minkowski inequality is the
Alexandrov-Fenchel inequality [1], [2] (see [134]): If K, T, A3, . . . , An ∈ Kn, then

(3.2.3) V (K, T, A3, . . . , An)2 ≥ V (K,K, A3, . . . , An)V (T, T, A3, . . . , An).

Among many consequences of (3.2.3), one should mention the inequalities

(3.2.4) Vi(K + T )1/i ≥ Vi(K)1/i + Vi(T )1/i

which hold true for all convex bodies K, T in Rn and all i ∈ {1, . . . , n}, and the
Alexandrov inequalities

(3.2.5)
(

Vi(K)
|Bn

2 |
)1/i

≥
(

Vj(K)
|Bn

2 |
)1/j

,

where 1 ≤ i < j ≤ n. Note that the Brunn-Minkowski inequality and the isoperi-
metric inequality are special cases of (3.2.4) and (3.2.5) respectively.

Going back in time, we locate numerical inequalities which are surprisingly
similar to the ones above (see [18]). Let x = (x1, . . . , xn) be an n-tuple of positive
real numbers, and consider the normalized elementary symmetric functions E0(x) ≡
1 and

(3.2.6) Ei(x1, . . . , xn) =
1(
n
i

)
∑

1≤j1<...<ji≤n

xj1xj2 . . . xji

for i = 1, . . . , n. With this definition, E1(x) and E
1/n
n (x) correspond to the arith-

metic and geometric means of x1, . . . , xn. Newton proved that

(3.2.7) E2
k(x) ≥ Ek−1(x)Ek+1(x)

for all k = 1, . . . , n−1, with equality if and only if all the xi’s are equal. Maclaurin
observed that

(3.2.8) E1(x) ≥ E
1/2
2 (x) ≥ · · · ≥ E1/n

n (x).
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These inequalities follow immediately from Newton’s inequality (3.2.7) and they
generalize the arithmetic-geometric means inequality.

One can feel the analogy with the Alexandrov-Fenchel inequalities even more,
by considering the more recent Marcus-Lopes inequality

(3.2.9)
Ek(x + y)

Ek−1(x + y)
≥ Ek(x)

Ek−1(x)
+

Ek(y)
Ek−1(y)

,

which holds true for all k = 1, . . . , n. As a formal consequence one gets

(3.2.10) [Ek(x + y)]1/k ≥ [Ek(x)]1/k + [Ek(y)]1/k
.

We now pass to the multidimensional case: let S+
n be the space of real positive

symmetric n× n matrices. If t1, . . . , tm > 0 and A1, . . . , Am ∈ S+
n , then

(3.2.11) det(t1A1 + · · ·+ tmAm) =
∑

1≤i1≤...≤in≤m

n!D(Ai1 , . . . , Ain
)ti1 . . . tin

,

where the coefficient D(B1, . . . , Bn) is invariant under permutations of its argu-
ments and is called the mixed discriminant of B1, . . . , Bn. Based on the fact that
P (t) = det(A + tI) has only real roots for any A ∈ S+

n one can prove some very
interesting inequalities about mixed discriminants, which are completely analogous
to Newton’s inequalities, and were discovered by Alexandrov. Examples are the
inequalities

(3.2.12) D(A, B,C3, . . . , Cn)2 ≥ D(A,A, C3, . . . , Cn)D(B,B, C3, . . . , Cn)

for all A,B, C3, . . . , Cn ∈ S+
n and

(3.2.13) D(A1, A2, . . . , An) ≥
n∏

i=1

[detAi]1/n.

There are many other inequalities on positive symmetric matrices, and one is
tempted to look for their analogues in the setting of convex geometry. An in-
equality of Bergstrom (see [18]), which is the matrix analogue of (3.2.9), states
that if A and B are symmetric positive definite matrices and if Ai, Bi denote the
submatrices obtained by deleting the i-th row and column, then

(3.2.14)
det(A + B)
det(Ai + Bi)

≥ det(A)
det(Ai)

+
det(B)
det(Bi)

.

This is generalized by Ky Fan in the form

(3.2.15)
(

det(A + B)
det(Ak + Bk)

)1/k

≥
(

det(A)
det(Ak)

)1/k

+
(

det(B)
det(Bk)

)1/k

,

where Ak is the submatrix of A we obtain if we delete k rows and the corresponding
columns of A. When k = n, this reduces to Minkowski’s inequality [det(A+B)]1/n ≥
[det A]1/n + [det B]1/n. For related inequalities about mixed volumes see [50], [46].
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One last comment is that behind all these numerical or convex geometric
inequalities there is a unified principle: “the minimum of certain functionals is
achieved on equal objects”. Statements like the Brunn-Minkowski or the Alexandrov-
Fenchel inequality may be equivalently expressed in the form

(3.2.16) f(A,B) ≥ min{f(A,A), f(B,B)}.

The Brunn-Minkowski inequality can be rederived from its simple consequence
|aK + bT | ≥ min{|(a + b)K|, |(a + b)T |}. Likewise, the Alexandrov-Fenchel in-
equality is equivalent to the inequality
(3.2.17)

V (K, T, A3, . . . , An)2 ≥ min{V (K, K, A3, . . . , An), V (T, T, A3, . . . , An)}.

The same principle applies to all the hyperbolic type inequalities we discussed in
this subsection. In contrast, “elliptic type” inequalities like the triangle inequality
and the Cauchy-Schwarz inequality obey a “maximum principle”: for example, the
latter unequality is equivalent to the statement

(3.2.18)
∫
|f · g|dµ ≤ max

{ ∫
|f |2dµ,

∫
|g|2dµ

}
.

The maximum of the functional (f, g) 7→ ∫ |f · g|dµ is “achieved on equal objects”.
Hölder’s inequality is also a consequence of such an “elliptic” principle, which should
however be correctly applied so that the functions f and g involved stay in “correct”
spaces. If p and q are conjugate exponents, then the inequality

(3.2.19)
∫
|f · g|dµ ≤ max

{(∫
|f |pdµ

)1/(p−1)

,

(∫
|g|qdµ

)1/(q−1) }

for all f ∈ Lp and g ∈ Lq, is equivalent to the classical Hölder’s inequality.

3.3 Volume preserving transformations

Let K and T be two open convex bodies in Rn. A volume preserving transformation
from K onto T is a map φ : K → T which is one to one, onto and has a Jacobian
with costant determinant equal to |K|/|T |. In this section we describe two such
maps, the Knöthe map and the Brenier map. Applying each one of them we may
obtain alternative proofs of the Brunn-Minkowski inequality.

The Knöthe map: We fix a coordinate system in Rn. The properties of the
Knöthe map [78] from K to T with respect to the given coordinate system are
described in the following theorem.

Theorem 3.4 Let K and T be open convex bodies in Rn. There exists a map
φ : K → T with the following properties (for a proof see [113]):
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(a) φ is triangular: the i-th coordinate function of φ depends only on x1, . . . , xi.
That is,

(3.3.1) φ(x1, . . . , xn) = (φ1(x1), φ2(x1, x2), . . . , φn(x1, . . . , xn)).

(b) The partial derivatives ∂φi

∂xi
exist and they are positive on K, and the determinant

of the Jacobian of φ is constant. More precisely, for every x ∈ K

(3.3.2) | detJφ(x)| =
n∏

i=1

∂φi

∂xi
(x) =

|T |
|K| .

The Brenier map: For any two open convex bodies K and T there exists a
volume preserving transformation from K onto T , called the Brenier map [33],
which is the gradient of a C2 convex function. The existence of this remarkable
map is a consequence of a more general transportation of measure result which we
briefly describe.

Consider the space P(Rn) of Borel probability measures on Rn as a subset
of the unit ball of C∞(Rn)∗ (the dual of the space of continuous functions which
vanish uniformly at infinity). Let µ, ν ∈ P(Rn). If T : Rn → Rn is a measurable
function which is defined µ-almost everywhere and satisfies ν(B) = µ(T−1(B)) for
every Borel subset B of Rn, we say that T pushes forward µ to ν and write Tµ = ν.
It is easy to see that Tµ = ν if and only if for every bounded Borel measurable
g : Rn → R we have

(3.3.3)
∫

Rn

g(y)dν(y) =
∫

Rn

g(T (x))dµ(x).

Generalizing work of Brenier, McCann [96] proved the following.

Theorem 3.5 Let µ, ν ∈ P(Rn) and assume that µ is absolutely continuous with
respect to Lebesgue measure. Then, there exists a convex function f : Rn → R such
that ∇f : Rn → Rn is defined µ-almost everywhere, and (∇f)µ = ν.

The proof of Theorem 3.5 is based on the notion of cyclical monotonicity from
convex analysis: A subset G of Rn × Rn is called cyclically monotone if for every
m ≥ 2 and (xi, yi) ∈ G, i ≤ m, we have

(3.3.4) 〈y1, x2 − x1〉+ 〈y2, x3 − x2〉+ · · ·+ 〈ym, x1 − xm〉 ≤ 0.

Fact 1: Let µ and ν be Borel probability measures on Rn. There exists a joint prob-
ability measure γ on Rn×Rn which has cyclically monotone support and marginals
µ, ν i.e. for all bounded Borel measurable f, g : Rn → R we have

(3.3.5)
∫

Rn

f(x)dµ(x) =
∫

Rn×Rn

f(x)dγ(x, y)
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and

(3.3.6)
∫

Rn

g(y)dν(y) =
∫

Rn×Rn

g(y)dγ(x, y).

The second ingredient is the connection of cyclically monotone sets with convex
functions (see [124]). For every proper convex function f : Rn → R we consider the
subdifferential of f

(3.3.7) ∂(f) = {(x, y) ∈ Rn × Rn : f(z) ≥ f(x) + 〈y, z − x〉, z ∈ Rn}.

The subdifferential parametrizes the supporting hyperplanes of f : the set ∂(f)(x) =
{y : (x, y) ∈ ∂(f)} is a closed and bounded convex set, and differentiability of f at
x is equivalent to the existence of a unique y ∈ ∂f(x), in which case ∇f(x) = y.
Fact 2: Let G ⊂ Rn × Rn. Then, G is contained in the subdifferential of a proper
convex function f : Rn → R if and only if G is cyclically monotone.

We can now sketch the proof of Theorem 3.5. From Fact 1 there exists a proba-
bility measure γ on Rn×Rn which has cyclically monotone support and marginals
µ, ν. Fact 2 shows that the support of γ is contained in the subdifferential of a
proper convex function f : Rn → R. Since f is convex and µ is absolutely con-
tinuous with respect to Lebesgue measure, f is differentiable µ-almost everywhere.
Since supp(γ) ⊂ ∂(f), by the definition of the subdifferential we have y = ∇f(x) for
almost all pairs (x, y) with respect to γ. Then, for every bounded Borel measurable
g : Rn → R we see that
(3.3.8)∫

g(y)dν(y) =
∫

g(y)dγ(x, y) =
∫

g(∇f(x))dγ(x, y) =
∫

g(∇f(x))dµ(x),

which shows that (∇f)µ = ν.

Assume that µ and ν are the normalized Lebesgue measures on some convex
bodies K and T . Regularity results of Caffarelli show that in this case f may be
assumed twice continuously differentiable. This proves the following.

Theorem 3.6 Let K and T be open convex bodies in Rn. There is a convex func-
tion f ∈ C2(K) such that φ = ∇f : K → T is one to one, onto and volume
preserving.

We can now show the Brunn-Minkowski inequality using either the Knöthe or
the Brenier map. In each case we have (I + φ)(K) ⊆ K + T . If φ denotes the
Knöthe map, JI+φ(x) is triangular and this implies
(3.3.9)

| detJI+φ(x)|1/n =
n∏

i=1

(
1 +

∂φi(x)
∂xi

)1/n

≥ 1 + |det Jφ(x))1/n = 1 +
( |T |
|K|

)1/n

.

29



If φ is the Brenier map, it is clear that the Jacobian Jφ = Hessf is a symmetric
positive definite matrix for every x ∈ K. Therefore,

(3.3.10) | detJI+φ(x)| = | det (I + Hessf) (x)| =
n∏

i=1

(1 + λi(x))

where λi(x) are the non negative eigenvalues of Hessf . Moreover, by the volume
preserving property of φ, we have

∏n
i=1 λi(x) = |T |/|K| for every x ∈ K. Therefore,

the arithmetic-geometric means inequality gives

(3.3.11) | detJI+φ(x)|1/n ≥ 1 +
( |T |
|K|

)1/n

.

In both cases,

(3.3.12) |K + T | ≥
∫

(I+φ)K

dx =
∫

K

| detJI+φ(x)|dx ≥ |K|
(
1 + (|T |/|K|)1/n

)n

,

which is the Brunn-Minkowski inequality.
For an arbitrary pair of open convex bodies K1 and K2 it would be desir-

able to achieve a volume preserving transformation ψ : K1 → K2 for which
(I + ψ)(K1) = K1 + K2. This was recently done in [4]. There are two ingredi-
ents in the construction: the first one is a regularity result of Caffarelli [35] (see
also [4]):
Fact 3: If T is an open convex body in Rn, f is a probability density on Rn, and g
is a probability density on T such that f is locally bounded and bounded away from
zero on compact sets, and there exist c1, c2 > 0 such that c1 ≤ g(y) ≤ c2 for every
y ∈ T , then the Brenier map ∇f : (Rn, fdx) → (Rn, gdx) is continuous and belongs
locally to the Hölder class Cα for some α > 0.
The second is a theorem of Gromov [67] (see also [4]):
Fact 4: Let f : Rn → R be a C2-smooth convex function with strictly positive
Hessian. Then, the image of the gradient map Im(∇f) is an open convex set. Also,
if f1, f2 are two such functions, then

(3.3.13) Im(∇f1 +∇f2) = Im(∇f1) + Im(∇f2).

Having these tools in hand and given two open convex bodies K1 and K2 of
volume 1 in Rn, we choose a smooth strictly positive density ρ on Rn and consider
the Brenier maps

(3.3.14) ψi = ∇fi : (Rn, ρdx) → (Ki, dx) , i = 1, 2.

Fact 3 shows that ψ1 and ψ2 are C1-smooth. Applying Fact 4, we see that, for
every λ > 0,

(3.3.15) K1 + λK2 = {∇f1(x) + λ∇f2(x) : x ∈ Rn}.
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Then, the map ψ = ψ2◦(ψ1)−1 : K1 → K2 is a volume preserving C1-diffeomorphism
and satisfies K1 + λK2 = (I + λψ)(K1) for all λ > 0.

This construction reveals the close relation between mixed volumes and mixed
discriminants. Let K1, . . . , Kn be open convex bodies Ki with normalized volume
|Ki| = 1, and consider the Brenier maps

(3.3.16) φi : (Rn, γn) → Ki,

where γn is the standard Gaussian probability density on Rn. We have φi = ∇fi,
where fi are convex functions on Rn. By Caffarelli’s regularity result, all the φi’s
are smooth maps. Then, the image of (Rn, γn) by

∑
tiφi is the interior of

∑
tiKi.

Since each φi is a measure preserving map, we have

(3.3.17) det
(

∂2fi

∂xk∂xl

)
(x) = γn(x) , i = 1, . . . , n.

It follows that

(3.3.18)
∣∣∣

n∑

i=1

tiKi

∣∣∣ =
∫

Rn

det

(
n∑

i=1

ti(
∂2fi

∂xk∂xl
)

)
dx

=
n∑

i1,... ,in=1

ti1 . . . tin

∫

Rn

D

(
∂2fi1(x)
∂xk∂xl

, . . . ,
∂2fin(x)
∂xk∂xl

)
dx.

In this way, we recover Minkowski’s theorem on |∑ tiKi|, and see the connection
between the mixed discriminants D(Hessfi1 , . . . , Hessfin) and the mixed volumes

(3.3.19) V (Ki1 , . . . ,Kin) =
∫

Rn

D(Hessfi1(x), . . . , Hessfin(x))dx.

The Alexandrov-Fenchel inequalities do not follow from the corresponding mixed
discriminant inequalities, but the deep connection between the two theories is ob-
vious. Also, some particular cases are indeed simple consequences. For example
(see [4]), as a consequence of a similar inequality for mixed discriminants one can
prove that

(3.3.20) V (K1, . . . , Kn) ≥
n∏

i=1

|Ki|1/n.

4 Extremal problems and isotropic positions

4.1 Classical positions of convex bodies

The family of positions of a convex body K in Rn is the class {T (K) | T ∈ GL(n)}.
The right choice of a position is often quite important for the study of geometric
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quantities. For example, let K be a symmetric convex body in Rn and consider the
volume product s(K) =

(|K| · |K◦|)1/n. The Blaschke-Santaló inequality asserts
that s(K) is maximized if and only if K is an ellipsoid (note that s(K) is invariant
under GL(n)). On the other hand, a simple application of Hölder’s inequality shows
that

(4.1.1)
|A|
|Bn

2 |
=

∫

Sn−1
‖θ‖−n

A σ(dθ) ≥ w(A◦)−n

for every symmetric convex body A in Rn. This implies that

(4.1.2)
s(Bn

2 )
s(K)

≤ min
T∈GL(n)

w(TK)w((TK)◦).

Therefore, in order to obtain a reverse Blaschke-Santaló inequality it is useful to
study the quantity

(4.1.3) max
K

min
T∈GL(n)

w(TK)w((TK)◦).

One way to estimate this minimum is using the `-position of K, and Pisier’s in-
equality shows that the above quantity is bounded by C log n. Thus, the `-position
provides a first quite non-trivial reverse inequality for the volume product s(K).

All classical positions of convex bodies arise as solutions of such extremal prob-
lems. We often normalize the volume of K to be 1 and ask for the maximum or
minimum of f(TK) over all T ∈ SL(n), where f is some functional on convex bod-
ies (in the example above, f is the product of the mean widths of a body and its
polar). Another useful normalization is |K| = |Bn

2 |: we then say that the volume
radius of K is equal to 1. Below we describe some classical positions of a given
convex body K which solve natural extremal problems. An interesting feature of
this procedure is that a simple variational method leads to a geometric description
of the extremal position, and that in many cases this position satisfies an isotropic
condition for an appropriate measure on Sn−1. We say that a Borel measure µ on
Sn−1 is isotropic if

(4.1.4)
∫

Sn−1
〈x, θ〉2µ(dθ) =

‖µ‖
n
|x|2

for all x ∈ Rn.
John’s position: A symmetric convex body K is in John’s position if the maximal
volume ellipsoid of K is the Euclidean unit ball. John’s theorem [73] asserts that,
in this case, there exist contact points u1, . . . , um of K and Bn

2 (common points of
their boundaries) and positive real numbers c1, . . . , cm such that

(4.1.5) I =
m∑

j=1

cjuj ⊗ uj .

32



In particular, this decomposition of the identity implies that

(4.1.6) |x|2 =
m∑

j=1

cj〈x, uj〉2

for every x ∈ Rn. A direct consequence of (4.1.6) is the fact that K ⊂ √
nBn

2

(in other words, d(XK , `n
2 ) ≤ √

n). The condition in (4.1.6) may be viewed as an
isotropic one: the measure µ supported by {u1, . . . , um} which gives mass cj to
uj is isotropic. Moreover, Ball observed that this condition is also sufficient in the
following sense.

Theorem 4.1 Let K be a symmetric convex body in Rn such that Bn
2 ⊆ K. Then,

K is in John’s position if and only if there exists an isotropic measure µ on Sn−1

which is supported by the set of contact points of K and Bn
2 .

There exists an analogue of this fact for the not necessarily symmetric case
(see e.g. [54]). From John’s decomposition of the identity one can recover all the
available information about John’s position: for example, the Dvoretzky-Rogers
lemma is a simple consequence of (4.1.5).

John’s decomposition of the identity holds in a much more general context: If
K and L are (not necessarily symmetric) convex bodies in Rn, we say that L is of
maximal volume in K if L ⊆ K and, for every w ∈ Rn and T ∈ SLn, the affine
image w+T (L) of L is not contained in the interior of K. If L is of maximal volume
in K then for every z ∈ int(L), one can find contact points v1, . . . , vm of K − z
and L− z, contact points u1, . . . , um of (K − z)◦ and (L− z)◦, and positive reals
c1, . . . , cm, such that

∑
cjuj = 0, 〈uj , vj〉 = 1, and

I =
m∑

j=1

cjuj ⊗ vj .

Moreover, there exists an optimal choice of the “center” z so that, setting z = 0, we
simultaneously have

∑
cjuj =

∑
cjvj = 0. This fact was proved in [57] under some

conditions on K and L (in the symmetric case it had been observed by Milman, see
[147]). A second proof was recently given in [66], where the decomposition is also
used to establish that for any symmetric convex body K in Rn the Banach-Mazur
distance (see §6.1) d(K, T ) is less than or equal to n for every convex body T in
Rn and the distance d(K,Sn) to the simplex Sn is equal to n.
Minimal mean width position: Recall that the mean width of a convex body K
in Rn is the quantity w(K) =

∫
Sn−1 hK(θ)σ(dθ), where hK is the support function

of K (the mean width is clearly invariant under translation). We fix the volume of
K to be equal to 1 and say that K has minimal mean width if w(K) ≤ w(TK) for
all T ∈ SL(n).

Let νK be the Borel measure on Sn−1 with density hK with respect to σ. An
isotropic characterization of the minimal mean width position is proved in [53].
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Theorem 4.2 Let K be a convex body in Rn. Then, K has minimal mean width
if and only if the measure νK is isotropic. That is, if

(4.1.7) w(K) = n

∫

Sn−1
hK(θ)〈θ, x〉2σ(dθ)

for all x ∈ Sn−1. Moreover, this position is uniquely determined up to O(n).

An interesting question is to determine the order of growth of the quantity

(4.1.8) w(n) = max
K

min
T∈SL(n)

w(TK)

as n tends to infinity, where the maximum is over all convex bodies of volume 1
in Rn. If |K| = 1, Urysohn’s inequality implies that w(K) ≥ c

√
n where c > 0 is

an absolute constant. Pisier’s inequality shows that w(n) ≤ c1
√

n log n, and the
example of the `n

1 ball shows that w(n) ≥ c2

√
n log n.

Minimal surface area position: Recall that the area measure of a convex body
K is the Borel measure σK on Sn−1 with

σK(A) = ν({x ∈ bd(K) : the outer normal to K at x is in A})

where ν is the (n− 1)-dimensional surface measure on K. The surface area of K is
∂(K) = ‖σK‖. Again, we fix the volume of K to be equal to 1 and say that K has
minimal surface area if ∂(K) ≤ ∂(TK) for all T ∈ SL(n).

An isotropic characterization of the minimal surface area position was proved
by Petty [117] (see also [56]).

Theorem 4.3 Let K be a convex body in Rn. Then, K has minimal surface area
if and only if the measure σK is isotropic. That is, if

(4.1.9) ∂(K) = n

∫

Sn−1
〈θ, x〉2σK(dθ)

for all x ∈ Sn−1. Moreover, this position is uniquely determined up to O(n).

As in the case of the mean width, it is natural to study the quantity

(4.1.10) ∂(n) = max
K

min
T∈SL(n)

∂(TK)

and its behaviour as n tends to infinity, where the maximum is over all convex
bodies of volume 1 in Rn. If |K| = 1, the isoperimetric inequality implies that
∂(K) ≥ c

√
n where c > 0 is an absolute constant. A sharp upper bound for

∂(n) was given by Ball ([12], see §4.4). The extremal bodies are: the cube in the
symmetric case and the simplex in the general case.
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4.2 Isotropic position and the slicing problem

The slicing problem asks if there exists an absolute constant c > 0 with the following
property: for every convex body K of volume 1 in Rn, with centre of mass at the
origin, there exists θ ∈ Sn−1 such that |K ∩ θ⊥| ≥ c. This is an important question
in modern convex geometry, which is deeply connected with the asymptotic versions
of several classical geometric problems.

The question is in a sense equivalent to the study of linear functionals on convex
bodies. Indeed, by Brunn’s principle, for any θ ∈ Sn−1 the function fK,θ(t) =
|K ∩ (θ⊥ + tθ)| is log-concave, and this implies that

(4.2.1)
c1

|K ∩ θ⊥|2 ≤
∫

K

〈x, θ〉2dx ≤ c2

|K ∩ θ⊥|2 ,

where c1, c2 > 0 are absolute constants. In this way, the volume of sections is
measured by the moments of inertia of the body.

This brings into play the Binet ellipsoid EB(K) of K, a notion coming from
classical mechanics. The norm of the Binet ellipsoid is defined by

(4.2.2) ‖y‖2EB(K) =
1
|K|

∫

K

〈x, y〉2dx

and a suitable homothet of its polar (the Legendre ellipsoid EL(K) of K) satisfies
the equation

(4.2.3)
∫

EL(K)

〈x, y〉2dx =
∫

K

〈x, y〉2dx

for every y ∈ Rn (it has the same moments of inertia as K).
We say that a convex body K of volume 1 with centre of mass at the origin is

isotropic if the Legendre ellipsoid EL(K) is a multiple of Bn
2 . Equivalently, if there

exists a constant LK > 0 such that

(4.2.4)
∫

K

〈y, θ〉2dy = L2
K

for every θ ∈ Sn−1. Every convex body (in fact, every compact set) has an isotropic
position, which is unique up to orthogonal transformations. This position may again
be described as the solution of an extremal problem of the type we discussed in the
previous subsection (see [111] for an extensive survey of all these facts).

Theorem 4.4 Let K be a convex body of volume 1 in Rn, with centre of mass at
the origin. Then,

(4.2.5)
∫

K

|x|2dx ≤
∫

TK

|x|2dx

for every T ∈ SL(n) if and only if there exists a constant LK > 0 such that

(4.2.6)
∫

K

〈y, θ〉2dy = L2
K

for every θ ∈ Sn−1.
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Uniqueness of the isotropic position up to O(n) shows that this isotropic con-
stant LK is invariant for the class of K. It is easily proved that LK ≥ LBn

2
≥ c > 0

for every convex body K in Rn, where c > 0 is an absolute constant. For an isotropic
convex body K, (4.2.1) shows that all (n−1)-dimensional sections through the ori-
gin are approximately equal to 1/LK . Therefore, the slicing problem becomes a
question about the uniform boundedness of LK . In fact, it is not hard to see that
an affirmative answer to the slicing problem is in full generality equivalent to the
following statement:

There exists an absolute constant C > 0 such that LK ≤ C for every
convex body K of volume 1 with centre of mass at the origin.

One can easily obtain the estimate LK = O(
√

n) for every convex body K. In the
symmetric case, this is an immediate consequence of John’s theorem, while in the
general case it can be deduced from Blaschke’s identity which connects the matrix
of inertia of K with the expected value of the volume of a random simplex inside
K. Uniform boundedness of LK is known for some classes of bodies: unit balls
of spaces with a 1-unconditional basis, zonoids and their polars, etc. For partial
answers to the question, see [111], [9]. The best known general upper estimate is
due to Bourgain [23]: LK ≤ c 4

√
n log n for every convex body K in Rn. For a sketch

of the proof, see [54] (the argument follows the presentation of [38], see also [116]
for the not-necessarily symmetric case).

There is a renewed interest in the problem. We mention here a very recent
result of Bourgain, Klartag and Milman [24] which reduces the question to convex
bodies with bounded volume ratio. There exists a constant A > 1 with the following
property: if for all n and all convex bodies K in Rn with vr(K) ≤ A we have LK ≤ α
for some constant α, then for all n and all convex bodies K in Rn we have LK ≤ c(α)
for some constant c(α) depending only on α. Actually, the dependence of c(α) on
α is almost linear. The proof of this fact uses two tools: Steiner symmetrization
and the existence and properties of M -ellipsoids (see §5.2).

4.3 Brascamp-Lieb inequality and its reverse form

The Brascamp-Lieb inequality concerns the multilinear operator I : Lp1(R)× · · · ×
Lpm(R) → R defined by

(4.3.1) I(f1, . . . , fm) =
∫

Rn

m∏

j=1

fj(〈uj , x〉) dx,

where m ≥ n, p1, . . . , pm ≥ 1 with 1
p1

+ · · ·+ 1
pm

= n, and u1, . . . , um ∈ Rn.
Brascamp and Lieb [31] proved that the norm of I is the supremum D of

(4.3.2)
I(g1, . . . , gm)∏m

j=1 ‖gj‖pj
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over all centered Gaussian functions g1, . . . , gm, i.e. over all functions of the
form gj(t) = e−λjt2 , λj > 0. This fact is a generalization of Young’s convolu-
tion inequality ‖f ∗ g‖r ≤ Cp,q‖f‖p‖g‖q for all f ∈ Lp(R) and g ∈ Lq(R), where
p, q, r ≥ 1 and 1/p + 1/q = 1 + 1/r. The best constants Cp,q = ApAqAr′ (where
As = (s1/s/(s′)1/s′)1/2 and s′ is the conjugate exponent of s) had been also obtained
by Beckner [19] who showed that Gaussian functions play the role of maximizers.

The original proof of the Brascamp-Lieb inequality was based on a general
rearrangement inequality of Brascamp, Lieb and Luttinger [32], who showed that
if f∗ is the symmetric decreasing rearrangement of a Borel measurable function f
vanishing at infinity, then

(4.3.3) I(f1, . . . , fm) ≤ I(f∗1 , . . . , f∗m).

A generalization of this fact to functions of several variables (based on Steiner
symmetrization) and the fact that radial functions in high dimensions behave like
Gaussian functions were the key ingredients of the original proof. Setting cj = 1/pj

and replacing fj by f
cj

j one can reformulate the Brascamp-Lieb inequality as follows.

Theorem 4.5 If m ≥ n, u1, . . . , um ∈ Rn and c1, . . . , cm > 0 with c1 + · · ·+ cm =
n, then

(4.3.4)
∫

Rn

m∏

j=1

f
cj

j (〈x, uj〉)dx ≤ D ·
m∏

j=1

(∫

R
fj

)cj

for all integrable functions fj : R→ R+.

Testing on the Gaussians, one can see that D = 1/
√

F where

(4.3.5) F = inf
{det

( ∑m
j=1 cjλjuj ⊗ uj

)
∏m

j=1 λ
cj

j

| λj > 0
}

.

Barthe [16] proved the following reverse form of Theorem 4.5 which was conjectured
by Ball.

Theorem 4.6 Let m ≥ n, c1, . . . , cm > 0 with c1+ · · ·+cm = n, and u1, . . . , um ∈
Rn. If h1, . . . , hm : R→ R+ are measurable functions, we set

(4.3.6) K(h1, . . . , hm) =
∫ ∗

Rn

sup
{ m∏

j=1

h
cj

j (θj) | θj ∈ R , x =
m∑

j=1

θjcjuj

}
dx,

where
∫ ∗ denotes the outer integral. Then,

(4.3.7) inf
{

K(h1, . . . , hm) |
∫

R
hj = 1 , j = 1, . . . , m

}
=
√

F.
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The proof is remarkably elegant and, at the same time, it gives a new direct
proof of the Brascamp-Lieb inequality. We will briefly discuss the argument. Again,
first testing on centered Gaussian functions, one observes that

(4.3.8) inf
{

K(h1, . . . , hm) |
∫

R
hj = 1 , j = 1, . . . , m

}
≤
√

F.

The main step in Barthe’s argument is the following proposition.

Proposition 4.1 Let f1, . . . , fm : R→ R+ and h1, . . . , hm : R→ R+ be integrable
functions with ∫

R
fj(t)dt =

∫

R
hj(t)dt = 1, j = 1, . . . , m.

Then,

(4.3.9) F · I(f1, . . . , fm) ≤ K(h1, . . . , hm).

Proof: We may assume that fj , hj are continuous and strictly positive. We may
also assume that 0 < F < +∞ (F is not degenerated). We use the transportation
of measure idea that was used for the proof of the Prékopa-Leindler inequality: For
every j = 1, . . . , m we define Tj : R→ R by the equation

(4.3.10)
∫ Tj(t)

−∞
hj(s)ds =

∫ t

−∞
fj(s)ds.

Then, each Tj is strictly increasing, 1-1 and onto, and

(4.3.11) T ′j(t)hj(Tj(t)) = fj(t), t ∈ R.

We now define W : Rn → Rn by

(4.3.12) W (y) =
m∑

j=1

cjTj(〈y, uj〉)uj .

A simple computation shows that J(W )(y) =
∑m

j=1 cjT
′
j(〈y, uj〉)uj ⊗ uj . This

impliess that 〈[J(W )(y)](v), v〉 > 0 if v 6= 0 and hence, W is injective. Consider
the function

m(x) = sup
{ m∏

j=1

h
cj

j (θj) | x =
m∑

j=1

θjcjuj

}
.

Then, (4.3.12) shows that

(4.3.13) m(W (y)) ≥
m∏

j=1

h
cj

j (Tj(〈y, uj〉))
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for every y ∈ Rn. It follows that
∫

Rn

m(x)dx ≥
∫

W (Rn)

m(x)dx

=
∫

Rn

m(W (y)) · |J(W )(y)| dy

≥
∫

Rn

m∏

j=1

h
cj

j (Tj(〈y, uj〉)) det




m∑

j=1

cjT
′
j(〈y, uj〉)uj ⊗ uj


 dy.

By the definition of F we have

(4.3.14) det




m∑

j=1

cjT
′
j(〈y, uj〉)uj ⊗ uj


 ≥ F ·

m∏

j=1

(
T ′j(〈y, uj〉)

)cj
.

Therefore, taking (4.3.11) into account we have

∫

Rn

m(x)dx ≥ F ·
∫

Rn

m∏

j=1

h
cj

j (Tj(〈y, uj〉)) ·
m∏

j=1

(
T ′j(〈y, uj〉)

)cj
dy

= F ·
∫

Rn

m∏

j=1

f
cj

j (〈y, uj〉)dy

= F · I(f1, . . . , fm).

In other words, F · I(f1, . . . , fm) ≤ K(h1, . . . , hm). 2

One can now prove simultaneously Theorems 4.5 and 4.6. The computation
leading to (4.3.5) shows that

(4.3.15) sup
{

I(f1, . . . , fm) |
∫

R
fj = 1 , j = 1, . . . , m

}
≥ 1√

F
.

From Proposition 4.1, (4.3.8) and (4.3.15) we get

1√
F

≤ sup
{

I(f1, . . . , fm) |
∫

R
fj = 1

}

≤ 1
F
· inf

{
K(h1, . . . , hm) |

∫

R
hj = 1

}
≤ 1√

F
.

We must have equality everywhere, and this ends the proof(s).

There is a multidimensional generalization of both inequalities. Let S+(Rk)
be the set of k × k symmetric, positive definite matrices. If A ∈ S+(Rk), we
write GA for the centered Gaussian function GA : Rk → R defined by GA(x) =
exp(−〈Ax, x〉), and L+

1 (Rk) for the class of integrable non-negative functions f :
Rk → R. Let m ≥ n, and assume we are given real numbers c1, . . . , cm > 0 and
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integers n1, . . . , nm less than or equal to n, such that
∑m

j=1 cjnj = n. We are also
given linear maps Bj : Rn → Rnj which are onto and satisfy

⋂m
j=1 Ker(Bj) = {0}.

Consider the operators I, K : L+
1 (Rn1)× · · · × L+

1 (Rnm) → R defined by

(4.3.16) I(f1, . . . , fm) =
∫

Rn

m∏

j=1

f
cj

j (Bjx)dx

and

(4.3.17) K(h1, . . . , hm) =
∫ ∗

Rm

m(x)dx,

where

(4.3.18) m(x) = sup
{ m∏

j=1

h
cj

j (yj) | yj ∈ Rnj and
m∑

j=1

cjB
∗
j yj = x

}
.

Let E be the largest constant for which

(4.3.19) K(h1, . . . , hm) ≥ E ·
m∏

j=1

(∫

Rnj

hj

)cj

holds true for all hj ∈ L+
1 (Rnj ), and let F be the smallest constant for which

(4.3.20) I(f1, . . . , fm) ≤ F ·
m∏

j=1

(∫

Rnj

fj

)cj

holds true for all fj ∈ L+
1 (Rnj ). Then, the following holds true.

Theorem 4.7 The constants E and F can be computed using centered Gaussian
functions. Moreover, if D is the largest real number for which

(4.3.21) det




m∑

j=1

cjB
∗
j AjBj


 ≥ D ·

m∏

j=1

(detAj)cj ,

for all Aj ∈ S+(Rnj ), we have

(4.3.22) E =
√

D and F = 1/
√

D.

The multidimensional version of the Brascamp-Lieb inequality was first established
by Lieb in [84]. The simultaneous proof of both this inequality and its reverse form
is due to Barthe [16] and follows the idea of the proof of the one-dimensional case.
However, instead of the direct transportation of measure argument there, one now
has to make essential use of the Brenier map.
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4.4 Sharp geometric inequalities

As §4.1 shows, isotropic positions of convex bodies and the corresponding decom-
positions of the identity are typical in the asymptotic theory: isotropicity may be
viewed as the ultimate form of non-degeneracy. Ball made the very important ob-
servation that the constants in the Brascamp-Lieb inequality and its reverse form
take a surprisingly simple form in the presence of such a decomposition of the
identity.

Theorem 4.8 Assume that the vectors u1, . . . , um ∈ Sn−1 and the positive weights
c1, . . . , cm satisfy the isotropic condition

(4.4.1) I =
m∑

j=1

cjuj ⊗ uj .

Then, the constant F = F ({uj}, {cj}) in Theorems 4.5 and 4.6 is equal to 1.

Ball applied the Brascamp-Lieb inequality in this context to solve purely geo-
metric problems. A well-known example is his reverse isoperimetric inequality [12],
which gives the exact value of the constant ∂(n) in (4.1.4). We ask for the best
constant ∂(n) for which every symmetric convex body K in Rn has a position K̃
satisfying

(4.4.2) ∂(K̃) ≤ ∂(n)|K̃|(n−1)/n.

The natural position of K is the minimal surface area position. However, Ball’s
solution of the problem employs John’s position. Assume that Bn

2 is the maximal
volume ellipsoid of K. Then,

(4.4.3) ∂(K) = lim
t→0+

|K + tBn
2 | − |K|
t

≤ lim
t→0+

|K + tK| − |K|
t

= n|K|.

We claim that among all bodies in John’s position the cube has maximal volume.

Theorem 4.9 Let Qn = [−1, 1]n be the unit cube in Rn. If K is a symmetric
convex body in John’s position in Rn, then |K| ≤ 2n = |Qn|.

For the proof we use John’s representation of the identity (4.4.1), where the
uj ’s are contact points of K and Bn

2 . Observe that

(4.4.4) K ⊆ M := {x : |〈x, uj〉| ≤ 1, j = 1, . . . ,m}.
Therefore,

|K| ≤ |M | =
∫

Rn

m∏

j=1

χ
cj

[−1,1](〈x, uj〉)dx

≤
m∏

j=1

(∫

R
χ[−1,1](t)dt

)cj

= 2
Pm

j=1 cj = 2n,
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where we used the Brascamp-Lieb inequality together with the observation of The-
orem 4.8, and the fact that

∑m
j=1 cj = n, which is a simple consequence of (4.4.1).

2

Now, (4.4.3) shows that ∂(K) ≤ n|K| ≤ 2n|K|(n−1)/n, and since K was arbi-
trary, ∂(n) ≤ 2n. There is equality in the case of the cube, and this shows that
∂(n) = 2n.

Theorem 4.9 shows that the cube has maximal volume ratio among all symmet-
ric convex bodies. In the general case, one can show that the simplex ∆n is the ex-
tremal convex body. The reverse Brascamp-Lieb inequality can be used for the dual
statements: consider the external volume ratio evr(K) = inf

(|E|/|K|)1/n, where
the infimum is taken over all ellipsoids containing K. Then, evr(K) ≤ evr(∆n)
for every convex body K in Rn. In the symmetric case the extremal body is the
cross-polytope (the unit ball of `n

1 ).
The Brascam-Lieb inequality and its reverse form were also used for sharp

estimates on the volume of sections and projections of the unit ball Bn
p of `n

p [10].
If p > 0 and H is a k-dimensional subspace of Rn, then |Bn

p ∩H| ≤ |Bk
p | if p ≤ 2,

and

(4.4.5) |Bn
p ∩H| ≤

(n

k

)k(1/2−1/p)

|Bk
p |

if p ≥ 2. This last estimate is sharp if k divides n. On the other hand, |PH(Bn
p )| ≥

|Bk
p | if p ≥ 2, and

(4.4.6) |PH(Bn
p )| ≥

(
k

n

)k(1/p−1/2)

|Bk
p |

if p ≤ 2. This last estimate is sharp if p > 1 and k divides n. The proof of all
these inequalities is based on the observation that if {e1, . . . , en} is the standard
orthonormal basis in Rn, then the obvious representation I =

∑n
j=1 ej ⊗ ej of the

identity implies that

(4.4.7) PH =
n∑

j=1

a2
juj ⊗ uj ,

where aj = |PH(ej)| and uj = PH(ej)/aj .
The multidimensional version of the reverse Brascamp-Lieb inequality is used

in the proof of the following Brunn-Minkowski type inequality of Barthe [16]. Let
m,n be integers. Let Ei, i ≤ m be linear subspaces of Rn. Assume that there exist
positive ci’s such that I =

∑
i≤m ciPi where Pi is the orthogonal projection onto

Ei. Then, the inequality

(4.4.8)
∣∣ ∑

ciKi

∣∣ ≥
∏

|Ki|ci

holds for any compact subsets Ki of Ei, where |Ki| is the volume of Ki in Ei. In
the case where each Ki is a line segment, this reduces to an inequality of Ball [11]
which was proved by induction on the dimension.
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Another extremal property of the simplex was proved by Barthe [17]. Assume
that K is a convex body whose minimal volume ellipsoid is Bn

2 . Then, M(K) ≤
M(∆n), where ∆n is the regular simplex inscribed in Bn

2 . In the symmetric case
one has M(K) ≤ M(Bn

1 ) (this is much simpler and was observed by Schechtman
and Schmuckenschläger [133]). The proof of both inequalities makes use of the
reverse Brascamp-Lieb inequality. In John’s position, the simplex and the cube are
the extremal bodies for M(K).

For a different application, consider a polytope K with facets Fj and normals
uj , j = 1, . . . , m. If K is in minimal surface area position, Petty’s theorem 4.3 is
equivalent to the statement

(4.4.9) I =
m∑

j=1

n|Fj |
∂(K)

uj ⊗ uj .

The projection body ΠK of K is defined by

(4.4.10) hΠK(x) =
1
2

∫

Sn−1
|〈x, z〉|σK(dz).

In our case, ΠK = ∂(K)
2n

∑m
j=1 cj [−uj , uj ], and using (4.4.9) one can give a lower

bound of its volume [56]. Namely,

(4.4.11) |ΠK| ≥ 2n

(
∂(K)
2n

)n

.

The example of the cube shows that this inequality is sharp for bodies with minimal
surface area.

Combined with Theorem 4.2 this volume estimate leads to a sharp reverse
Urysohn inequality for zonoids [55]. If Z be a zonoid in Rn with volume 1 and
minimal mean width, then

(4.4.12) w(Z) ≤ w(Qn) =
2ωn−1

ωn
.

For the proof, recall that Z is the projection body ΠK of some convex body K.
Using (4.4.10) and the characterizations of Theorems 4.2 and 4.3 we check that K
has minimal surface area. We have
(4.4.13)

w(Z) = 2
∫

Sn−1
hZ(x)σ(dx) =

∫

Sn−1

∫

Sn−1
|〈x, z〉|σK(dz)σ(dx) =

2ωn−1

nωn
∂(K),

and (4.4.11) shows that w(Z) ≤ 2ωn−1/ωn. We have equality when K is a cube,
and this corresponds to the case Z = (1/2)Qn.

4.5 Study of geometric probabilities

In this short subsection we describe some recent results from [63] on random
properties of the uniform distribution over a convex body K in Rn. To fix ter-
minology, for any (measurable) set A ⊂ Rn, the geometric probability of A is
P (A) := |A ∩K|/|K|.
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Theorem 4.10 Let Ti be measurable sets in Rn, i = 1, . . . , m, and K be a star-
shaped body with 0 ∈ int(K). Assume that |K| = |T1| = · · · = |Tm|. Consider the
positively homogeneous function

(4.5.1) |||λ̃||| = 1∏m
i=1 |Ti|

∫

T1

· · ·
∫

Tm

∥∥
m∑

i=1

λixi

∥∥
K

dxm . . . dx1

on Rm. Then,

(4.5.2) |||λ̃||| ≥ c
√∑

λ2
i

for every λ̃ ∈ Rm, where c > 0 is an absolute constant (c ≥ cn/
√

2, where cn → 1
as n →∞).

The proof of Theorem 4.10 is a direct consequence of the following fact: If K
and Ti are as above and if |K| = |Ti| = |Bn

2 | for every i, then, for any scalars λi,
i = 1, . . . , m and for any t > 0, we have
(4.5.3)

P

{
(xi ∈ Ti)m

i=1 :
∥∥

m∑
1

λixi

∥∥
K

< t

}
≤ P

{
(xi ∈ Bn

2 )m
i=1 :

∥∥
m∑
1

λixi

∥∥
Bn

2
< t

}
.

One then knows that the extremal case is K = T1 = · · · = Tm = Bn
2 and a simple

argument based on Kahane’s inequality leads to the lower bound.
The proof of (4.5.3) uses the rearrangement inequality of Brascamp, Lieb and

Luttinger [32] which was the starting point for the first proof of the Brascamp-Lieb
inequality.

An interesting question is to give exact estimates for the probability in (4.5.3)
in terms of {λi} and t. This is done in [63] with a method which uses the sharp
multivariable version of Young’s inequality, proved by Brascamp and Lieb [31].
[This approach was first used by Arias-de-Reyna, Ball and Villa in [6] to establish
the case m = 2, λ1 = −λ2 = 1/

√
2, Ti = K (where K is a symmetric convex body)]:

Fact. Assume that |K| = |T1| = · · · |Tm| = 1. Then, for any scalars λi ∈ R and
any 0 < t ≤ 1,

(4.5.4) P



(xi ∈ Ti)m

i=1 :
∥∥

m∑
1

λixi

∥∥
K

< t

√√√√
m∑
1

λ2
i



 ≤ tn exp

[
(1− t2)

2
n

]
.

A consequence of (4.5.4) is the fact that every n-dimensional normed space X
has random cotype 2 with constant bounded by an absolute constant C > 0 (see
[63]). We say that X has random cotype 2 with constant A > 0 if with probability
greater than 1 − e−an (a > 0 is a fixed universal number), n independent random
vectors {xi}n

1 uniformly distributed over the unit ball K of X satisfy for every
λi ∈ R

(4.5.5) Aveεi=±1

∥∥
n∑
1

εiλixi

∥∥ ≥ 1
A

√√√√
n∑
1

|λi|2.
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Note that the norms ‖xi‖ do not enter in the definition, since with probability
exponentially close to 1 we have 1/2 ≤ ‖xi‖ ≤ 1 and hence the norms are absorbed
in A.

5 Asymptotic results with a classical convexity fla-
vor

5.1 Classical symetrizations

Symmetrization procedures play an important role in classical convexity. Until
recently, the bounds on the number of successive symmetrizations of a certain type
which are needed in order to obtain from a given body K a body K̃ which is close
to a ball were at least exponential in the dimension. The methods of asymptotic
convex geometry show that a linear in the dimension number of steps is enough.
Minkowski symmetrization. Consider a convex body K in Rn and a direction
u ∈ Sn−1. The Minkowski symmetrization of K with respect to u is the convex body
1
2 (K + πuK), where πu denotes the reflection with respect to u⊥. This operation
is linear and preserves mean width. A random Minkowski symmetrization of K is
a body πuK, where u is chosen randomly on Sn−1 with respect to the probability
measure σ. Bourgain, Lindenstrauss and Milman [25] proved that for every ε > 0
there exists n0(ε) such that for every n ≥ n0 and every convex body K, if we
perform N = Cn log n+ c(ε)n independent random Minkowski symmetrizations on
K we receive a convex body K̃ such that

(5.1.1) (1− ε)w(K)Bn
2 ⊂ K̃ ⊂ (1 + ε)w(K)Bn

2

with probability greater than 1 − exp(−c1(ε)n). The method of proof is closely
related to the concentration phenomenon for SO(n).

Recently, Klartag [75] showed that if we perform a specific non-random choice
of 5n Minkowski symmetrizations we may transform any convex body into an ap-
proximate Euclidean ball. We briefly describe the process. We may clearly start
with the normalization w(K) = 1. We fix an orthonormal basis {e1, . . . , en} and
first symmetrize K with respect to the ej ’s. In this way we obtain a 1-unconditional
convex body K1 with the property K1 ⊆ c

√
nBn

1 .
Let Q =

√
nBn

1 and consider a “Walsh basis” of Rn. This is an orthonormal
basis {u1, . . . , un} satisfying |〈ui, ej〉| ≤ 2/

√
n for every i, j ≤ n. If we symmetrize

Q with respect to u1, . . . , un−1, we obtain a new body Q̃ with diam(Q̃) ≤ c
√

log n.
Applying the same sequence of symmetrizations to K1 we arrive at a convex body
K2 with w(K2) = 1 and

(5.1.2) K2 ⊂ c
√

nBn
1 ∩ tBn

2

with respect to a new orthonormal basis, where t = diam(K2) ≤ c
√

log n.
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The next step shows that one can achieve a logarithmic decay of the diame-
ter under 2n additional symmetrizations with respect to two independent random
orthonormal bases.
Claim: Let Qt =

√
nBn

1 ∩tBn
2 . If {vj}, {wj} are independent random orthonormal

bases of Rn, then symmetrization of Qt with respect to v1, . . . , vn−1 and w1, . . . , wn−1

produces with high probability a convex body Q̃t with Q̃t ⊂ (C log t)Bn
2 .

It follows that the same sequence of symmetrizations applied to K2 produces a
convex body K3 with diam(K3) ≤ c log log n. One may then iterate this step and
arrive at a body for which diam(Ks) is bounded by a universal constant. Then,
the proof of [25] shows that O(n) symmetrizations of Ks bring it close to a ball.
Instead of this, one can show by concentration techniques that a second application
of the claim’s symmetrization process to the body K3 is enough.

Even more recently, using spherical harmonics, Klartag [76] showed that for
every convex body K and any 0 < ε < 1/2 there exist cn log(1/ε) successive
Minkowski symmetrizations which transform K to a convex body K̃ satisfying
(1− ε)w(K)Bn

2 ⊆ K̃ ⊆ (1 + ε)w(K)Bn
2 .

Steiner symmetrization. It is well-known that for any convex body K in Rn

there exists a sequence of directions θj ∈ Sn−1 such that (Sθn ◦ · · · ◦ Sθ1)(K)
converges to a ball in the Hausdorff metric (Sθ is the Steiner symmetrization in the
direction of θ). In fact, Mani [90] has proved that if we choose an infinite random
sequence of directions θj ∈ Sn−1 and apply successive Steiner symmetrizations Sθj

of K in these directions, then we almost surely get a sequence of convex bodies
converging to a ball.

Bourgain, Lindenstrauss and Milman [26] proved an isomorphic version of this
fact. There exist absolute constants c, c1, c2 > 0 with the following property: if K
is a convex body in Rn, there exist k ≤ cn log n unit vectors θj such that successive
Steiner symmetrizations in the directions of θj transform K into a convex body K1

with

(5.1.3) c1ρBn
2 ⊆ K1 ⊆ c2ρBn

2 ,

where Bn
2 is the Euclidean unit ball and |K| = |ρBn

2 |. This was a dramatic improve-
ment with respect to the previously known estimate (cn)n/2 of Hadwiger (1955).
An essentially best possible result was recently obtained by Klartag and Milman
[77].

Theorem 5.1 For every ε > 0 there exist constants c1(ε), c2(ε) > 0 such that: for
every convex body K in Rn with |K| = |Bn

2 |, there exist k ≤ (2 + ε)n unit vectors
θj such that successive Steiner symmetrizations in the directions of θj transform K
into a convex body K ′ with

(5.1.4) c1(ε)Bn
2 ⊆ K ′ ⊆ c2(ε)Bn

2 .

The main steps of the argument are the following. Starting with a convex body
of volume 1, we need 2n Steiner symmetrizations in order to obtain a convex body
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K2 which is 1-unconditional (symmetric with respect to the coordinate subspaces)
and “almost isotropic” in the following sense: for every θ ∈ Sn−1,

(5.1.5)
∫

K2

〈x, θ〉2dx ≤ 2.

The first n symmetrizations lead to a 1-unconditional body K1. If the polar of the
Binet ellipsoid of K1 is transformed into a ball by n additional symmetrizations, it
is proved that the same sequence of symmetrizations, applied to K1, produces K2.
By recent results of Bobkov and Nazarov [21], it follows that

(5.1.6) Pn ⊆ K2 ⊆ cnBn
1 ,

where Pn is a box with respect to the same coordinate system, having volume
|Pn|1/n ' 1 (equivalently, one may use a classical result of Losanovskii and a mod-
ification of this argument). This implies that it is enough to symmetrize Pn and
the cross-polytope Bn

1 . The same sequence of symmetrizations will transform K2

into an isomorphic ball.
The analysis for these two particular bodies already proves that (4+ε)n Steiner

symmetrizations are enough. Employing this fact and using the quotient of subspace
theorem (Theorem 2.13), one can build an iteration scheme which reduces the
number of symmetrizations to (2 + ε)n.

Floating bodies - centroid bodies. We close this subsection with some inter-
esting observations on the connections of the Legendre ellipsoid with the centroid
and floating bodies (for the proofs of these facts, see [111]). Let K be a sym-
metric convex body in Rn with |K| = 1. The centroid body of K is defined by
Z(K) =

∫
K

[0, x]dx, where [0, x] is the line segment from 0 to x. Equivalently, its
dual norm is given by

(5.1.7) ‖y‖Z(K)◦ =
1
2

∫

K

|〈x, y〉|dx.

A consequence of the Brunn-Minkowski inequality is that Z(K) is uniformly (i.e. up
to an absolute constant) equivalent to the Legendre ellipsoid of K in the Hausdorff
sense.

For every 0 < δ < 1/2, the floating body Kδ of K is defined to be the envelope
of all hyperplanes that cut off a set of volume δ from K. It can be proved that Kδ

is convex (this was observed by Meyer and Reisner, and independently by Ball).
Moreover, Kδ is C(δ) equivalent to the Legendre ellipsoid of K, where C(δ) is a
constant depending only on δ.

The process of forming the floating body may be viewed as a “one step sym-
metrization”. One arrives at an “isomorphic ellipsoid” although one would expect
that Kδ will stay close to K for small values of δ > 0.
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5.2 Isomorphic symmetrization

In this subsection we describe isomorphic geometric inequalities which are proved
by the method of isomorphic symmetrization. This is our second main example of
a body of results which answer deep questions of the Brunn-Minkowski theory, at
least in their asymptotic version. Here, the main ideas and methods we described
in §2 find applications to classical convexity.

Our first example is the inverse Blaschke-Santaló inequality of Bourgain and
Milman [28], which gives an “affirmative answer” to Mahler’s conjecture (see §4.1).

Theorem 5.2 There exists an absolute constant c > 0 such that

(5.2.1) 0 < c ≤ s(K)
s(Bn

2 )
≤ 1

for every symmetric convex body in Rn.

The inequality on the right is the Blaschke-Santaló inequality. The left hand-
side inequality answers the question of Mahler in the asymptotic sense: For every
symmetric convex body K, the quantity s(K) is of the order of 1/n.

The original proof of Theorem 5.1 used a dimension descending procedure which
was based on the quotient of subspace theorem. We will describe a proof using the
method of isomorphic symmetrization [105]. This is closer to classical convexity
and much more geometric in nature since it preserves dimension: however, it is
a symmetrization scheme which is in many ways different from the classical sym-
metrizations. In each step, none of the natural parameters of the body is being
preserved, but the ones which are of interest remain under control. After a finite
number of steps, the body has come close to an ellipsoid, but there is no natural
notion of convergence to an ellipsoid.

Since s(K) is an affine invariant, we may start from a position of K which
satisfies the inequality M(K)M∗(K) ≤ c log[d(XK , `n

2 ) + 1] (this is allowed by
Theorems 2.9 and 2.10). We may also normalize so that M(K) = 1. We define

(5.2.2) λ1 = M∗(K)a1 , λ′1 = M(K)a1,

for some a1 > 1, and consider the new body

(5.2.3) K1 = co
(

(K ∩ λ1B
n
2 ) ∪ 1

λ′1
Bn

2

)
.

Sudakov’s inequality (Theorem 2.14) and elementary properties of the covering
numbers show that

(5.2.4) |K1| ≥ |K ∩ λ1B
n
2 | ≥ |K|/N(K,λ1B

n
2 ) ≥ |K| exp(−cn/a2

1).

In an analogous way, using the dual Sudakov inequality (Theorem 2.15) one can
show that

(5.2.5) |K1| ≤ |co(K ∪ (1/λ′1)B
n
2 )| ≤ exp(cn/a2

1).
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By the definition of K1 one can apply the same reasoning to K◦
1 , and this shows

that

(5.2.6) exp(−c/a2
1) ≤

s(K1)
s(K)

≤ exp(c/a2
1).

By construction, for the new body K1 we have d(XK1 , `
n
2 ) ≤ M(K)M∗(K)a2

1

and, since s(K1) is an affine invariant, we may assume that M(K1)M∗(K1) ≤
c log[d(XK1 , `

n
2 ) + 1] and M(K1) = 1. If we set λ2 = M∗(K1)a2, λ′2 = M(K1)a2

and define K2 = co
(
(K1 ∩ λ2B

n
2 ) ∪ 1

λ′2
Bn

2

)
, we obtain

(5.2.7) exp(−c/a2
2) ≤

s(K2)
s(K1)

≤ exp(c/a2
2).

We now iterate this procedure, choosing a1 = log n, a2 = log log n, . . . , at = log(t) n
– the t-iterated logarithm of n, and stop the procedure at the first t for which
at < 2. It is easy to check that d(XKt , `

n
2 ) ≤ C, therefore

(5.2.8)
1
C
≤ s(Kt)

s(Bn
2 )
≤ C.

On the other hand,

(5.2.9) c1 ≤ exp
(
−c

( 1
a2
1

+ · · ·+ 1
a2

t

)) ≤ s(Kt)
s(K)

≤ exp
(

c
( 1
a2
1

+ · · ·+ 1
a2

t

))
,

which proves the theorem (observe that the series 1
a2
1

+ · · · + 1
a2

t
+ · · · remains

bounded by an absolute constant). 2

As a second important application of the method we prove the existence of “M -
ellipsoids” associated to any convex body.

Theorem 5.3 There exists an absolute constant c > 0 with the following property:
For every symmetric convex body K in Rn there exists an ellipsoid MK such that
|K| = |MK | and for every body T in Rn

(5.2.10)
1
c

∣∣MK + T
∣∣1/n ≤ ∣∣K + T

∣∣1/n ≤ c
∣∣MK + T

∣∣1/n

and

(5.2.11)
1
c
|M◦

K + T |1/n ≤ |K◦ + T |1/n ≤ c|M◦
K + T |1/n.

For the proof of Theorem 5.3 we define the same sequence of bodies as in
Theorem 5.1. For every s, we check that

(5.2.12) exp(−cn/a2
s) ≤

|Ks + T |
|Ks−1 + T | ≤ exp(cn/a2

s),
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for every convex body T , and the same holds true for K◦
s . After t steps, we arrive

at a body Kt which is c-isomorphic to an ellipsoid M . Our volume estimates show
that |Kt|1/n ' |K|1/n up to an absolute constant. If we define MK = ρM where
ρ > 0 is such that |MK | = |K|, then ρ ' 1 and the result follows. 2

A consequence of Theorem 5.3 is that for every body K in Rn there exists a
position K̃ = uK(K) of volume |K̃| = |K| such that for every pair of convex bodies
K1 and K2 in Rn,

(5.2.13) |t1K̃1 + t2K̃2|1/n ≤ c
(
t1|K̃1|1/n + t2|K̃2|1/n

)
,

for all t1, t2 > 0, where c > 0 is an absolute constant. This statement is the “reverse
Brunn-Minkowski inequality” (Milman, [101]).

The ellipsoid MK in Theorem 5.3 is called an M -ellipsoid for K. The symmetry
of K is not really needed (see e.g. [112]). It can be proved that the existence of an
M -ellipsoid for K is equivalent to the following statement: There exists a constant
c > 0 such that for every body K we can find an ellipsoid MK with |MK | = |K|
and N(K,MK) ≤ exp(cn).

Interchanging the roles of K and MK , we say that a convex body K is in
M -position (with constant c) if |K| = |Bn

2 | and N(K,Bn
2 ) ≤ exp(cn). With this

terminology, Theorem 5.3 is equivalent to the existence of a constant c > 0 such
that in the affine class of any convex body there exists a representative which is in
M -position with constant c. This condition on N(K,Bn

2 ) implies that

max{N(Bn
2 ,K), N(K◦, Bn

2 ), N(Bn
2 ,K◦)} ≤ exp(c1n)

for some constant c1 which depends only on c. If K1 and K2 are in M -position
with constant c, using these estimates one can easily check that
(5.2.14)
|K1+K2|1/n ≤ C

(
|K1|1/n + |K2|1/n

)
and |K◦

1+K◦
2 |1/n ≤ C

(
|K◦

1 |1/n + |K◦
2 |1/n

)

where C is a constant depending only on c (one just uses the volume estimate
|A + B| ≤ N(A,B) · |2B|). If K is in M -position with constant c, setting K1 = K,
K2 = Bn

2 and using the reverse Santaló inequality (Theorem 5.2), we get

(5.2.15) cn|K| · |K◦| ≤ |K ∩Bn
2 | · |co(K◦ ∪Bn

2 )| ≤ |K ∩Bn
2 | · |K◦ + Bn

2 |,

which, combined with (5.2.14), gives

(5.2.16) |K ∩Bn
2 | ≥ cn|K|.

The next fact about the M -position which is used in many applications is the
following statement: If K is in M -position with constant c, then for any λ ∈ (0, 1)
a random orthogonal projection PE(K) onto a [λn]-dimensional subspace E has
volume ratio bounded by a constant C(c, λ). To see this, note that |co(K◦ ∪
Bn

2 )|1/n ≤ C|Bn
2 |1/n where C depends on c (this is a consequence of (5.2.14)).
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In other words, W = co(K◦ ∪ Bn
2 ) has bounded volume ratio, and Theorem 2.7

shows that for a random E ∈ Gn,[λn],

(5.2.17) K◦ ∩ E ⊆ W ∩ E ⊆ C(c, λ)BE .

By duality, this means that PE(K) contains a ball rBE of radius r ≥ 1/C(c, λ).
Since

(5.2.18) |PE(K)| ≤ N(PE(K), BE)|BE | ≤ N(K, Bn
2 )|BE | ≤ exp(cn)|BE |,

this implies a bound on
(|PE(K)|/|rBE |

)1/n.
Pisier (see [121], Chapter 7) offers a different approach to these results, which

provides a construction of special M -ellipsoids with regularity estimates on the
covering numbers. The precise statement is as follows: for every α > 1/2 and every
body K there exists an affine image K̃ of K which satisfies |K̃| = |Bn

2 | and
(5.2.19)

max{N(K, tBn
2 ), N(Bn

2 , tK), N(K◦, tBn
2 ), N(Bn

2 , tK◦)} ≤ exp(c(α)nt−1/α)

for every t ≥ 1, where c(α) is a constant depending only on α, with c(α) = O((α−
1
2 )−1/2) as α → 1

2 . We then say that K is in M -position of order α or α-regular
M -position.

6 Additional information in the spirit of geometric
functional analysis

6.1 Banach-Mazur distance estimates

Recall the definition of the Banach-Mazur distance: if X and Y are two n-dimensional
normed spaces, then

(6.1.1) d(X, Y ) = min{‖T‖ ‖T−1‖ | T : X → Y is an isomorphism}.

Let Bn be the collection of all equivalence classes of n-dimensional normed spaces,
where X1 ∼ X2 if X1 and X2 are isometrically isomorphic. The Banach-Mazur
compactum (of order n) is the compact metric space (Bn, log d).

The quantitative study of the geometry of the Banach-Mazur compactum essen-
tially starts with John’s theorem [73]. For every X ∈ Bn one has d(X, `n

2 ) ≤ √
n,

and the multiplicative triangle inequality for d shows that diam(Bn) ≤ n. The
right order of growth of diam(Bn) as n → ∞ was established by Gluskin [58] who
showed that the Banach-Mazur distance of a typical pair of n-dimensional projec-
tions of the unit ball of `2n

1 is asymptotically equivalent to n. Gluskin’s theorem
was the starting point for a deep study of “random spaces” and of random sections
and projections of general convex bodies, which is briefly described in the next
subsection.
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In many interesting cases, the Banach-Mazur distance d(X, Y ) is significantly
smaller than n. A first example is given by the classical estimates of Gurarii,
Kadec and Macaev: d(`n

p , `n
q ) = n1/p−1/q if 1 ≤ p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞,

and c1n
α ≤ d(`n

p , `n
q ) ≤ c2n

α, where c1, c2 > 0 are absolute constants and α =
max{1/p− 1/2, 1/2− 1/q}, if 1 ≤ p < 2 < q ≤ ∞. This suggests that the diameter
diam(An) of some important familiesAn ⊂ Bn may be of lower order. This has been
proved to be true in two important cases: Let Sn be the family of all 1-symmetric
spaces. Tomczak-Jaegermann [145] showed that diam(Sn) ' √

n (Gluskin [60]
and Tomczak-Jaegermann had previously obtained the upper bound c

√
n logb n).

The same question remains open for the family Un of 1-unconditional spaces. It
is conjectured that the right order of diam(Un) is close to

√
n. Lindenstrauss and

Szankowski [88] have shown that this quantity is bounded by cnα for some α ≤ 2/3.
In many cases, the diameter of a subclass of Bn is estimated by probabilistic

methods. The general idea is to estimate the distance d(X,Y ) by a suitable average
of norm-products. The method of random orthogonal factorizations (which has
its origin in work of Tomczak-Jaegermann, and was later developed and used by
Benyamini and Gordon [20]) uses the integral

(6.1.2)
∫

O(n)

‖T‖X→Y ‖T−1‖Y→Xdν(T )

with respect to the probability Haar measure ν on O(n) as an upper bound for
d(X, Y ). An inequality of Marcus and Pisier allows one to pass from O(n) to
matrices whose entries are independent standard Gaussian variables and then use
Chevet’s inequality from the theory of Gaussian processes in order to controll this
average (see [147]). Using this method one can prove a general inequality in terms
of the type-2 constants of the spaces [39]:

(6.1.3) d(X, Y ) ≤ c
√

n[T2(X) + T2(Y ∗)]

for every X, Y ∈ Bn. This was further improved by Bourgain and Milman [27] to

(6.1.4) d(X,Y ) ≤ c
(
d(Y, `n

2 )T2(X) + d(X, `n
2 )T2(Y ∗)

)
.

A similar technique is used in [27] where it is shown that d(X, X∗) ≤ c(log n)γn5/6

for every X ∈ Bn. All these results indicate that the distance between spaces whose
unit balls are “quite different” is not of the order of n.

The Banach-Mazur distance d(K, L) between two not necessarily symmetric
convex bodies K and L is the smallest d > 0 for which there exist z1, z2 ∈ Rn

and T ∈ GL(n) such that K − z1 ⊆ T (L − z2) ⊆ d(K − z1). The question of the
maximal distance between non-symmetric bodies is open. John’s theorem implies
that d(K, L) ≤ n2. Better estimates were obtained with the method of random
orthogonal factorizations and recent progress on the non-symmetric analogue of
Theorem 2.11. In [15] it was proved that every convex body K has an affine image
K1 such that w(K1)w(K◦

1 ) ≤ c
√

n, a bound which was improved to cn1/3 log9 n
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in [127]. Using this fact, Rudelson showed that d(K,L) ≤ cn4/3 log9 n for any
K,L ∈ Kn.

In another direction, for every X ∈ Bn let us consider the “radius” Rn(X) of
the Banach-Mazur compactum Bn with respect to X, defined by

(6.1.5) Rn(X) = max{d(X,Y ) : Y ∈ Bn}.

In this terminology, John’s theorem states that Rn(`n
2 ) = n1/2. A natural question

asked by Pelczynski is to determine the order of the radius Rn(`n
p ) for other values

of p. In the case of the cube, one has the estimates n1/2 ≤ Rn(`n
∞) ≤ n as a

consequence of John’s theorem. Bourgain and Szarek [29] proved that Rn(`n
∞) =

o(n) and gave a proportional version of the Dvoretzky-Rogers lemma on the contact
points of a body and its minimal volume ellipsoid: Assume that Bn

2 is the ellipsoid
of minimal volume containing K. For every δ ∈ (0, 1) there exist m ≥ (1− δ)n and
contact points x1, . . . , xm of K and Bn

2 , such that

(6.1.6) f(δ)

(
m∑

i=1

t2i

)1/2

≤ |
m∑

i=1

tixi| ≤ ‖
m∑

i=1

tixi‖K ≤
m∑

i=1

|ti|.

for every choice of scalars t1, . . . , tm. This fact can be stated as a proportional
factorization theorem [29].

Theorem 6.1 Let X be an n-dimensional space. For every δ ∈ (0, 1) one can find
m ≥ (1 − δ)n and two operators α : `m

2 → X, β : X → `m
∞, such that the identity

id2,∞ : `m
2 → `m

∞ is written as id2,∞ = β ◦ α and ‖α‖ ‖β‖ ≤ 1/f(δ), where f(δ) is
a function depending only on the proportion δ ∈ (0, 1). 2

Using this result Bourgain and Szarek gave a final answer to the problem of the
uniqueness up to constant of the center of the Banach–Mazur compactum. This
can be made a precise question as follows: Does there exist a function f(λ), λ ≥ 1,
such that for every X ∈ Bn with Rn(X) ≤ λ

√
n we must have d(X, `n

2 ) ≤ f(λ)?
In other words, are all the “asymptotic centers” of the Banach–Mazur compactum
close to the Euclidean space? The answer is negative and the main tool in the
proof is Theorem 6.1: Let X = `s

2 ⊕ `n−s
1 where s = [n/2]. Then Rn(X) ≤ c

√
n for

some absolute constant but d(X, `n
2 ) ≥ (n/2)1/2. Therefore, there exist asymptotic

centers of the Banach-Mazur compactum with distance to `n
2 of the order of Rn(`n

2 ).
The same inequality allowed Bourgain and Szarek to show that Rn(`n

∞) = o(n).
It is now known (see [141], [49]) that (3) holds true with f(δ) = cδ, and this gives a
better upper bound for Rn(`n

∞), which however does not seem to give the right order
of the quantity: There exists an absolute constant c > 0 such that Rn(`n

∞) ≤ cn5/6

(see [48]). On the other hand, Szarek [138] using random spaces (see the next
subsection) proved that Rn(`n

∞) ≥ c
√

n log n.
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6.2 Random spaces

The theory of random spaces started with Gluskin’s theorem [58] on the diam-
eter of the Banach-Mazur compactum. He considered a class Xn,m of random
n-dimensional normed spaces and showed that with high probability the Banach-
Mazur distance of two spaces X1, X2 ∈ Xn,2n exceeds cn, where c > 0 is an absolute
constant.

The class Xn,m is defined as follows: we consider a sequence g1, . . . , gm of inde-
pendent standard Gaussian random variables on some probability space (Ω,A, P ),
and for each ω ∈ Ω we define the space X(ω) whose unit ball is the symmetric
convex body

(6.2.1) Bm(ω) = absconv{e1, . . . , en, g1(ω), . . . , gm(ω)}.

Alternatively, one can consider the class Yn,m of spaces Y (ω) with unit ball

(6.2.2) B̃m(ω) = absconv{g1(ω), . . . , gm(ω)}.

If m ≥ n, then B̃m(ω) has non-empty interior almost surely and defines a norm on
Rn. The random space X(ω) or Y (ω) can be identified with a quotient of `n+m

1 or
`m
1 respectively.

Fix m = 2n. The basic geometric properties of Bm(ω) are the following:
1. Bm(ω) ⊇ (1/

√
n)Bn

2 .
2. |Bm(ω)|1/n ≤ c1|(1/

√
n)Bn

2 |1/n, where c1 > 0 is an absolute constant.
Consider the class of pairs (X(ω1), X(ω2)) ∈ Xn,m × Xn,m. If we fix ω2 and

T ∈ SL(n), using the above properties of Bm(ω2) we see that

(6.2.3) Prob
(
ω1 : ‖T : X(ω2) → X(ω1)‖ ≤ c2ρ

√
n
)

< ρ2n2

for every 0 < ρ < 1, where c2 > 0 is an absolute constant. Our aim is to show that
the probability P1 := Prob(ω1 : X(ω1) ∈ L(ω2)) is small, where

(6.2.4) L(ω2) := {X(ω1) : ∃T ∈ SL(n) : ‖T : X(ω1) → X(ω2)‖ ≤ α
√

n}

for some constant 0 < α < 1 to be determined. To this end, we define

(6.2.5) M(ω2) = {T ∈ SL(n) : ‖Tej‖X(ω2) ≤
√

n, j = 1, . . . , n},

and consider a ε-net N (ω2) of M(ω2) in the norm ‖· : `n
2 → `n

2‖. If X(ω1) ∈ L(ω2),
then there exists T ∈ M(ω2) such that ‖T : X(ω1) → X(ω2)‖ ≤ α

√
n. It follows

that ‖S : X(ω1) → X(ω2)‖ ≤ (α + ε)
√

n for some S ∈ N (ω2). If we set α = ε =
cρ/2, combining with (6.2.3) we see that

(6.2.6) P1 < |N (ω2)| · ρ2n2
.

The cardinality of the net is smaller than (c3/ε)n2
= (c4/ρ)n2

, and this shows that
P1 < (1/2)n2

if ρ is chosen small enough.
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It is now clear that with probability greater than 1− 2(1/2)n2
in Xn,m ×Xn,m

we have

(6.2.7) ‖T : X(ω1) → X(ω2)‖ · ‖T−1 : X(ω2) → X(ω1)‖ ≥ ρ2n

for all T ∈ SL(n), which implies d(X(ω1), X(ω2)) ≥ ρ2n. This proves Gluskin’s
theorem:

Theorem 6.2 There exists a constant c > 0 such that diam(Bn) ≥ cn for every
n ∈ N. 2

Let us mention the following recent result of Rudelson [128] which complements
Gluskin’s theorem. If K1,K2 are symmetric convex bodies in Rn and if k < n,
write dk(K1,K2) for the smallest Banach-Mazur distance between k-dimensional
subspaces of K1 and K2 respectively. If D(n, k) is the supremum of dk(K1,K2)
over all pairs of symmetric convex bodies in Rn, then D(n, k) '

√
k if k ≤ n2/3

and D(n, k) ' k2/n if k ≥ n2/3 (in this statement, ' means “up to a fixed power
of log n”).

Theorem 6.2 was the starting point for a systematic study of random spaces.
Random quotients of `m

1 provided examples of the worst possible order for several
parameters of the local theory. It turns out that a random space X ∈ Xn,m has a
rather “poor” family of bounded operators. It was observed by Gluskin [59], that
a random space Xn,n2 has the following property: any projection P in X of rank
k ≤ n/2 satisfies

(6.2.8) ‖T : X → X‖ ≥ ck/
√

n log n .

As a consequence such a space has basis constant bc(X) ≥ c′
√

n/ log n. [Recall that
the basis constant bc(X) of an n-dimensional normed space X is the infimum of the
basis constants bc{x1, . . . , xn} over all bases of X.] This follows immediately from
the fact that, by the definition of the basis constant, in any n-dimensional normed
space X there exists a projection P of rank k = [n/2] with ‖P : X → X‖ ≤ bc(X).

Szarek [137] modified the random structure on Xn,m and was able to construct
an n-dimensional normed space X with bc(X) ≥ c

√
n. Because of John’s theo-

rem this order is optimal. Mankiewicz [91] applied the random spaces method to
construct finite dimensional spaces with the worst (in order) possible symmetric
constant. In this work Mankiewicz used the “space mixing” property of the irre-
ducible group of operators. Szarek [139] explicitly introduced the notion of the class
M(k, α) of mixing operators which is the set of all linear operators T , satisfying

(6.2.9) dist(Tx, E) = |PE⊥Tx| ≥ α|x|
for some k-dimensional subspace E and every x ∈ E. It is not difficult to show that
any projection P of rank k ≤ n/2 is (k, 1/2) mixing. Then, Szarek showed that the
mixing property is sufficient for proving the results of [91], but also [59] and [137].
In particular, he proved that for a random space X ∈ Xn,n2 one has

(6.2.10) ‖T : X → X‖ ≥ αck/
√

n log n
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for any T ∈ Mix(k, α) and that for some modified probability in Xn,m the following
result holds.

Theorem 6.3 For every 0 < α ≤ 1/2 and δ > 0, a random space X(ω) ∈ Xn,m

where m = [δn], satisfies ‖T : X(ω) → X(ω)‖ ≥ c(α, δ)
√

n for every T ∈
Mix(αn, 1). 2

It should be mentioned that the random space method allows us to construct a
sequence of finite dimensional normed spaces, which serve as blocks for the construc-
tion of examples of infinite dimensional spaces with some unexpected properties:
real isomorphic complex Banach spaces which are not complex isomorphic (Bour-
gain [22]), a Banach space without a basis which has the bounded approximation
property (Szarek [140]) etc.

The class Yn,m, m ' n1+δ provides examples of random spaces with large
Banach-Mazur distance to `n

1 . The distribution of Y (ω) is the same with the dis-
tribution of `m

1 /H where H is a random (m− n)-dimensional subspace of `m
1 , and

thus Yn,m reflects completely the geometry of quotients of `m
1 . The following theo-

rem of Szarek [138] gives the only known example of a pair of spaces with distance
significantly larger than

√
n, in which one of the two spaces is concrete.

Theorem 6.4 For every δ > 0, a random space Y (ω) ∈ Yn,m where m = [n1+δ],
satisfies d(Y (ω), `n

1 ) ≥ c(δ)
√

n log n.

The proof involves a precise distributional inequality on the singular numbers
si of random Gaussian matrices, which is a quantitative finite version of Wigner’s
semicircle law: if G(ω) is an n × n matrix with independent N(0, 1/n) Gaussian
entries, then

(6.2.11) Prob(ω : c1k/n ≤ sn−k(G(ω)) ≤ c2k/n) > 1− c3 exp(−c4k
2),

for all k ≤ n/2, where the ci’s are absolute positive constants.

In the last years it was understood that the ideas and arguments used in the
study of random quotients of `n+m

1 could be transferred to a much more general
setting. The idea of studying random projections of arbitrary high-dimensional
convex bodies comes from Bourgain, and it was developed in a whole theory by
Mankiewicz and Tomczak-Jaegermann (see the survey article [93]). The starting
observation is that the main geometric properties of a random space in Xn,m can
be satisfied by projections of an arbitrary convex body if they are put in a suitable
position. More precisely, for fixed 0 < ρ < 1 and for every n-dimensional convex
body K, there exist a [ρn]-dimensional projection T = PE(K) and a Euclidean
norm on E satisfying the following properties:
1. vr(T ) ≤ C1(ρ).
2. d(XK , `n

2 )−1BE ⊆ T ⊆ 2BE .
3. There is an orthonormal basis {xj} in XT with maxj ‖xj‖T ≤ C2(ρ).
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The proof of this fact makes use of the M -ellipsoids. Properties 1 and 2 cor-
respond to the two geometric properties of X(ω) ∈ Xn,m. The third one, which
was also clear by construction in our previous discussion, is allowed in the general
setting because of the proportional Dvoretzky-Rogers factorization (Theorem 6.1).

An example of this line of thought is the following recent result from [92]: If K1

and K2 are two symmetric convex bodies in Rn whose minimal volume ellipsoid is
the Euclidean unit ball, then for every proportional dimension k = λn the average
distance between k-dimensional projections PH1(K1) and PH2(K2) of K1 and K2

is bounded from below by the product of the average distances
∫

Gn,s

d(PLi
(Ki), `s

2)dµn,s(Li)

where s can be taken equal to s = (1/2− ε)k for any small ε > 0.

Random spaces were used very recently by Szarek and Tomczak-Jaegermann
[144] to provide a strong negative answer to a series of questions raised in the
mid-eighties (see [102]), which roughly speaking asked if the cotype properties of
every n-dimensional normed space improve by passing to quotients of proportional
dimension. A typical example is the following: Is it true that there is an absolute
constant C > 0 such that every n-dimensional space X has a quotient X1 of di-
mension dim(X1) ≥ n/2 such that the cotype-2 constant of X1 is bounded by C?
Recall that this is true if we replace bounded cotype-2 constant by bounded volume
ratio (and, by a result of Bourgain and Milman [28], the first property implies the
second). A positive answer would be of obvious importance, since all the theory of
type and cotype would enter decisively in the study of general convex bodies.

For any given finite dimensional space W , Szarek and Tomczak-Jaegermann
construct a space X of an appropriately larger dimension, which is well satu-
rated with W . The precise statement is the following: Let n and m0 be posi-
tive integers with

√
n log n ≤ m0 ≤ n. If W is a normed space with dim(W ) ≤

c min{m0/
√

n,m2
0/(n log n)}, there exists an n-dimensional normed space X such

that: if m0 ≤ m ≤ n, every m-dimensional quotient X1 of X contains a 1-
complemented subspace isometric to W .

Let us give a direct application of this fact: If we choose W = `k
∞ with k ' √

n
and consider an n-dimensional space X as above, taking m0 proportional to n we
see that the cotype-2 constant of every m0-dimensional quotient X1 of X is at least
of the order of 4

√
n (and the cotype-q constant of every such X1 is at least of the

order of n1/(2q)).
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