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PROBLEMS AND SOLUTIONS

First day — July 29, 1994

Problem 1. (13 points)

a) Let A be a n X n, n > 2, symmetric, invertible matrix with real
positive elements. Show that z, < n? — 2n, where z, is the number of zero
elements in A7,

b) How many zero elements are there in the inverse of the n x n matrix

Solution. Denote by a;; and b;; the elements of A and A~1, respectively.

n
Then for k # m we have ) agib;, = 0 and from the positivity of a;; we
1=0
conclude that at least one of {b;, : i = 1,2,...,n} is positive and at least
one is negative. Hence we have at least two non-zero elements in every
column of A~!. This proves part a). For part b) all b;; are zero except

b171 = 2, bn,n = (—1)”, bi,iJrl = bi+1,i = (—1)1 for ¢ = 1,2, ey — 1.

Problem 2. (13 points)
Let f € Cl(a,b), limJr f(z) = +o0, hr? f(x) = —o0 and

f'(x)+ f?(x) > —1 for = € (a,b). Prove that b—a > 7 and give an example
where b — a = 7.
Solution. From the inequality we get

d /
%(arctgf(x) +z) = % +1>0

for z € (a,b). Thus arctg f(z)+x is non-decreasing in the interval and using
the limits we get g +a < —g + b. Hence b — a > w. One has equality for
f(z) =cotgx,a=0,b=m.

Problem 3. (13 points)



Given a set S of 2n — 1, n € N, different irrational numbers. Prove
that there are n different elements x1,xs,...,z, € S such that for all non-
negative rational numbers a1, ao,...,a, with a1 +as+---+ a,, > 0 we have
that a1x1 + asxs + - - - + ap Ty, is an irrational number.

Solution. Let I be the set of irrational numbers, Q — the set of rational
numbers, Q1 = QN [0, 00). We work by induction. For n = 1 the statement
is trivial. Let it be true for n — 1. We start to prove it for n. From the
induction argument there are n — 1 different elements x1,x2,..., 2,1 € S
such that

a1r1 + agro + -+ ap_1Tp—1 €1
for all a1,as,...,an € Q7 with ay +as + -+ + an_1 > 0.

(1)

Denote the other elements of S by x,, Zn11,...,T2,—1. Assume the state-
ment is not true for n. Then for k = 0,1,...,n — 1 there are r, € Q such
that
n—1 n—1
(2) Z bikTi + cpTpik = 1 for some by, c € QT, Z b + ¢, > 0.
i=1 i=1
Also
n—1 n—1
(3) Z dptnir = R for some dj, € Q7 Z dp. >0, ReQ.
k=0 k=0

If in (2) ¢ = 0 then (2) contradicts (1). Thus ¢, # 0 and without loss of
n—1

generality one may take ¢ = 1. In (2) also > by > 0 in view of x4 € L.
i=1

Replacing (2) in (3) we get

n—1 n—1 n—1 /n—1
Z dp (— Z bipr; + ’I“k> =R or Z (Z dkbzk> x; € Q,
k=0

i=1 i=1 \k=0

which contradicts (1) because of the conditions on b's and d’s.

Problem 4. (18 points)

Let o € R\ {0} and suppose that F' and G are linear maps (operators)
from R" into R" satisfying F oG — G o F = oF.

a) Show that for all k € N one has F¥ o G — G o F¥ = akF*.

b) Show that there exists k& > 1 such that F* = 0.



Solution. For a) using the assumptions we have
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b) Consider the linear operator L(F) = FoG—GoF acting over all n xn
matrices F. It may have at most n? different eigenvalues. Assuming that
Fk 20 for every k we get that L has infinitely many different eigenvalues
ak in view of a) — a contradiction.

Problem 5. (18 points)
) Let f € C[0,b], g € C(R) and let g be periodic with period b. Prove

that / f(z)g(nz)dz has a limit as n — oo and

nh_)Igo /Obf(m)g(nx)dx = %/Obf(m)dx : /Ob g(x)dzx.

™ sin x

b) Find

lim — 5 dx
n—oo Jo 1+ 3cos“nx

Solution. Set [|g|l; = / lg(x)|dz and
0

w(f;t) =sup{|f(z) = ()] = 2,y €08, [x—y| <t}

In view of the uniform continuity of f we have w(f,t) — 0 as t — 0. Using
the periodicity of g we get

/b f(@)g(nx)dx = Z /bk/n g(nz)dx

b(k 1)/n

bk/n
=S fh/m) [ g+ 3 / {f(z) — F(bk/n)}g(na)da

Pt (k=1)/n = Jot-1/m

:%j F(bk/m) /0” (2)dz + O(w(£.b/m)lglh)



12 b bk/n b

> (ﬁ(bk/n) o f(w)dz> | st@)da+ 0wt sbmlal)
1 b b

=5 | f@da [ g@)da -+ O(sbm)lgl).

This proves a). For b) we set b =, f(z) =sinz, g(x) = (1 + 3cos 2z)~L.
From a) and

s ™ T
/ sin xdzr = 2, / (1 + 3cos %z) " tdx = =
0 0 2

we get
” sinx
lim ——dz =1.
n—oo o 1+ 3cos 2nx

Problem 6. (25 points)
Let f € C?[0,N] and |f'(z)| < 1, f"(z) > 0O for every x € [0, N]. Let
0<mg<m<--<mg< N be integers such that n; = f(m;) are also

integers for ¢ = 0,1,...,k. Denote b; = n; — n;_1 and a; = m; — m;_ for
i=1,2,... k.
a) Prove that
b b b
<t <2t
al a9 ag

b) Prove that for every choice of A > 1 there are no more than N/A
indices j such that a; > A.

¢) Prove that k < 3N?/3 (i.e. there are no more than 3N?/3 integer
points on the curve y = f(z), € [0, N]).

Solution. a) For i =1,2,... k we have
bi = f(mi) — f(mi-1) = (mi —mi—1) f'(x)

b. .
for some x; € (m;_1,m;). Hence — = f'(x;) and so —1 < — < 1. From the
a; Q;

b,
convexity of f we have that f’ is increasing and — = f'(z;) < f'(zi11) =
a;

i+1
2*1 because of T, <my < Tiy1.
Qi+1



b) Set S4 ={j €{0,1,...,k} : a;j > A}. Then

k
Nka—m():ZaiZ Z a; > A|S4|
i=1 JjESA

and hence |S4| < N/A.

c) All different fractions in (—1, 1) with denominators less or equal A are
no more 242, Using b) we get k < N/A +2A2. Put A= N'/3 in the above
estimate and get k < 3N2/3,

Second day — July 30, 1994

Problem 1. (14 points)
Let f € Cl[a,b], f(a) = 0 and suppose that A € R, A > 0, is such that

| (@)] < Alf(2)]

for all = € [a,b]. Is it true that f(z) =0 for all = € [a,b]?

Solution. Assume that there is y € (a,b] such that f(y) # 0. Without
loss of generality we have f(y) > 0. In view of the continuity of f there exists
¢ € la,y) such that f(c) =0 and f(z) > 0 for z € (¢,y]. For x € (c,y] we
have |f'(z)| < Af(z). This implies that the function g(x) = In f(z) — Az is

/
not increasing in (¢, y] because of ¢'(z) = ];((x)) —A<0. ThusIn f(z)— Az >
x
In f(y) — Ay and f(x) > e MM f(y) for = € (c,y]. Thus

0= f(c) = f(e+0) > Mf(y) >0

— a contradiction. Hence one has f(z) = 0 for all = € [a, b].

Problem 2. (14 points)
Let f:R? — R be given by flz,y) = (2% - y2)e_“’2_92.
a) Prove that f attains its minimum and its maximum.

0 0
b) Determine all points (z,y) such that a—i(w,y) = 8—5(30,3/) = 0 and

determine for which of them f has global or local minimum or maximum.
Solution. We have f(1,0) = e 1, f(O 1) ~1and te=t < 2¢72 for

t > 2. Therefore \f(ac )| < (22 + y2)e =Y’ <2€ 2<et for (x,y) ¢

M = {(u,v) : u?+v? < 2} and f cannot attain its minimum and its



maximum outside M. Part a) follows from the compactness of M and the
0
continuity of f. Let (x,y) be a point from part b). From a—f(ac,y) =
x
2z(1 — 2% + y2)efx27y2 we get

(1) z(1—-2*+y*) =0.
Similarly
(2) y(1+2° —y%) =0.

All solutions (x,y) of the system (1), (2) are (0,0), (0,1), (0,-1), (1,0)
and (—1,0). One has f(1,0) = f(—~1,0) = e~ ! and f has global maximum
at the points (1,0) and (—1,0). One has f(0,1) = f(0,—1) = —e~! and
f has global minimum at the points (0,1) and (0,—1). The point (0,0)
is not an extrema point because of f(x,0) = 22 > 0 if z % 0 and
f(y,0) = —y2eV <0 if y £ 0.

Problem 3. (14 points)
Let f be a real-valued function with n + 1 derivatives at each point of
R. Show that for each pair of real numbers a, b, a < b, such that

1m<f(b>+f’(b)+---+f<"><b)) i
fla) + f(a) + -+ f™(a)

there is a number ¢ in the open interval (a,b) for which

F () = flo)
Note that In denotes the natural logarithm.

Solution. Set g(z) = (f(x) + f(x)+- -+ f(”)(x)) e~*. From the
assumption one get g(a) = g(b). Then there exists ¢ € (a,b) such that
g'(c) = 0. Replacing in the last equality ¢'(z) = (f(”“)(x) — f(a;)) e~ " we
finish the proof.

Problem 4. (18 points)
Let A be a n x n diagonal matrix with characteristic polynomial

(x — 01)d1 (x — 02)d2 v (= ck)dk,

where c1, ca, ..., ¢ are distinct (which means that ¢; appears d; times on the
diagonal, co appears ds times on the diagonal, etc. and di+da+- - -+di = n).



Let V' be the space of all n x n matrices B such that AB = BA. Prove that
the dimension of V is
di +d5+ - +d;.

Solution. Set A = (aij);szl, B = (bij)?,j:p AB = (x/[:j):'ljtjzl and
BA = (yij)?,jzl' Then Ti5 = aiibij and Yi; = ajjbij. Thus AB = BA is
equivalent to (ai; — aj;)b;; = 0 for 4,5 = 1,2,...,n. Therefore b;; = 0 if
a;; # aj; and b;; may be arbitrary if a;; = aj;. The number of indices (3, j)
for which a;; = a;; = ¢, for some m = 1,2,...,k is d?,. This gives the
desired result.

Problem 5. (18 points)

Let z1, s, ...,z be vectors of m-dimensional Euclidian space, such that
x1+xo+---+x, = 0. Show that there exists a permutation m of the integers
{1,2,...,k} such that

n

> T

i=1

& 1/2
< <Z||xz\|2> foreach n=1,2,... k.
i=1

Note that || - || denotes the Euclidian norm.

Solution. We define 7 inductively. Set m(1) = 1. Assume 7 is defined
fori=1,2,...,n and also

n 2 n
Y| <D Nzl
i=1 =1

Note (1) is true for n = 1. We choose w(n + 1) in a way that (1) is fulfilled
with n + 1 instead of n. Set y = >~z and A= {1,2,...,k} \ {7(i) : i =
i=1

(1)

1,2,...,n}. Assume that (y,x,) > 0 for all » € A. Then (y, > xr> >0
reA

and in view of y + > z, = 0 one gets —(y,y) > 0, which is impossible.
reA
Therefore there is r € A such that

(2) (y,fﬁr) <0.

Put m(n + 1) = r. Then using (2) and (1) we have

n+1 2

; Zr(i)

= lly + 2 1* = llyl* + 20y, 20) + llz2 > < lyll? + o ]* <




n+1

n
<D Nam@ I+ 2l = D e I
i=1 =1
which verifies (1) for n + 1. Thus we define 7 for every n = 1,2,... k.
Finally from (1) we get
n

2 k
< Nzl <D il
] =1

7 (i)

Problem 6. (22 points)

Find 1 IDQNNijQ ! Note that In denotes the natural
1 NE}IIOO N Z ln]{;ln(N—k') ote al In denotes € natura.

logarithm.
Solution. Obviously

n? N =2 1 m?N N -3 3
1 Ay = > : —1- =
(1) NTON ;ka-ln(N—k)— N I’N N
1
Take M, 2 < M < N/2. Then using that m is decreasing in

[2, N/2] and the symmetry with respect to N/2 one get

lnN{ N—-M-1

1
2+ >+ Z }lnk:-ln(N—k:)S

k=2 k=M+1 k=N-M

<ln2N{ M-1 N-2M-1 }
- N In2-In(N—-2) InM-In(N—- M)
2 MInN In N 1
<. 1—— Oo|——|.
“ In2 N +( )111M+ (lnN)
ChooseM:[ }—i—lto get

In N ) 1 <140 Inln N
C NIn2N/) InN —2Inln N InN/ — InN /°
(1

Estimates (1) and (2) give

I = 1.
Nos N glnk-ln(N—k)
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PROBLEMS AND SOLUTIONS

First day

Problem 1. (10 points)

Let X be a nonsingular matrix with columns X, Xo,..., X,,. Let Y bea
matrix with columns Xs, X3, ..., X,,,0. Show that the matrices A =Y X!
and B = XY have rank n — 1 and have only 0’s for eigenvalues.

Solution. Let J = (a;;) be the n x n matrix where a;; = 1ifi = j+1
and a;; = 0 otherwise. The rank of J is n — 1 and its only eigenvalues are
0’s. Moreover Y = XJ and A =YX ' =XJX !, B=X"1lY =J. It
follows that both A and B have rank n — 1 with only 0’s for eigenvalues.

Problem 2. (15 points)
Let f be a continuous function on [0, 1] such that for every x € [0, 1] we

! 1—a2? 1 1
have / f(t)dt > . Show that / fA(t)dt > 3
T 0
Solution. From the inequality

1

0§/Ol(f(x)—:U)Qdm:/ole(m)d:U—Q/O xf(x)d:z:—i—/oledm

we get

/01 f2($)dl‘ > 2/01 xf(x)dx — /01 22dx = 2/01 xf(x)dx — é

1,1 1q 1
From the hypotheses we have / / f(t)dtdx > / dzx or / tf(t)dt >
0 Jz 0 0

1
3 This completes the proof.

Problem 3. (15 points)

Let f be twice continuously differentiable on (0, 4+00) such that
lir61+ f'(z) = —oo and lir&_ 1" (z) = +o00. Show that
T— T—

f@)

0 f/(x)




Solution. Since f’ tends to —oo and f” tends to +o0o as z tends to
0+, there exists an interval (0,r) such that f'(z) < 0 and f”(z) > 0 for all
x € (0,7). Hence f is decreasing and f’ is increasing on (0,7). By the mean
value theorem for every 0 < x < xg < r we obtain

f(x) = flxzo) = f(€)(x — 20) > 0,

for some & € (x,zp). Taking into account that f’ is increasing, f'(z) <
7(6) < 0, we gt

f'(6) _ f(@) = f(zo)
r—x9 < f,(x)(l'—l'o) = W < 0.
Taking limits as « tends to 0+ we obtain
—x0 < hmg (i)&f ;,((?) < limrri %Lip ;/((Z)) <0.
f(z)

Since this happens for all zg € (0,7) we deduce that lim exists and

0t ()
f@) _

ooy f(z)

Problem 4. (15 points)
Let F': (1,00) — R be the function defined by

2
7 dt

Show that F' is one-to-one (i.e. injective) and find the range (i.e. set of
values) of F.

Solution. From the definition we have

-1
Fl(z) = xlnx , 2> 1.

Therefore F'(x) > 0 for « € (1,00). Thus F is strictly increasing and hence
one-to-one. Since

1
> (22 — nd— : x<t<a?}=
F(x) > (z m)mln{lnt m_t_z}



as r — 00, it follows that the range of F'is (F'(14),00). In order to determine
F(1+4) we substitute t = €” in the definition of F' and we get

2Inx eV
F(x) = / —dv.
Inz v
Hence
2Inx 1 9
F(z) < 621”/ —dv =2"In2
Inz U

and similarly F(x) > zln2. Thus F(1+) = In2.

Problem 5. (20 points)
Let A and B be real n x n matrices. Assume that there exist n + 1
different real numbers t1,to, ..., t,41 such that the matrices

Ci=A+tB, i=12,...,n+1,

are nilpotent (i.e. C* =0).
Show that both A and B are nilpotent.

Solution. We have that
(A+tB)" = A" +tP +t*Py+ -+ " 'P, +t"B"

for some matrices Py, Py, ..., P,_1 not depending on t.
Assume that a,p1,p2,...,pn—1,b are the (i,j)-th entries of the corre-
sponding matrices A", P1, P, ..., P,_1, B™. Then the polynomial

bt + ppit" 4 pot +pit+a

has at least n + 1 roots t1,t9,...,t,+1. Hence all its coefficients vanish.
Therefore A" =0, B" =0, P, =0; and A and B are nilpotent.

Problem 6. (25 points)
Let p > 1. Show that there exists a constant K, > 0 such that for every
x,y € R satisfying |z|P + |y|P = 2, we have

(x-y? <K, (14— (z+9)?).



Solution. Let 0 < ¢ < 1. First we show that there exists K, s > 0 such
that ( 2
r—y
f(x7y) 4 _ (CL' _|_ y)2 S p,é
for every (z,y) € Ds ={(z,y) : |z —y| =6,z + |y|P = 2}.
Since Dg is compact it is enough to show that f is continuous on Dy.

For this we show that the denominator of f is different from zero. Assume
P

the contrary. Then |z + y| = 2, and BUT—i—y = 1. Since p > 1, the function

T P P P
Fyfr_ el + )

2

P z|P + |y|P

SNCIEYT

whenever

g(t) = [t|P is strictly convex, in other words

Tty
2

1 =

x # y. So for some (x,y) € D5 we have

p

T
+y . We get a contradiction.

2
If z and y have different signs then (x,y) € Dy for all 0 < § < 1 because

then |z —y| > max{|z|,|y|} > 1 > J. So we may further assume without loss
of generality that z > 0, y > 0 and 2P + y? = 2. Set t =1+ t. Then

_ /p
y = (2—a2")P=2- 1+t)P)/P= (2 — (1 +pt+ LPQ Dy 0(t2)))1

= (1 —pt — @tz + 0(t2))

1/p

1

= 1+ 11) (—pt - Z@tz + o(tz)) 3 (% - 1) (—pt + o(t))? + o(t?)

1 1
- 1—t—th2+0(t2) —th2+o(t2)
= 1—t—(p—Dt*+o(t?).

We have
(x —y)? = (2t + o(t))? = 4t + o(t?)

and
4—(z4y)*=4—2—(p—1)t?+o(t?))?*=4—4+4(p—1)t*+o(t*)=4(p—1)t*+-0(t?).

So there exists &, > 0 such that if [t| < &, we have (z—y)? < 5t2, 4—(z+y)? >
3(p — 1)t2. Then

() (w—y)? <5t =



if |x — 1] < 6p. From the symmetry we have that (x) also holds when
ly — 1| < 0p.

To finish the proof it is enough to show that |z — y| > 26, whenever
|z —1| > 6, |y — 1] > 6, and 2P 4+ yP = 2. Indeed, since 2P + yP = 2 we have
T+ y)p _ 2ty

that max{x,y} > 1. Solet x —1 > §,. Since 5

get x +y < 2. Then z —y > 2(x — 1) > 20,

=1 we

Second day

Problem 1. (10 points)

Let A be 3 x 3 real matrix such that the vectors Au and u are orthogonal
for each column vector u € R3. Prove that:

a) AT = —A, where AT denotes the transpose of the matrix A;

b) there exists a vector v € R?® such that Au = v x u for every u € R?,
where v X u denotes the vector product in R3.

Solution. a) Set A = (a;;), u = (u1,u2,u3) . If we use the orthogonal-
ity condition

(1) (Au,u) =0
with u; = d; we get agr = 0. If we use (1) with u; = d;5 + di, We get
agk + am + Gk + Gmm =0

and hence ay,, = —amk-
b) Set v1 = —as3, v = a13, v3 = —aqe. Then

Au = (voug — v3ug, V3up — V1U3, V1UL — vgul)T =0 X U.

Problem 2. (15 points)
Let {b,}o2, be a sequence of positive real numbers such that by = 1,

bp =2 ++/by_1 — 24/1 +y/bp_1. Calculate
> 2"
n=1



Solution. Put a,, = 1+ /b, for n > 0. Then a, > 1, ag = 2 and

anp =1+ \/1 +an—1— 2\/(171,1 = /Qn-1,

50 ap = 227", Then

N N N
dob2" = ) (an—1)%2" = [a22" — 2" 427
n=1 n=1 n=1

[(an—1 —1)2" — (an — 1)2"*]

I
™ =

Il
—

n
N

2277 1
Put 2 =2"Y. Then x — 0 as N — oo and so

227" 1 27 — 1
Zb2N—hm (2—27N>:lim<2—2 ):2—21112.
N—o0 2 x—0 x

Problem 3. (15 points)

Let all roots of an n-th degree polynomial P(z) with complex coefficients
lie on the unit circle in the complex plane. Prove that all roots of the
polynomial

22P'(2) — nP(z)

lie on the same circle.

Solution. It is enough to consider only polynomials with leading coef-
ficient 1. Let P(z) = (2 — a1)(z — a2) ... (2 — ay,) with |o;| = 1, where the

complex numbers aq, ao,...,q, may coincide.
We have
P(z) = 22P'(2) —nP(z) = (24 a1)(z —ag) ... (2 — ap) +
+z—a1)(z+az)...(z—ap)+- -+ (z—a1)(z —aa) ... (2 + an).

ﬁ n 2 2

Hence, (2) = Z 2t %% Since ReZ ta_ 2 o for all complex z,
P(z)  [Zz— o z—« |z—oz|2

,2:|2

Z

P -
it follows that Re% # 0. Hence P(z) = 0 implies |z| = 1.
z

a, z # a, we deduce that in our case Re . From |z| # 1



Problem 4. (15 points)
a) Prove that for every € > 0 there is a positive integer n and real
numbers Aq,...,\, such that

max
z€[—1,1]

n
T — Z )\km%ﬂ <e
k=

b) Prove that for every odd continuous function f on [—1,1] and for every

€ > 0 there is a positive integer n and real numbers p1, ..., u, such that
n
2k+1
max x
me[fl,l] g Hi

Recall that f is odd means that f(x) = —f(—=x) for all x € [-1,1].
Solution. a) Let n be such that (1 —&2)" <e. Then |z(1 — 22)"| < ¢

for every € [—1,1]. Thus one can set A\ = (—1)F*1 Z because then

T — Z )\kaki-f—l — Z(_l)k‘ <n> x2]€+1 — "E(]_ _ zZ)n.
k=1 k=0 k

b) From the Weierstrass theorem there is a polynomial, say p € II,,, such
that

(@) = pla)] < 5.

Set a(x) = 3 {p(x) — p(~)}. Then

£(2) ~ a(e) = 3 {f@) ~ p(a)} — 5L (-) — p(—2)}

and

(1) max |£(2) — g(@)] < 3 max|f(z) - p(e)|+ 5 max |f(~z) — p(—a)| < =

lz|<1 — 2 z[<1 2 |z|<1 2

But ¢ is an odd polynomial in II,, and it can be written as

m m
q(z) = Z b = bz + Z b2k,
k=0 k=1



If by = 0 then (1) proves b). If by # 0 then one applies a) with 2’2 | instead
0
of € to get
- 2k+1| _ €
(2) ‘Igrcl‘i)i box — Z boARx < 3

k=1

for appropriate n and A1, Ag, ..., \,. Now b) follows from (1) and (2) with
max{n, m} instead of n.

Problem 5. (10415 points)
a) Prove that every function of the form

ao

N
5 Teosz+ Z ancos (nx)

n=2

fz) =

with |ag| < 1, has positive as well as negative values in the period [0, 27).
b) Prove that the function

F(x) = Z cos (n2x)

has at least 40 zeros in the interval (0, 1000).

Solution. a) Let us consider the integral

27
; f(z)(1 £ cosx)dr = m(ag £ 1).
The assumption that f(x) > 0 implies ap > 1. Similarly, if f(z) < 0 then
ag < —1. In both cases we have a contradiction with the hypothesis of the
problem.
b) We shall prove that for each integer N and for each real number h > 24
and each real number y the function

N 3
Fy(xz) = Z cos (xn?)
n=1

changes sign in the interval (y,y + h). The assertion will follow immediately
from here.



Consider the integrals

y+h y+h
L :/ Fy(x)dx, P :/ Fy(x)cos z dz.
y y

If Fy(z) does not change sign in (y,y + h) then we have

y+h
< [7 1 (e)de = — 0.
Yy

y+h
/ Fn(z)dz
y

Hence, it is enough to prove that

[L2| > |I1].

Obviously, for each « # 0 we have

Hence

(1)

|| =

y+h
/ cos (ax)dx
y

y+h

N 3
Z / cos (zn?)dx
n=1"Y

On the other hand we have

where

I, =

Al <

N ryth 3
Z / cos zcos (zn2)dz
y

3

y+h
/ (1 + cos (2z))dz +
y

Ny 3 3
% Z/y " (cos (x(n5 - 1)) + cos (x(n5 + 1))) dx

n=2

N | =

_l’_
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2
We use that n% —-1> gn% for n > 3 and we get

N
1 2 1 2 o dt
Al < -+ +3 —<—+7+3/ — < 6.
TR B D B AW,k S
Hence
1
(2) |12| > §h — 6.

We use that h > 24 and inequalities (1), (2) and we obtain |Is| > |I1]. The
proof is completed.

Problem 6. (20 points)
Suppose that {f,}52; is a sequence of continuous functions on the inter-

val [0, 1] such that
1 T
/0 Jn(@)fu(@)de = { é i Z;ﬁ ”

sup{|fn(z)] : z€[0,1]] and n =1,2,...} < +o0.
Show that there exists no subsequence {f,, } of {f,} such that klim fri (@)
— 0
exists for all z € [0,1].

and

Solution. It is clear that one can add some functions, say {g,,}, which
satisfy the hypothesis of the problem and the closure of the finite linear
combinations of {f,} U{gm} is L2]0,1]. Therefore without loss of generality
we assume that {f,} generates Lo[0,1].

Let us suppose that there is a subsequence {ny} and a function f such
that

fop( ) — f( ) for every z € 0,1].

Fix m € N. From Lebesgue S theorem we have

0= /0 @) fo () — / fonl

k—o0

1
Hence / fm(x) f(z)dz = 0 for every m € N, which implies f(x) = 0 almost
0

everywhere. Using once more Lebesgue’s theorem we get

1—/ ank dxkjog/ol f(z)dx =

The contradiction proves the statement.
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PROBLEMS AND SOLUTIONS

First day — August 2, 1996

Problem 1. (10 points)

Let for j = 0,...,n, aj = ag + jd, where ag, d are fixed real numbers.
Put
agp aig a9 Ay,
ayp ap a1 an—1
A= as ail ag Ap—9
ap  Ap—-1 Gp-2 ag

Calculate det(A), where det(A) denotes the determinant of A.
Solution. Adding the first column of A to the last column we get that

ag ai a9 o1
a; ag aj o1
det(A) = (ag + ay) det | as a; ag |
Gp  Ap-1 Gp-—2 1

Subtracting the n-th row of the above matrix from the (n+1)-st one, (n—1)-

st from n-th, ..., first from second we obtain that
ag a1 as ... 1
d —d —-d ... 0
det(A) = (ap+ap)det| d d —-d ... 0
d d d 0
Hence,
d —d —d —d
d d —d ... —d
det(A) = (-1)"(ap +ap)det| d d d ... —d



Adding the last row of the above matrix to the other rows we have

2d 0 0 ... 0
2d 2d 0 ... 0

det(A) = (=1)"(ap+ay)det | 2d 2d 2d ... 0 | = (=1)"(ap+an)2" *d".
d d d d

Problem 2. (10 points)
Evaluate the definite integral

/7r sinnx d
——dx
—x (14 2%)sinz

where n is a natural number.

Solution. We have
I = / T sne
—r (14+2%)sinx

/7r sin nx 4 /0 sin nx p
= — —  dx — —  dx
0o (14 2%)sinx —r (14+2%)sinx

In the second integral we make the change of variable x = —x and obtain
Q sinnz Q sinnz
I, = ———d ———d
" /0 (14 2%)sinx x+/0 (142 %)sinz v

B /7r (1 + 2%)sinnx
 Jo (1+2%)sinx

T Q1
sin nx
= / - dz.
o sinz

For n > 2 we have

I I, — /7r sinnx — éin (n— Q)mdm
0 ST
= 2/ cos (n — 1)zdx = 0.
0
The answer
j 0 ifnis even,
"] m ifnisodd



follows from the above formula and Iy =0, I; = 7.

Problem 3. (15 points)

The linear operator A on the vector space V is called an involution if
A? = E where E is the identity operator on V. Let dimV = n < oc.

(i) Prove that for every involution A on V there exists a basis of V
consisting of eigenvectors of A.

(ii) Find the maximal number of distinct pairwise commuting involutions

on V.
Solution.

(i) Let B = 1(A + E). Then

2
, 1, 1 1
B* = Z(A +2AF+EFE) = Z(QAE—FQE) = §(A+E) = B.

Hence B is a projection. Thus there exists a basis of eigenvectors for B, and
the matrix of B in this basis is of the form diag(1,...,1,0,...,0).

Since A = 2B — FE the eigenvalues of A are +1 only.

(ii) Let {A; : ¢ € I} be a set of commuting diagonalizable operators
on V, and let A; be one of these operators. Choose an eigenvalue A of A
and denote V), = {v € V : Ajv = Av}. Then V) is a subspace of V', and
since A1 A; = A;A; for each i € I we obtain that V) is invariant under each
A;. If Vy, =V then A; is either F or —F, and we can start with another
operator A;. If V) # V we proceed by induction on dim V' in order to find
a common eigenvector for all A;. Therefore {A; : i € I} are simultaneously
diagonalizable.

If they are involutions then |I| < 2™ since the diagonal entries may equal
1 or -1 only.

Problem 4. (15 points)
n—1
Let a; =1, ap = — Z agan_r for n > 2. Show that
"=

(i) limsup |a,| /™ < 2712
n—oo

(i) limsup |a, |/ > 2/3.
n—oo

Solution.
(i) We show by induction that

(%) anp < q" for n>3,



1 1

where ¢ = 0.7 and use that 0.7 < 271/2. One has a; = 1, ag = 30 03 = 3’
11

ag = o Therefore (x) is true for n = 3 and n = 4. Assume () is true for

n < N —1 for some N > 5. Then
N-3
2 1 1 2 _ 1 5 N-—-5
an = —an_1t<an-at— Y apan—k < =" =" PH——q" <"

N N N = N N N "=

2 1
because — + — < 5.
(ii) We show by induction that

an > ¢q¢" for n>2,

2 1 22
where ¢ = 3" One has ay = 3 > (g) = ¢°. Going by induction we have
for N >3

2 1 =2 2 v1 N=3 x5
= — _ P _ >— - _— =
aN = 770N 1+N ;;:2 ARaN—k = 774 + N 4 q

2
because — = 3.
q

Problem 5. (25 points)
(i) Let a, b be real numbers such that b < 0 and 1 + azx + bx? > 0 for
every z in [0, 1]. Prove that

1

1 .
lim n (1+aa:+b:c2)"dx:{ a ifa <0,

+oo ifa > 0.

n—+0o00 0
(ii)) Let f : [0,1] — [0,00) be a function with a continuous second
derivative and let f”(x) < 0 for every z in [0,1]. Suppose that L =
1
lim n/ (f(z))" dzx exists and 0 < L < 4o00. Prove that f’ has a con-
n—oo 0
stant sign and min_|f'(z)| = L™
z€[0,1]
Solution. (i) With a linear change of the variable (i) is equivalent to:

(i’) Let a, b, A be real numbers such that b < 0, A > 0 and 1+az+bx? > 0
A
for every x in [0, A]. Denote I, = n/ (1 + ax + br?)"dx. Prove that
0

1
lim I, = —— when a <0 and lim I, = +oo when a > 0.
n—-+o0o Qa n—-+o0o



Let a < 0. Set f(z) = e — (1 + az + bx?). Using that £(0) = f/(0) =0
and f(z) = a?e™ — 2b we get for > 0 that

0 < e — (1 + ax + bz?) < ca?

2
a
where ¢ = CHn b. Using the mean value theorem we get

0 < e — (14 azx 4 bx?)" < ca’ne®17,

Therefore

A A A
0< n/ e dx — n/ (1 + az + bx*)"dx < cn2/ 22Dz gy
0 0 0

Using that
and

we get (i) in the case a < 0.
Let a > 0. Then for n > max{A~2,—b} — 1 we have

1
A PR —
n/ (1+az +ba*)"dx > n/'"+1(1+bx2)"dx
0 0

> ! (1+ b )
n.i. _

vn+1 n+1
> n eb—>oo.

vn+4+1 n—ooo

(i) is proved.

1
(ii) Denote I,, = n/ (f(z))"dx and M = max f(z).
0 z€[0,1]
For M < 1 we have I, < nM" — 0, a contradiction.
n—oo
If M > 1 since f is continuous there exists an interval I C [0, 1] with

|I| > 0 such that f(z) > 1 for every z € I. Then I,, > n|I| — +o0,
n—oo

a contradiction. Hence M = 1. Now we prove that f’ has a constant
sign. Assume the opposite. Then f’(xg) = 0 for some = € (0,1). Then



h2
f(zo) = M =1 because f” <0. For zg+hin [0,1], f(zo+h) = 1—1—7]””({),
€ € (zo,xz0+ h). Let m = m[%nl] f"(x). So, f(xo+h) > 1+ h;m
z€|0,

62
Let 6 > 0 be such that 1—|—5m>0 and zg + 0 < 1. Then

xo+0 1 m n
Iizn [ U@»%xzy/(l+iﬁ)dh—%x
T 0 n—oo

0

in view of (i') — a contradiction. Hence f is monotone and M = f(0) or
M = f(1).
Let M = f(0) = 1. For h in [0, 1]

L+ hf/(0) 2 f(h) 2 1+ hf'(0) + 1,

where f/(0) # 0, because otherwise we get a contradiction as above. Since
f(0) = M the function f is decreasing and hence f'(0) < 0. Let 0 < A < 1

be such that 1+ Af/(0) + %Az > 0. Then

A

n/OAa + hf(0)) dh > n/o (f(2))de > n/OA (1 +hf(0) + %hQ)ndh.

1
From (i) the first and the third integral tend to 0] as n — 00, hence
so does the slecond.
1
Also n/ (f(x)"dx <n(f(A)" — 0 (f(A) <1). We get L = NTO)
A n—oo

in this case.

If M = f(1) we get in a similar way L = )

Problem 6. (25 points)
Upper content of a subset E of the plane R? is defined as

C(E) = inf {i diam(Ei)}
1=1

where inf is taken over all finite families of sets E1, ..., E,, n € N, in R?
such that £ C ,61 E;.
1=



Lower content of E is defined as

K(FE) = sup {lenght(L) : L is a closed line segment

onto which E can be contracted} .

Show that

(a) C(L) = lenght(L) if L is a closed line segment;

(b) C(E) = K(E);

(c) the equality in (b) needs not hold even if E is compact.

Hint. If E =T UT’ where T is the triangle with vertices (—2,2), (2,2)
and (0,4), and T" is its reflexion about the x-axis, then C(E) = 8 > K(E).

Remarks: All distances used in this problem are Euclidian. Diameter
of a set E is diam(F) = sup{dist(z,y) : z,y € E}. Contraction of a set E
to a set F'is a mapping f : E +— F such that dist(f(z), f(y)) < dist(x,y) for
all z,y € E. A set E can be contracted onto a set F' if there is a contraction
f of E to F which is onto, i.e., such that f(E) = F. Triangle is defined as
the union of the three segments joining its vertices, i.e., it does not contain
the interior.

Solution.
(a) The choice Ey = L gives C(L) < lenght(L). If E C U, E; then
Zdlam ) > lenght(L): By induction, n=1 obvious, and assuming that

E n+1 contains the end point a of L, define the segment L. = {x € L
n+1
dist(x,a) > diam(F),+1)+¢} and use induction assumption to get Z diam(E;) >
i=1
lenght(L.) 4+ diam(FE,,+1) > lenght(L) — ¢; but £ > 0 is arbitrary.
(b)If fisa contractlon of E onto L and E C U'_,E;, then L C U, f(E)

and lenght(L) < Z diam(f Z diam(E.

(cl) Let E = T U T where T is the triangle with vertices (—2,2), (2 2)
and (0,4), and 7" is its reflexion about the z-axis. Suppose E C U E;.
If no set among E; meets both T and T”, then E; may be partltloned 1nto
covers of segments [(—2,2),(2,2)] and [(—2,—2),(2,—2)], both of length 4,
SO Z diam(FE;) > 8. If at least one set among Ej, say Ej, meets both 7" and

', choose a€ E,NT and b € E; NT' and note that the sets E] = E; for
i # k, E}, = Ei, Ula,b] cover TUT'U [a,b], which is a set of upper content



at least 8, since its orthogonal projection onto y-axis is a segment of length

n
8. Since diam(E;) = diam(E}), we get Zdiam(Ei) > 8.

i=1

(c2) Let f be a contraction of E onto L = [a’,b']. Choose a = (a1, a2),

b = (b1,b2) € E such that f(a) = o’ and f(b) = b'. Since lenght(L) =
dist(a’, ") < dist(a,b) and since the triangles have diameter only 4, we may
assume that a € T and b € T’. Observe that if as < 3 then a lies on one of
the segments joining some of the points (—2,2), (2,2), (—1,3), (1,3); since
all these points have distances from vertices, and so from points, of T at
most /50, we get that lenght(L) < dist(a,b) < +/50. Similarly if by > —3.
Finally, if ao > 3 and bs < —3, we note that every vertex, and so every point
of T is in the distance at most /10 for a and every vertex, and so every
point, of T' is in the distance at most v/10 of b. Since f is a contraction,
the image of T lies in a segment containing a’ of length at most /10 and
the image of T” lies in a segment containing b’ of length at most v/10. Since
the union of these two images is L, we get lenght(L) < 24/10 < v/50. Thus
K(E) <50 < 8.

Second day — August 3, 1996

Problem 1. (10 points)
Prove that if f : [0,1] — [0, 1] is a continuous function, then the sequence
of iterates z,+1 = f(x,) converges if and only if

JLHC}O($"+1 —x,) = 0.

Solution. The “only if” part is obvious. Now suppose that lim (2,11
n—oo

—x,) = 0 and the sequence {z,} does not converge. Then there are two
cluster points K < L. There must be points from the interval (K, L) in the

sequence. There is an x € (K, L) such that f(z) # z. Put e = 7“0(@2_ 7| >

0. Then from the continuity of the function f we get that for some § > 0 for
ally € (x—6,x40) it is |f(y) —y| > €. On the other hand for n large enough
it is |zp+1 — xn| < 20 and |f(z,) — 2] = |2ny1 — 20| < €. So the sequence
cannot come into the interval (z — d,z + ¢), but also cannot jump over this
interval. Then all cluster points have to be at most z — ¢ (a contradiction
with L being a cluster point), or at least 2+ 0 (a contradiction with K being
a cluster point).



Problem 2. (10 points)

t -t
Let 6 be a positive real number and let cosh t = cte denote the

hyperbolic cosine. Show that if & € N and both cosh k6 and cosh (k + 1)6
are rational, then so is cosh 6.

Solution. First we show that
(1) If cosh ¢ is rational and m € N, then cosh mt is rational.

Since cosh 0.t = cosh 0 = 1 € Q and cosh 1.t = cosh t € Q, (1) follows
inductively from

cosh (m + 1)t = 2cosh t.cosh mt — cosh (m — 1)t.

The statement of the problem is obvious for k = 1, so we consider k > 2.
For any m we have
2)
cosh 6 =cosh ((m +1)§ —m#b) =
= cosh (m + 1)0.cosh m# — sinh (m + 1)6.sinh m6
= cosh (m + 1)f.cosh mf — y/cosh 2(m + 1)§ — 1.v/cosh2mf — 1

Set cosh k0 = a, cosh (k+1)0 = b, a,b € Q. Then (2) with m = k gives

cosh 0 =ab— Va2 —1vb%2 -1

and then

(3) (a® —1)(b*> — 1) = (ab — cosh 6)?
= a2b? — 2abcosh 6 + cosh 26.

Set cosh (k* —1)0 = A, cosh k?0 = B. From (1) with m = k — 1 and
t = (k+1)0 we have A € Q. From (1) with m = k and t = kf we have
B € Q. Moreover k> —1 > k implies A > a and B > b. Thus AB > ab.
From (2) with m = k? — 1 we have

() (A2 —1)(B? — 1) = (AB — cosh 0)?
= A2B2 — 2ABcosh 0 + cosh 26.

So after we cancel the cosh 2§ from (3) and (4) we have a non-trivial
linear equation in cosh # with rational coefficients.
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Problem 3. (15 points)
Let G be the subgroup of GLy(R), generated by A and B, where

e[3 8] oei ]

. . all a . .
Let H consist of those matrices 112 ) in G for which aj1=a95=1.
a1 a2

(a) Show that H is an abelian subgroup of G.
(b) Show that H is not finitely generated.

Remarks. GL2(IR) denotes, as usual, the group (under matrix multipli-
cation) of all 2 x 2 invertible matrices with real entries (elements). Abelian
means commutative. A group is finitely generated if there are a finite number
of elements of the group such that every other element of the group can be
obtained from these elements using the group operation.

Solution.

(a) All of the matrices in G are of the form

o)

So all of the matrices in H are of the form

M(@:“ ﬂ,

so they commute. Since M (x)~! = M(—z), H is a subgroup of G.

(b) A generator of H can only be of the form M (x), where z is a binary
rational, i.e., x = 2% with integer p and non-negative integer n. In H it
holds

1
The matrices of the form M on ) are in H for all n € N. With only finite
number of generators all of them cannot be achieved.
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Problem 4. (20 points)

Let B be a bounded closed convex symmetric (with respect to the origin)
set in R? with boundary the curve I'. Let B have the property that the
ellipse of maximal area contained in B is the disc D of radius 1 centered at
the origin with boundary the circle C'. Prove that ANT # @ for any arc A
of C of length I(A) > g

Solution. Assume the contrary — there is an arc A C C with length
I(A) = g such that A C B\I'. Without loss of generality we may assume that
the ends of A are M = (1/+/2,1/v/2), N = (1/v/2,-1/y/2). A is compact
and I is closed. From ANT = @ we get 6 > 0 such that dist(z,y) > J for
everyx € A,yel.

2 2
Given € > 0 with E. we denote the ellipse with boundary: v + v _ 1,
(1+e)2 v?
such that M, N € E.. Since M € E. we get
b2 — (1+¢)”
2(1+e)2 -1
Then we have
1 2
area B, = Wi > = area D.
2(1+¢)?—1

In view of the hypotheses, E. \ B # O for every € > 0. Let S = {(z,y) €
R? : |z| > |y|}. ;From E.\ S C D C B it follows that E.\ B C S. Taking
€ < § we get that

OD#E.\BCE.NSCD;cNSCB

— a contradiction (we use the notation Dy = {(z,y) € R? : 22+ 4% < 2}).
Remark. The ellipse with maximal area is well known as John’s ellipse.
Any coincidence with the President of the Jury is accidental.

Problem 5. (20 points)
(i) Prove that

I i nx 1

1im — = —.

zT——00 “— (n2 + x)Q 2
n=1

(ii) Prove that there is a positive constant ¢ such that for every x € [1, 00)

oo
P
—(n?+x)? 2

we have

<

SR



12

Solution. .

1
(i) Set f(t) = m,h:ﬁ. Then

[e.9]

Zﬁ—hxf"h =y A0

n=1

[e.e]
The convergence holds since h Z f(nh) is a Riemann sum of the inte-

n=1

o
gral / f(t)dt. There are no problems with the infinite domain because

f is integrable and f | 0 for x — oo (thus h Z f(nh) / ft)ydt >

h Z f(nh)).

n=N+1
(ii) We have

. IS (remy = [ yar * o
. > Gty 213021(]0(71){7& 1) )—_0 7(t)
<X |nston) = [0 s+ [ sieya

Using twice integration by parts one has

a+b

@ o)~ [ gt =5 [0 02" a+ 1)+ g0~ )i

—b
for every g € C%[a — b,a + b]. Using f(0) =0, f € C2[0,h/2] one gets
h/2
3 | rwae= o).
0

From (1), (2) and (3) we get

0 nh—l—%
Z / (6)]dt + O(h?) =

h

o0

l\')l»—\

(n?+2)2

n? /ﬁ £ (1)]dt + O(h2) = O(h2) = O@™).
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Problem 6. (Carleman’s inequality) (25 points)
(i) Prove that for every sequence {a, }>2,, such that a,, >0, n=1,2,...
[e.e]

and Z an, < 00, we have

n=1

o o
Z(alag e an)l/" <e Z O,
n=1 n=1

where e is the natural log base.
(ii) Prove that for every € > 0 there exists a sequence {a,}5 ;, such that
o

anp>0,n=12,..., Zan<ooand

n=1
o.] o
Z ajas - 1/" > (e—¢) Zan.
n=1 n=1
Solution.
(i) Put for n € N
(1) cn = (n+1)" /"t
Observe that cicy -+ ¢, = (n+ 1)". Hence, for n € N,

(arag - )1/” (aiciasgcy - - ancn)l/"/(n +1)

<(arc1 + -+ apcy)/n(n+1).

Consequently,

(2) Z(al(zQ-- 1/n < Zancn <Z (m+1))_1> .
n=1 m=n

Since

S (mim+ 1) = Y (=) = 1

m=n

Zancn<z m(m+1))~ ) Zancn/n

m=n

we have

= an((n+1)/n)" <eZan

n=1
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(by (1)). Combining the last inequality with (2) we get the result.
(ii) Set a, = n" " '(n+1)" forn=1,2,...,N and a, = 27" for n > N,
where N will be chosen later. Then

1
3) (a1 @)™ = o
for n < N. Let K = K(¢) be such that
1 n
(4) (n+ ) >e—%f0r n> K.
n

Choose N from the condition

K 00 e N 1
(5) dan+Y 27" ———— Y -,

n=1 n=1 (2e —e)(e —¢) K41

which is always possible because the harmonic series diverges. Using (3), (4)
and (5) we have

00 K 00 ) N 1 n n

n=N+1 n=K+1
N —1 N
€ 1 € 1
< DIERU PR g
(2e —e)(e —¢) nere M 2 ner M
N 00
1 1 1
g _< 1/n
e—¢ n_e—esz(a1 a)



FOURTH INTERNATIONAL COMPETITION
FOR UNIVERSITY STUDENTS IN MATHEMATICS
July 30 — August 4, 1997, Plovdiv, BULGARIA

First day — August 1, 1997

Problems and Solutions

Problem 1.
Let {&,}52 1 be a sequence of positive real numbers, such that lim &, =
n—oo

0. Find .
1 k
lim —Zln (— —{—sn) ,
Lt n
where In denotes the natural logarithm.

Solution.
It is well known that

k

1 1 n
-1 :/ Inzdx = lim —Zln (—)
0 n—oo n, n
k=1
(Riemman’s sums). Then
1 & k 1 & k
—Zln (——i—sn) > —Zln (—) — —1.
n i n n i n,) n—oo
Given € > 0 there exist ng such that 0 < e, < ¢ for all n > ny. Then
1 & k 1 & k
—Zln <——|—6n) < —Zln <—+e> .
n = n Ut n
Since

1 & k 1
lim — Z In <— + e> = / In(x + €)dx
n—oo n, P n 0

1+¢
= / In zdx
€



we obtain the result when € goes to 0 and so

N k
lim —Zln —+e, ) =—-1

Problem 2.
o0

Suppose > a, converges. Do the following sums have to converge as
n=1
well?

a) a1 +ag+aq4+ag+ag+ar+ag+as+aegtas+---+ag+azz+---

b) a) +az +a3+aq4+as+ a7+ ag+ag+ag+aj; + a3+ a5 + ag +
ai2 + aiq + aie + a7 +aig + - -

Justify your answers.

Solution.

o0 n
a) Yes. Let S = Y an, S, = Y ag. Fix e > 0 and a number ng such
n=1 k=1

that |S, — S| < e for n > ng. The partial sums of the permuted series have

the form Lon—1,; = Son—1 4 Son — Son_p, 0 < k < 27~1 and for 27! > ngy we

have |Lon-1,;, — S| < 3¢, i.e. the permuted series converges.

(_1)n+1 h L S 2n7171 1

———Then n—2 = Son-1 + -
NG 3.2n—2 gn-1 k:§—2 1

— 00, 80 Lgon-2 — 0.
n—oo

1
A /2n n—oo

b) No. Take a,, =

and L3.2n—2 — Sanl Z 2”72

Problem 3.
Let A and B be real nxn matrices such that A24+B2=AB. Prove that
if BA — AB is an invertible matrix then n is divisible by 3.

1 3
Set S = A+ wB, where w = —3 +i§' We have

Solution.

SS = (A+wB)(A+wB)=A*>+wBA+wWAB + B?
= AB+wBA+WAB =w(BA - AB),

because @ + 1 = —w. Since det(SS) = detS.det S is a real number and
detw(BA — AB) = w"det(BA — AB) and det(BA — AB) # 0, then w™ is a

real number. This is possible only when n is divisible by 3.



Problem 4.
Let a be a real number, 1 < a < 2.
a) Show that a has a unique representation as an infinite product

o (124 )

where each n; is a positive integer satisfying
2
n; < Njy1.

b) Show that « is rational if and only if its infinite product has the
following property:
For some m and all £k > m,

2

Solution.
a) We construct inductively the sequence {n;} and the ratios

«

O = ——
T+ %)

so that
0, > 1 for all k.

Choose nj to be the least n for which

1
1+ — <0k
n
(0o = «) so that for each k,
1
(1) 1+ — <0, 1 <1+ .
ng ng — 1
Since
Orh—1 <1+
nk—l
we have .
Or_ I+ = 1
Nk+1 1+n—k 1+n—k ’I’Lk—l



2
Hence, for each k, np41 > ny.
Since n1 > 2, nj — oo so that 6, — 1. Hence

o0

oz:H(l%—nik).

1

The uniquness of the infinite product will follow from the fact that on
every step ny has to be determine by (1).
Indeed, if for some k we have

1
1+ — >0,
ng

then 0, <1, 0x+1 < 1 and hence {6} does not converge to 1.
Now observe that for M > 1,

2) <1+1)(1+1)<1+1> —1+1+1+1+ =1+ L
M M? M4 M M2 M3 O M-1

Assume that for some k& we have

14 <Or
ny —
Then we get
o Or—1
1 1 - 1 !
T+ +5) - 40+ )
0, 0.

- 1+l k11 0y 1 >

— a contradiction.
b) From (2) « is rational if its product ends in the stated way.

Conversely, suppose « is the rational number P Our aim is to show
q
that for some m,
N

Op—1 = .
m-—1 Ny, — 1

Suppose this is not the case, so that for every m,

Nm

(3) O <

N — 1



For each k& we write
_m

ak
as a fraction (not necessarily in lowest terms) where

O

Po=D, 9o =4
and in general
Pk = Pk—1T%, Q& = qe—1(ng + 1).

The numbers pi — g are positive integers: to obtain a contradiction it suffices
to show that this sequence is strictly decreasing. Now,

Pk — qk — (Pk—1 — Qe—1) = nPr—1 — (Mg + 1)qr—1 — Pr—1 + qk—1

= (ng— 1)pr—1 — NpQr—1

and this is negative because

—1 n
Pk _ 919—1 < k

k-1 ng —1

by inequality (3).

Problem 5. For a natural n consider the hyperplane

n
0= {x = (z1,22,...,2,) € R": le = O}
i=1
and the lattice Z' = {y € Rjj : all y; are integers}. Define the (quasi-)norm
n 1/p
in R by ||, = <z |xi|p> i 0 < p < o0, and ||zle = max |z
=1 v
a) Let = € R{ be such that
max x; —minz; < 1.
7 (2
For every p € [1,00] and for every y € Z§ prove that
lzllp < llz + yllp-
b) For every p € (0,1), show that there is an n and an x € R{ with

maxz; —minz; < 1 and an y € Z such that
(2 (2

zllp > Nl + yllp-



Solution.
a) For z = 0 the statement is trivial. Let  # 0. Then max x; > 0 and

minz; < 0. Hence ||z||oc < 1. From the hypothesis on x it follov:/s that:
' i) If z; < 0 then maxz; < z; + 1.
ii) If ; > 0 then rrilnm, >x; — 1L
Consider y € Z§, ;; # 0. We split the indices {1,2,...,n} into five
sets:

1(0) = {i : y; = 0},
I+,+)={i:yi >0,2; >0}, I(+,—)={i:y; >0,2; <0},
I(—,+):{i:yi<0,xi>0}, I(—,—):{i:yi<0,xi§0}.

As least one of the last four index sets is not empty. If I(4+,+) # O or
I(—,—) # O then ||z + ylloc > 1 > [|2]. If I(+,4) = I(—,—) = O then

> y; = 0 implies I(+,—) # @ and I(—,+) # . Therefore i) and ii) give
|z 4+ ylloo > ||]|oc which completes the case p = co.
Now let 1 < p < oo. Then using i) for every j € I(+,—) we get
lzj+yjl =y —1+x;+1>|y;| -1 + max ;. Hence
lzj +y;|” > |yj| — 1+ |ag? for every k € I(—,+) and j € I(+,-).
Similarly
lzj +y;|P > |yj| — 1+ |ag? for every k€ I(+,—) and j € I(—,+);

|z; + y;|P > |y;| + |z;|P for every j € I(+,+)UI(—,—).

Assume that >3 1> > 1. Then
JeI(+,—) JEI(—,+)

12+ yll; = ll=[5

= > (\%erj\p—\xj!p)Jr( doolmitylP— Y !wk!p)

JeI(+,+)UI(—,—) JEI(+,—) kel(—,+)

+( > larul - Y )\mp)

JjeI(—,+) kel(+,—
> Z |y]| + Z |yj| -1
JEI(+,+)UI(—,—) JEI(+,—)



+( > (yl-1n- > 1+ Z)l)

jeI(—,4) jeI(+,-) jeI(—,+
= Ylwl—-2 > 1=2 > (-D+2 >  y;=>0
i=1 JEI(+,-) JEI(+,—) JEI(+,+)

The case >, 1< Y 1 is similar. This proves the statement.
jEI(+,—) jEI(—,+)
b) Fix p € (0,1) and a rational ¢t € (3,1). Choose a pair of positive
integers m and [ such that mt =I(1 —¢) and set n = m +[. Let

z; =t, 1=1,2,....m; z,=t—1, 1=m+1m+2,...,n;

yi=—1, i=12....m; Ymr1=m; y;=0,i=m+2,...,n.

Then x € Rfj, maxx; —minz; =1, y € Z§ and
1 7
Jolls o+ gl = m(E? — (1~ 67) + (1~ 0 — (m 1+,

which is possitive for m big enough.

Problem 6. Suppose that F is a family of finite subsets of N and for
any two sets A, B € F we have AN B # (.

a) Is it true that there is a finite subset Y of N such that for any
A,B € F we have ANBNY # 07

b) Is the statement a) true if we suppose in addition that all of the
members of F' have the same size?

Justify your answers.

Solution.

a) No. Consider F' = {A1, By,..., Ay, By, ...}, where A, = {1,3,5,...,2n—
1,2n}, B, = {2,4,6,...,2n,2n + 1}.

b) Yes. We will prove inductively a stronger statement:

Suppose F', G are

two families of finite subsets of N such that:
1) For every A € F and B € G we have AN B # O;
2) All the elements of F' have the same size r, and elements of G — size s. (we
shall write #(F) =, #(G) = s).



Then there is a finite set Y such that AUBUY # O for every A € F and
B ed.

The problem b) follows if we take F' = G.

Proof of the statement: The statement is obvious for r = s = 1.
Fix the numbers r, s and suppose the statement is proved for all pairs F’, G’
with #(F') < r, #(G') < s. Fix Ay € F, By € G. For any subset C C AgU By,
denote

F(C):{AEFAQ(A()UBQ):C}

Then F = U F(C). It is enough to prove that for any pair of non-
D#CCAUBy

empty sets C, D C AgU By the families F/(C) and G(D) satisfy the statement.
Indeed, if we denote by Yc p the corresponding finite set, then the

finite set U Yo p will satisfy the statement for F' and G. The proof
C,DCAoUBy '

for F(C') and G(D).

If CND# 0@, it is trivial.

If CND = @, then any two sets A € F(C), B € G(D) must meet
outside Ag U By. Then if we denote F(C) = {A\ C : A € F(C)}, G(D) =
{B\' D : B € G(D)}, then F(C) and G(D) satisfy the conditions 1) and 2)
above, with #(F(C)) = #(F) — #C < r, #(G(D)) = #(G) — #D < s, and

the inductive assumption works.



FOURTH INTERNATIONAL COMPETITION
FOR UNIVERSITY STUDENTS IN MATHEMATICS
July 30 — August 4, 1997, Plovdiv, BULGARIA

Second day — August 2, 1997

Problems and Solutions

Problem 1.
Let f be a C3(R) non-negative function, f(0)=£'(0)=0, 0 < f”(0).

(VT@Y
o= ( 7@ )

for z # 0 and g(0) = 0. Show that ¢ is bounded in some neighbourhood of 0.
Does the theorem hold for f € C?(R)?

Solutiorll.
Let ¢ = §f”(0). We have

Let

()2 —2f1"
2(FPVT

where
flz)= cx? + O(ac?’), f'(z) = 2cx + 0(332), f"(z) = 2¢+ O(x).
Therefore (f'(z))? = 4c22? 4+ O(2?),

2f (x) f" () = 4c*2® + O(2®)

2(f'(2))*\/ f(2) = 2(4c*a® + O(2”))|z|\ /e + O(a).

g is bounded because

and

2(f'(2))*V/F ()

jzf?

and f'(x)? — 2f(2)f"(z) = O(a?).

The theorem does not hold for some C2-functions.

— 82 40
xz—0



Let f(z) = (z + |z|3/?)? = 2% + 222 /|z] + ||, so f is C%. For = > 0,
o) = L 1\ 1 1 3 1
xTr) = — —_— = —-— — ¢ — f — — —

g 2\1+ 3z 2 1+3/2)2 4 Vza—o

Problem 2.
Let M be an invertible matrix of dimension 2n x 2n, represented in
block form as

| A B 1 | E F
M—[CDl and M _[GH]'

Show that det M.det H = det A.

Solution.
Let I denote the identity n x n matrix. Then

A B I F A 0
detM.detH—deth D]-detlo H]—detlc I]—detA.

Problem 3. )
> (—1)""*sin (1
Show that > (=1) sin (log n)
n=1 na

converges if and only if « > 0.

Solution. low ¢
Set f(t) = sin (log {) We have

te '

A cos (logt)
i) = sa1Sin (logt) + e

1+«

So [f'(t)] < pry

for @« > 0. Then from Mean value theorem for some
1

+a . 1+«
0 € (0,1) weget |f(n+1)—f(n)| = |f'(n+0)| < ey Since ZW < 400

for « > 0 and f(n) —2 0 we get that § (=) 1f(n) = § (f(2n—1)—f(2n))
converges. =l =t

in (1

Now we have to prove that M does not converge to 0 for a < 0.
n
It suffices to consider oo = 0.
We show that a,, = sin(logn) does not tend to zero. Assume the
1 1

contrary. There exist k, € N and )\, € 3 5} for n > e? such that o8N _

T

kn + An. Then |a,| = sinw|\,|. Since a,, — 0 we get A\, — 0.



We have k11 — ky, =

_log(n +1) —logn
B i

1 1
— ()\n—f—l — )\n) = —log (1 + —) — ()\n—f—l — )\n)
s n

Then |kp+1 — kn| < 1 for all n big enough. Hence there exists ng so that
logn

kn = kp, for n > ng. So = kyp, + Ay for n > ng. Since A, — 0 we get

contradiction with logn — oo.

Problem 4.
a) Let the mapping f : M, — R from the space

2
M, = R"™ of n x n matrices with real entries to reals be linear, i.e.:

(1) f(A+B) = f(A)+ f(B), [(cA)=cf(A)

for any A, B € M, ¢ € R. Prove that there exists a unique matrix C € M,
such that f(A) = tr(AC) for any A € M,. (If A = {a;}};_; then
n
tl”(A) == Zl a“)
1=
b) Suppose in addition to (1) that

(2) F(A.B) = f(B.A)

for any A, B € M,,. Prove that there exists A € R such that f(A4) = A\.tr(A).

Solution.

a) If we denote by E;; the standard basis of M,, consisting of elementary
matrix (with entry 1 at the place (i,7) and zero elsewhere), then the entries
cij of C can be defined by ¢;; = f(Ej;). b) Denote by L the n? —1-dimensional
linear subspace of M,, consisting of all matrices with zero trace. The elements
E;; with i # j and the elements E;; — FEyp,, ¢ = 1,...,n — 1 form a linear basis
for L. Since

E;,; = Eij-Ejj — Ejj-Eij7 Z;éj
Eii - Enn = Eannz - Ejan‘znaZ = 17 s, — 17

then the property (2) shows that f is vanishing identically on L. Now, for
1

any A € M,, we have A — —tr(A).E € L, where FE is the identity matrix, and
n

therefore f(A) — % F(E).tr(A).



Problem 5.

Let X be an arbitrary set, let f be an one-to-one function mapping
X onto itself. Prove that there exist mappings ¢g1,92 : X — X such that
f=g10g92 and g1 0 g1 = id = g9 0 g2, where id denotes the identity mapping
on X.

Solution.
Let f" = fofo---of, fO =id, f7» = (f~1)" for every natural
—_—

n times

number n. Let T'(z) = {f™(z) : n € Z} for every € X. The sets T'(z) for
different x’s either coinside or do not intersect. Each of them is mapped by f
onto itself. It is enough to prove the theorem for every such set. Let A = T'(x).
If A is finite, then we can think that A is the set of all vertices of a regular

2
n polygon and that f is rotation by “T " Such rotation can be obtained as a
composition of 2 symmetries mapping the n polygon onto itself (if n is even

then there are axes of symmetry making il angle; if n = 2k + 1 then there
n

2
are axes making il angle). If A is infinite then we can think that A = Z

and f(m) =m+ 1 for every m € Z. In this case we define g; as a symmetry

relative to 3 J2asa symmetry relative to 0.

Problem 6.
Let f :[0,1] — R be a continuous function. Say that f “crosses the
axis” at x if f(x) = 0 but in any neighbourhood of x there are y,z with

f(y) <0and f(z) > 0.

a) Give an example of a continuous function that “crosses the axis”
infiniteley often.

b) Can a continuous function “cross the axis” uncountably often?

Justify your answer.

Solution.

a) f(z) = x sin —.

) f() = sin

b) Yes. The Cantor set is given by

C={ze0,l):a=) b3, b €{0,2}}.
j=1

S8 .
There is an one-to-one mapping f : [0,1) — C. Indeed, for z = Y a;277,
j=1
S .
a; € {0,1} we set f(x) = > (2a;)377. Hence C is uncountable.

j=1



For k=1,2,...andi=0,1,2,...,2""1 — 1 we set

k—2 k—2
ag;=37F (6 > a3 + 1) , bpi=3"" (6 > a3 + 2) :

J=0 J=0

k=2
where i = } a;2’, a; € {0,1}. Then
=0

oo 2k—1_1
O,O\NC =) U (arsbra),
k=1 =0

i.e. the Cantor set consists of all points which have a trinary representation

with 0 and 2 as digits and the points of its compliment have some 1’s in their
k—1

trinary representation. Thus, 'Uo (ag,i, bgi) are all points (exept ay ;) which
1=
have 1 on k-th place and 0 or 2 on the j-th (j < k) places.

Noticing that the points with at least one digit equals to 1 are every-
where dence in [0,1] we set

[e.e]

f@) = (=1)rg(x).

k=1

where gj, is a piece-wise linear continuous functions with values at the knots
O + bk7' _
Ik (%) =27, g1(0) = g(1) = gr(ar) = gr(brs) = 0,
i=0,1,...,2F1 1.
Then f is continuous and f “crosses the axis” at every point of the
Cantor set.



5th INTERNATIONAL MATHEMATICS COMPETITION FOR UNIVERSITY
STUDENTS
July 29 - August 3, 1998, Blagoevgrad, Bulgaria

First day

PROBLEMS AND SOLUTIONS

Problem 1. (20 points) Let V be a 10-dimensional real vector space and Uy and Us two linear subspaces
such that U; C Us, dimgU; = 3 and dimgUs = 6. Let & be the set of all linear maps T : V — V which
have U; and Us as invariant subspaces (i.e., T(Uy) C Uy and T'(Us) C Us). Calculate the dimension of £
as a real vector space.

Solution First choose a basis {v1,v2,v3} of Uy. It is possible to extend this basis with vectors vy,v5 and
vg to get a basis of Us. In the same way we can extend a basis of Uy with vectors vy, ..., v1g to get as
basis of V.

Let T € £ be an endomorphism which has U; and U, as invariant subspaces. Then its matrix, relative
to the basis {v1,...,v10} is of the form

*

SO O OO OO

S OO OO OO ¥ ¥k ¥
SO O OO OO ¥ ¥ ¥
OO OO ¥ ¥ ¥ ¥ ¥ ¥
OO O O % % % ¥ ¥ ¥
O OO D ¥ ¥ X X K ¥
* X XK X X X X X X ¥
S G S T S SR SRR SR
I T R CHEEE SR SR SR
S S S R S SR SRR SR

So dimg€ =9 + 18 4+ 40 = 67.

Problem 2. Prove that the following proposition holds for n = 3 (5 points) and n = 5 (7 points), and
does not hold for n = 4 (8 points).

“For any permutation 71 of {1,2,...,n} different from the identity there is a permutation 72 such
that any permutation 7 can be obtained from 7 and 72 using only compositions (for example, 7 =
m 0w omgomy).”

Solution

Let S, be the group of permutations of {1,2,...,n}.

1) When n = 3 the proposition is obvious: if = (12) we choose y = (123); if = (123) we choose
y = (12).

2) n = 4. Let x = (12)(34). Assume that there exists y € S, such that Sy = (z,y). Denote by K
the invariant subgroup

K = {id, (12)(34), (13)(24), (14)(23)}.

By the fact that = and y generate the whole group Sy, it follows that the factor group S4/K contains
only powers of § = yK, i.e., S4/K is cyclic. It is easy to see that this factor-group is not comutative
(something more this group is not isomorphic to Ss).

3)n=5

a) If z = (12), then for y we can take y = (12345).

b) If z = (123), we set y = (124)(35). Then y3zy> = (125) and y* = (124). Therefore (123), (124), (125) €
(x,y)- the subgroup generated by = and y. From the fact that (123), (124), (125) generate the alternating
subgroup As, it follows that As C (z,y). Moreover y is an odd permutation, hence (z,y) = Ss.

c) If © = (123)(45), then as in b) we see that for y we can take the element (124).

d) If z = (1234), we set y = (12345). Then (yz)® = (24) € (x,y), 2%(24) = (13) € (,y) and
y? = (13524) € (z,y). By the fact (13) € (z,y) and (13524) € (x,y), it follows that (x,y) = Ss.



e) If z = (12)(34), then for y we can take y = (1354). Then y?z = (125), y3z = (124)(53) and by c)

S5 = <$a y>
f) If © = (12345), then it is clear that for y we can take the element y = (12).

Problem 3. Let f(x) = 22(1 — ), © € R. Define

n

—_—~—
fo="TFo...of.

a) (10 points) Find lim,_, fol fn(z)da.

b) (10 points) Compute fol fn(z)dzx forn =1,2,....

Solution. a) Fix ¢ = zy € (0,1). If we denote z,, = fn(xp), n = 1,2,... it is easy to see that
x1 € (0,1/2], 21 < f(x1) < 1/2 and =z, < f(z,) < 1/2 (by induction). Then (), is a bounded non-
decreasing sequence and, since 2,11 = 2z, (1 — ), the limit [ = lim,,_, o 2, satisfies [ = 2{(1 —1), which
implies [ = 1/2. Now the monotone convergence theorem implies that

1
lim [ fu(z)de =1/2.
0

n—oo

b) We prove by induction that

1) ) = 5 =2 (- %)

holds for n = 1,2,.... For n = 1 this is true, since f(z) = 2z(1 —z) =
some n = k, then we have

—2(z — 3)2. If (1) holds for

(SIS

fon@ = fe(f@) == (32— 52) - 5"
=4 -2t (o )

k+1_ T+1
_ % _92 1(z . %)2

which is (2) for n =k + 1.
Using (1) we can compute the integral,

1 21 2" 4171
1 2 1 1 1
/Of"(x)dx_[ix_2n+1<x_§> ] PRSIk

=0

Problem 4. (20 points) The function f : R — R is twice differentiable and satisfies f(0) = 2, f/(0) = —2
and f(1) = 1. Prove that there exists a real number ¢ € (0,1) for which

FE -1+ f7(§) =0.

Solution. Define the function )
g(a) = 572() + ' (2).

Because ¢g(0) = 0 and
f@@)- (@) + f'(x) = ¢'(2),

it is enough to prove that there exists a real number 0 < 1 < 1 for which g(n) = 0.

a) If f is never zero, let
1

"= Ty

|8



Because h(0) = h(1) = —3, there exists a real number 0 < n < 1 for which h/(n) = 0. But g = f%- I/,
and we are done.

b) If f has at least one zero, let z; be the first one and 2o be the last one. (The set of the zeros is
closed.) By the conditions, 0 < z1 < z9 < 1.

The function f is positive on the intervals [0, z1) and (22, 1]; this implies that f'(z1) < 0 and f/(22) > 0.

Then g(z1) = f'(z1) <0 and g(22) = f/(22) > 0, and there exists a real number 7 € [z, 22] for which

g(n) =0.

Remark. For the function f(z) = ZL_H the conditions hold and f - f' + f” is constantly 0.

Problem 5. Let P be an algebraic polynomial of degree n having only real zeros and real coefficients.
a) (15 points) Prove that for every real x the following inequality holds:

(2) (n = D)(P'(2))* = nP(x)P"(x).

b) (5 points) Examine the cases of equality.

Solution. Observe that both sides of (2) are identically equal to zero if n = 1. Suppose that n > 1. Let
Z1,...,2Tn be the zeros of P. Clearly (2) is true when = = x;, i € {1,...,n}, and equality is possible
only if P'(x;) = 0, i.e., if 2; is a multiple zero of P. Now suppose that x is not a zero of P. Using the

identities
Pllz) 1 P'(z) 2
P(z) 72130—151-’ P(z) Z ’

<, @) (@ = 1)

we find

NG ) 27nP”(x): o1 2
w0 (50) e e X ey
But this last expression is simply
1 1\’
Z (ZL' — Ty B xr — l‘j) ’

1<i<j<n

and therefore is positive. The inequality is proved. In order that (2) holds with equality sign for every real
x it is necessary that 1 = xo = ... = z,,. A direct verification shows that indeed, if P(x) = ¢(z — 21)",
then (2) becomes an identity.

Problem 6. Let f : [0,1] — IR be a continuous function with the property that for any  and y in the
interval,

zf(y) +yf(z) <1

/Olf(w)dr <z

b) (5 points) Find a function, satisfying the condition, for which there is equality.

a) (15 points) Show that

Solution Observe that the integral is equal to

/ " F(sin0) cos 0d0
0
and to .
/ ’ f(cos ) sin do
0

So, twice the integral is at most

s

2 ™
1d6 = —.
J =3

Now let f(x) =+1—22. If z =sinf and y = sin ¢ then
xf(y) +yf(x) =sinfcos d + sinpcos = sin(f + ¢) < 1.



5th INTERNATIONAL MATHEMATICS COMPETITION FOR UNIVERSITY
STUDENTS
July 29 - August 3, 1998, Blagoevgrad, Bulgaria

Second day

PROBLEMS AND SOLUTION

Problem 1. (20 points) Let V' be a real vector space, and let f, f1, fa,..., fr be linear maps from V
to R. Suppose that f(z) = 0 whenever fi(z) = fa(z) = ... = fr(z) = 0. Prove that f is a linear
combination of fi, fa, ..., f.

Solution. We use induction on k. By passing to a subset, we may assume that fq,..., fi are linearly
independent.

Since f is independent of fi, ..., fx—1, by induction there exists a vector ay € V such that fi(ax) =
co. = fr—1(ar) = 0 and fr(ar) # 0. After normalising, we may assume that fr(ax) = 1. The vectors
ai,...,ap—1 are defined similarly to get

1 ifi=j

fi(aj){ 0 ifi+j.
For an arbitrary x € V and 1 <4 <k, fi(z— fi(z)a1— fo(x)az—- - -— fr(z)ar) = fi(z)*zz?ﬂ fi(x) fila;) =
filz) = fi(x)fi(a;) = 0, thus f(z — fi(x)ay — -+ — fr(x)ag) = 0. By the linearity of f this implies

f(x) = fi(@)f(a1) + -+ fx(z)f(ag), which gives f(x) as a linear combination of f1(z),..., fi(x).
Problem 2. (20 points) Let

3
P={f f@) = aat, ar € R, [f(ED)] < 1, [f(=D) <1},

2
k=0
Evaluate
2
sup _max /" ()]

and find all polynomials f € P for which the above “sup” is attained.

Solution. Denote g = 1,21 = *%,1'2 = %7563 =1,
3
w(z) = [[(@ - ),
i=0
wk(‘r) = zwfxazka k= 07 737
wp(x)
l =
k(@) we (28]

Then for every f € P

—_



Since f” is a linear function max_i<z<1 |f”(2)| is attained either at x = —1 or at x = 1. Without loss
of generality let the maximum point is z = 1. Then

fepP —1<z<1

3
sup max | f"(z)] = Y [1{(1)].
k=0

In order to have equality for the extremal polynomial f, there must hold

Folar) = signll/(1), k=0,1,2,3.
It is easy to see that {I}/(1)}3_, alternate in sign, so f.(zx) = (—1)*7%, k = 0,...,3. Hence f.(z) =
T3(x) = 423 — 3z, the Chebyshev polynomial of the first kind, and f”(1) = 24. The other extremal
polynomial, corresponding to x = —1, is —T5.
Problem 3. (20 points) Let 0 < ¢ < 1 and

z forz € [0, ¢,

=2 forx € e, 1].

and n is the smallest number with this property. Prove that for every n > 1 the set of n-periodic points
is non-empty and finite.

Solution. Let f,(x) = f(f(... f(x))). It is easy to see that f,(z) is a picewise monotone function and
——
n
its graph contains 2™ linear segments; one endpoint is always on {(z,y) : 0 <z <1, y = 0}, the other is
on {(x,y) : 0 <x <1,y = 1}. Thus the graph of the identity function intersects each segment once, so
the number of points for which f,(z) = z is 2™.

Since for each n-periodic points we have f,,(z) = x, the number of n-periodic points is finite.

A point z is n-periodic if f,,(z) = x but fr(x) # x for k=1,...,n—1. But as we saw before fr(z) =z
holds only at 2 points, so there are at most 2! + 22 + ... +2"~1 = 2" — 2 points x for which fi(z) =z
for at least one k € {1,2,...,n — 1}. Therefore at least two of the 2™ points for which f,(z) = = are
n-periodic points.

Problem 4. (20 points) Let A, = {1,2,...,n}, where n > 3. Let F be the family of all non-constant
functions f: A, — A, satisfying the following conditions:

(1) f(k)< f(k+1)fork=1,2,....,n—1,
2) f(k)=f(f(k+1) for k=1,2,...,n—1.

Find the number of functions in F.

Solution. It is clear that id : A,, — A, given by id(x) = z, does not verify condition (2). Since id is
the only increasing injection on A,, F does not contain injections. Let us take any f € F and suppose
that # (f~!(k)) > 2. Since f is increasing, there exists i € A, such that f(i) = f(i + 1) = k. In view of
(2), f(k)=f(fi+1)=f@i)=k. If{i <k: f(i) <k} =0, then taking j = max{i < k : f(i) < k} we
get f(j) < f(j+1)=k= f(f(j+1)), a contradiction. Hence f(i) =k for i < k. If # (f~*({I})) > 2
for some [ > k, then the similar consideration shows that f(i) =1 =k for i < k. Hence # (f~'{i}) =0
or 1 for every ¢ > k. Therefore f(i) < ¢ for ¢ > k. If f(I) =, then taking j = max{i < : f(i) <}
we get f(j) < fG+1) =1 = f(f(G+1)), a contradiction. Thus, f(i) < ¢ —1 for ¢ > k. Let
m = max{i : f(i) = k}. Since f is non-constant m < n — 1. Since k = f(m) = f(f(m+1)),
f(m+1)€k+1,m]. If f(I) >1—1 for some | > m+ 1, then [ — 1 and f(l) belong to f~* (f(I)) and



this contradicts the facts above. Hence f(i) =i — 1 for ¢ > m + 1. Thus we show that every function f
in F is defined by natural numbers k,I,m, where 1 <k <l= f(m+1)<m<n-—1.

k ifi<m
f@) =<1 ifi=m
i—1 ifi>m+1.

#<f>=(§)-

Problem 5. (20 points) Suppose that S is a family of spheres (i.e., surfaces of balls of positive radius)
in R™, n > 2, such that the intersection of any two contains at most one point. Prove that the set M of
those points that belong to at least two different spheres from S is countable.

Then

Solution. For every x € M choose spheres S,T € S such that S # T and x € SN T; denote by U, V, W
the three components of R™\ (SUT), where the notation is such that OU = S, 9V =T and « is the only
point of U NV, and choose points with rational coordinates u € U, v € V, and w € W. We claim that
2 is uniquely determined by the triple (u,v,w); since the set of such triples is countable, this will finish
the proof.

To prove the claim, suppose, that from some 2’ € M we arrived to the same (u,v,w) using spheres
S, T" € § and components U', V', W’ of R™\ (§’UT"). Since SN.S’ contains at most one point and since
UNU’ # (), we have that U C U’ or U’ C U; similarly for V’s and W’s. Exchanging the role of z and
a2’ and/or of U’s and Vs if necessary, there are only two cases to consider: (a) U D U’ and V D V' and
M) U CU', V>V and W C W'. In case (a) we recall that UNV contains only = and that 2’ € U’ NV’,
so x = a’. In case (b) we get from W C W' that U’ C U UV so since U’ is open and connected, and
U NV is just one point, we infer that U’ = U and we are back in the already proved case (a).

Problem 6. (20 points) Let f: (0,1) — [0,00) be a function that is zero except at the distinct points
ai, asz, ... . Let b, = f(an)

(a) Prove that if Z by, < 00, then f is differentiable at at least one point « € (0,1).

n=1

o0
(b) Prove that for any sequence of non-negative real numbers (b,)5 ;, with > b, = oo, there exists a
n=1
sequence (a,)S ; such that the function f defined as above is nowhere differentiable.

Solution .
a) We first construct a sequence ¢, of positive numbers such that ¢, — oo and Y cpb, < % Let
n=1
oo
B = > by, and for each k =0,1,... denote by Ny the first positive integer for which
n=1
oo
B
> s g
n:Nk

Now set ¢,, = g—; for each n, N <n < Ngy1. Then we have ¢, — oo and
PILTIES SIND DEIFOAED D) SUNE) SECTE -
CnOn = Cnbnp < — n < _ . — = —,
5B 5B 4k 5

n=1 k=0 Ny, S’IZ<N;C+1 k=0 n=Ny, k=0

Consider the intervals I,, = (an, — ¢pbp, an + cpby). The sum of their lengths is 2> ¢,b, < 1, thus
there exists a point z¢ € (0,1) which is not contained in any I,,. We show that f is differentiable at x,



and f’(x¢) = 0. Since xg is outside of the intervals I,,, g # a, for any n and f(xg) = 0. For arbitrary
x € (0,1)\ {zo}, if z = a,, for some n, then

f(@) = f(=o)

r — X9

_f(an)—0< by, 1

)

B |a’n71'0| N Cnbn B Cn

otherwise %ﬁ:gw") = 0. Since ¢,, — 00, this implies that for arbitrary € > 0 there are only finitely many
x € (0,1)\ {zo} for which
f(z) — f(=o)

r — X

<e€

does not hold, and we are done.

Remark. The variation of f is finite, which implies that f is differentiable almost everywhere .

b) We remove the zero elements from sequence b,. Since f(z) = 0 except for a countable subset of
(0,1), if f is differentiable at some point g, then f(zo) and f’(z¢) must be 0.

It is easy to construct a sequence (3, satisfying 0 < 3, < b,, b, — 0 and 22021 B = 00.

Choose the numbers ay,as, ... such that the intervals I,, = (an — Bn, an + Bn) (n = 1,2,...) cover
each point of (0, 1) infinitely many times (it is possible since the sum of lengths is 2 b, = 00). Then
for arbitrary xg € (0, 1), f(x¢) =0 and € > 0 there is an n for which §,, < € and z¢ € I, which implies

f(an) = f@o)| _ ba

|an 7I0| ﬂn o



6th INTERNATIONAL COMPETITION FOR UNIVERSITY
STUDENTS IN MATHEMATICS
Keszthely, 1999.

Problems and solutions on the first day

1. a) Show that for any m € N there exists a real m x m matrix A such that A3 = A + I, where I is the
m X m identity matrix. (6 points)
b) Show that det A > 0 for every real m x m matrix satisfying A% = A + I. (14 points)

Solution. a) The diagonal matrix

A 0
A==
0 A

is a solution for equation A% = A + I if and only if A*> = X\ + 1, because 4> — A — I = (\> — A\ — 1)I. This
equation, being cubic, has real solution.

b) Tt is easy to check that the polynomial p(x) = 2* — 2 — 1 has a positive real root A; (because p(0) < 0)
and two conjugated complex roots A2 and A3 (one can check the discriminant of the polynomial, which is
(%1)3 + (%1)2 = % > 0, or the local minimum and maximum of the polynomial).

If a matrix A satisfies equation A3 = A + I, then its eigenvalues can be only A;, A2 and Az. The
multiplicity of Ao and A3 must be the same, because A is a real matrix and its characteristic polynomial has
only real coefficients. Denoting the multiplicity of A\; by a and the common multiplicity of Ay and A3 by [,

3

det A = APANS = XY - (Ag)3)”.

Because A1 and AaA3 = |A\2|? are positive, the product on the right side has only positive factors.
2. Does there exist a bijective map 7 : N — N such that

S

< 00?

(20 points)
Solution 1. No. For, let 7 be a permutation of N and let N € N. We shall argue that

3N 7T(7’L)

(]
:NJ
\Y
| =

n=N+1

In fact, of the 2N numbers 7(N + 1),...,7(3N) only N can be < N so that at least N of them are > N.

Hence - .
m(n) 1 1 1
Z > Z m(n) > —  -N-N=_.
2 = 2 2
ML (3N) i 9N 9
Solution 2. Let 7 be a permutation of N. For any n € N, the numbers 7 (1),...,7(n) are distinct positive

integers, thus (1) +...+7(n) > 1+...4+n= @ By this inequality,




3. Suppose that a function f : R — R satisfies the inequality

n

> 3 (f(@+ ky) — f(z —ky))

k=1

<1 (1)

for every positive integer n and for all z,y € R. Prove that f is a constant function. (20 points)

Solution. Writing (1) with n — 1 instead of n,

<1. (2)

i 35(f(x + ky) — f(z — ky))
k=1

From the difference of (1) and (2),

3" (f(z +ny) — flz —ny))| <2

which means 9
@+ ny) = f(o = ny)| < o 3)

For arbitrary u,v € R and n € N one can choose z and y such that x —ny = v and x 4+ ny = v, namely

U and y = %% Thus, (3) yields

- 2
)~ 1) < o

for arbitrary positive integer n. Because 3% can be arbitrary small, this implies f(u) = f(v).

4. Find all strictly monotonic functions f : (0,4+00) — (0,400) such that f(fgé)) = z. (20 points)
Solution. Let g(x) /(@) We have g( i ) (x). By induction it follows that g( i ) (x), i.e

. g(z) = —=. ve g(—) = g(z). By induction i WS g = g(z), L.e.

@ g(x) g"(x)
x x
1 f = ,meN
W @~ 7w
On the other hand, let substitute = by f(x) in f( v ) ) From the injectivity of f we get f*(@)
n r hand, ubstitute z by f(x) in f(——) = =. ;From the injectivity w - =
f(x) f(f(x))

x, i.e. g(zg(xr)) = g(x). Again by induction we deduce that g(z¢g™(x)) = g(x) which can be written in the
form

(2) flzg"(z)) = zg""*(z), n € N,

Set f(™) = fofo...of.It follows from (1) and (2) that
N————

m times
3) F (g™ () = xg" " (x), m,n € N.

Now, we shall prove that g is a constant. Assume g(z1) < g(z2). Then we may find n € N such
that 219" (21) < 229™(22). On the other hand, if m is even then f(™ is strictly increasing and from (3) it
follows that "¢ ™ (x1) < x§'g™ ™ (x2). But when n is fixed the opposite inequality holds Vm > 1. This
contradiction shows that g is a constant, i.e. f(z) = Cz, C > 0.

Conversely, it is easy to check that the functions of this type verify the conditions of the problem.

5. Suppose that 2n points of an n x n grid are marked. Show that for some k£ > 1 one can select 2k distinct
marked points, say a1, ..., as, such that a; and as are in the same row, as and as are in the same column,

..., agk—1 and agy are in the same row, and ag and a1 are in the same column. (20 points)

2



Solution 1. We prove the more general statement that if at least n + k points are marked in an n x k grid,
then the required sequence of marked points can be selected.

If a row or a column contains at most one marked point, delete it. This decreases n 4+ k by 1 and the
number of the marked points by at most 1, so the condition remains true. Repeat this step until each row
and column contains at least two marked points. Note that the condition implies that there are at least two
marked points, so the whole set of marked points cannot be deleted.

We define a sequence b1, bs, ... of marked points. Let b; be an arbitrary marked point. For any positive
integer n, let b, be an other marked point in the row of bg,,—1 and bg, 41 be an other marked point in the
column of by,,.

Let m be the first index for which b,, is the same as one of the earlier points, say b,, = b;, [ < m.

If m — [ is even, the line segments b;b; 41, biy1bi42, ..., bn—1b; = byp—1by, are alternating horizontal and
vertical. So one can choose 2k = m — [, and (a1, ...,a2;) = (b, ..., b;m—1) o1 (a1,...,a2k) = (bi+1,...,bm)
if [ is odd or even, respectively.

If m — 1 is odd, then the points b; = b,,, bj+1 and b,,—1 are in the same row/column. In this case chose
2k = m — 1 — 1. Again, the line segments b;41b;12, bi12bi+3, ..., byy—1b;+1 are alternating horizontal and
vertical and one can choose (a1,...,a2t) = (bi41,---,bm—1) or (a1,...,a2;) = (bi42,--,bm—1,b141) if L is
even or odd, respectively.

Solution 2. Define the graph G in the following way: Let the vertices of G be the rows and the columns of
the grid. Connect a row r and a column ¢ with an edge if the intersection point of 7 and ¢ is marked.

The graph G has 2n vertices and 2n edges. As is well known, if a graph of N vertices contains no circle,
it can have at most NV — 1 edges. Thus G does contain a circle. A circle is an alternating sequence of rows
and columns, and the intersection of each neighbouring row and column is a marked point. The required
sequence consists of these intersection points.

6. a) For each 1 < p < oo find a constant ¢, < oo for which the following statement holds: If f : [-1,1] = R
is a continuously differentiable function satisfying f(1) > f(—1) and |f'(y)| < 1 for all y € [—1, 1], then there
is an « € [—1,1] such that f'(z) > 0 and |f(y) — f(z)| < cp(f’(x))l/p|y — | for all y € [—1,1]. (10 points)
b) Does such a constant also exist for p = 17 (10 points)

Solution. ( ) Let g(z) = max(0, f'(z)). Then 0 < f f(x)dx = f7 g(x da:Jrf x) — g(x))dz, so

we get f (z)|dz = fil g(z)dz + fil — f(z))dz < 2f,1g )dz. Fix p and ¢ (to be determined
at the end) Given any ¢t > 0, choose for every x such that g(x) > t an interval I, = [z,y] such that
|f(y) — f(2)] > cg(x)"/P|ly — x| > ct'/?|I,| and choose disjoint I, that cover at least one third of the measure

of the set {g > t}. For I = J;I; we thus have ct'/?|I| < [, f'(z)dz < f z)|dz < 2 [! L 9(x)dz; so
{g > t}| < 3|I| < (6/c)t=1/P f—1 (z)dx. Integrating the 1nequahty, we get f_lg Ydx = fo {g > t}|dt <
(6/c)p/(p—1) f—1 g(z)dx; this is a contradiction e.g. for ¢, = (6p)/(p — 1).
(b) No. Given ¢ > 1, denote @ = 1/c and choose 0 < & < 1 such that ((1+¢)/(2e))"® < 1/4. Let
g:[—1,1] — [~1,1] be continuous, even, g(z) = —1 for |z| < e and 0 < g(z) < a((Jz| +¢)/(2e)) "> for e <
|ac| < 1is chosen such thatf g(t)dt > —5/2+f ((lz|+e)/(2e)) = tdt = —/2+2e(1—((1+¢€)/(2¢))~%) > e.
Let f = fg t)dt. Then f(1) — f(—1) > 25+2fg dt>01f€<x<1andy——€ then |f(z) — f(y)| >
2¢ — [T glt dt > 2 — [Ta((t +e)/(26)77" = 2e((x +)/(26))7 > g(@)|z — yl/a = f'(@)lz - yl/a;

symmetrlcally for -1<axz < —cand y =c¢.



6th INTERNATIONAL COMPETITION FOR UNIVERSITY
STUDENTS IN MATHEMATICS
Keszthely, 1999.

Problems and solutions on the second day

1. Suppose that in a not necessarily commutative ring R the square of any element is 0. Prove that
abc + abc = 0 for any three elements a, b, c. (20 points)

Solution. From 0 = (a + b)? = a® + b* + ab + ba = ab + ba, we have ab = —(ba) for arbitrary a,b, which
implies

abe = a(bc) = —((be))a = —(b(ca)) = (ca)b = c(ab) = —((ab)c) = —abe.
2. We throw a dice (which selects one of the numbers 1,2,...,6 with equal probability) n times. What is

the probability that the sum of the values is divisible by 57 (20 points)

Solution 1. For all nonnegative integers n and modulo 5 residue class r, denote by pgf) the probability
(0)

that after n throwing the sum of values is congruent to r modulo n. It is obvious that p;’ = 1 and
1 _ @2 _ 3 _ @) _
Po =Py =Py =Py =VU.

Moreover, for any n > 0 we have
6

r 1 r—1i
sz) = Z 6?%—1)- (1)

i=1

From this recursion we can compute the probabilities for small values of n and can conjecture that pgf) =

i+ % if n =r (mod )5 and pg) = & — =t otherwise. From (1), this conjecture can be proved by
induction.
Solution 2. Let S be the set of all sequences consisting of digits 1,...,6 of length n. We create collections

of these sequences.
Let a collection contain sequences of the form

66...6XY1... Yo x_1,
k

where X € {1,2,3,4,5} and k and the digits Y7,...,Y,_;_1 are fixed. Then each collection consists of 5
sequences, and the sums of the digits of sequences give a whole residue system mod 5.

Except for the sequence 66...6, each sequence is the element of one collection. This means that the
number of the sequences, which have a sum of digits divisible by 5, is %(6" — 1) 4+ 1 if n is divisible by 5,
otherwise (6™ —1).

Thus, the probability is % + % if n is divisible by 5, otherwise it is % — ﬁ.

Solution 3. For arbitrary positive integer k denote by py the probability that the sum of values is k. Define
the generating function

0 2 3 4 5 6\ "
. P e o e o A e e aE A ¥
f(x)—;pkx —( 5 .

(The last equality can be easily proved by induction.)
o0

Our goal is to compute the sum kg_:l psk. Let € = cos %’r + ¢sin %’r be the first 5th root of unity. Then

;Psk P IURS IOk; f(ff;) + () + (Y



Obviously f(1) = 1, and f(&’) = Eg%: for j = 1,2,3,4. This implies that f(¢) + f(e2) + f(e3) + f(e%)
is g if n is divisible by 5, otherwise it is z+. Thus, Y. psk is + + == if n is divisible by 5, otherwise it is
11 =
5 567"
3. Assume that xq,...,2, > —1 and _ 2? = 0. Prove that > z; < 7. (20 points)

i=1 i=1

Solution. The inequality
3 1 1\?
ngg—zx—i—zz(m—&—l) (w—§)

holds for z > —1.
Substituting x1, ..., z,, we obtain

oo

)

>3

Zwi +
i=1

n
so Y. x; <
i=1

w|3

Remark. Equailty holds only in the case when n = 9k, k of the x4, ..., z,, are —1, and 8k of them are %

4. Prove that there exists no function f : (0,400) — (0, +00) such that f%(z) > f(z +y)(f(z) +y) for any
z,y > 0. (20 points)

Solution. Assume that such a function exists. The initial inequality can be written in the form f(x) —
flx+y) > f(z)— 2 @) — J@U  Ohviously, f is a decreasing function. Fix z > 0 and choose n € N such

Cf@+y T f@)ty
that nf(x+1) > 1. For k=0,1,...,n — 1 we have

k k+1 flz+ %) 1
f(“a)‘f(“ n )an(x+g)+1 = o

The additon of these inequalities gives f(z +1) < f(z) — 3. From this it follows that f(z +2m) < f(z) —m
for all m € N. Taking m > f(x), we get a contradiction with the conditon f(z) > 0.

5. Let S be the set of all words consisting of the letters x,y, z, and consider an equivalence relation ~ on S
satisfying the following conditions: for arbitrary words u,v,w € S

(i) uu ~ u;

(ii) if v ~ w, then uv ~ vw and vu ~ wu.
Show that every word in S is equivalent to a word of length at most 8. (20 points)

Solution. First we prove the following lemma: If a word u € S contains at least one of each letter, and
v € S is an arbitrary word, then there exists a word w € S such that wvw ~ w.

If v contains a single letter, say z, write v in the form v = ujzus, and choose w = uy. Then uvw =
(urzug)zus = u1((zu)(zug)) ~ w1 (xus) = u.

In the general case, let the letters of v be aq,...,a;. Then one can choose some words wy, ..., wy such
that (wai)wy ~ u, (uaja)ws ~ uay, ..., (uay...ag)wg ~ uaq ...ag—1. Then u ~ uajwy ~ vagagwowy ~

LU QW w1 = uo(Wg .. w1 ), SO W = Wy ... w1 is a good choice.

Consider now an arbitrary word a, which contains more than 8 digits. We shall prove that there is a
shorter word which is equivalent to a. If a can be written in the form wvvw, its length can be reduced by
wvvw ~ uvw. So we can assume that a does not have this form.

Write a in the form a = bed, where b and d are the first and last four letter of a, respectively. We prove
that a ~ bd.



It is easy to check that b and d contains all the three letters x, y and z, otherwise their length could be
reduced. By the lemma there is a word e such that b(cd)e ~ b, and there is a word f such that def ~ d.
Then we can write

a = bed ~ be(def) ~ be(dedef) = (bede)(def) ~ bd.

Remark. Of course, it is enough to give for every word of length 9 an shortest shorter word. Assuming that
the first letter is « and the second is y, it is easy (but a little long) to check that there are 18 words of length
9 which cannot be written in the form uvvw.

For five of these words there is a 2-step solution, for example

TYTZYZT 2Y ~ TY TZYZ TZYZY ~ TYT 2Y 2Y ~ TYTZY-

In the remaining 13 cases we need more steps. The general algorithm given by the Solution works
for these cases as well, but needs also very long words. For example, to reduce the length of the word
a = xyzyxrzryz, we have set b = xyzy, c = x, d = zxyz, e = cyrzrzyryzy, [ = 2YTYTr2Yrzr2r2rYTYZTYZ.
The longest word in the algorithm was

bededef = xyzyxzryzayrzrzyryzyzryzryrzrzyTyYzy2YyTYLIYLrTiTILYTY2TYz,

which is of length 46. This is not the shortest way: reducing the length of word a can be done for example
by the following steps:

TYZYTZT YZ ~ TYZYTZ TYZY 2 ~ TYZYTZLY 2YT Y2ZYZ ~ TYLZYTZ TYZYLZ YT Y2 Y2 ~ TY 2YT ZYT Yz ~ TYZYTyz.

(The last example is due to Nayden Kambouchev from Sofia University.)

6. Let A be a subset of Z,, = Z/nZ containing at most 1t Inn elements. Define the rth Fourier coefficient
of A for r € Z,, by

f) =3 exp (%sr) .

Prove that there exists an r # 0, such that | f(r)| > %. (20 points)
Solution. Let A = {ay,...,a;}. Consider the k-tuples

< 2miaqt 2miagt
exp .. ..,eXp

)eck, t=0,1,...,n—1.

Each component is in the unit circle |z| = 1. Split the circle into 6 equal arcs. This induces a decomposition
of the k-tuples into 6* classes. By the condition k < ﬁ Inn we have n > 6F, so there are two k-tuples in
the same class say for t; < t3. Set r = t5 — t1. Then

Re exp 2mia;r — cos <27rajt2 B 27rajt1) > cos T 1
n n n 2
for all 7, so
k
#6001 > Re ) = 5.



Solutions for the first day problems at the IMC 2000

Problem 1.

Is it true that if f :[0,1] — [0,1] is

a) monotone increasing

b) monotone decreasing

then there exists an x € [0,1] for which f(x) =x?

Solution.

a) Yes.

Proof: Let A = {z € [0,1] : f(x) > z}. If f(0) = 0 we are done, if not then A is
non-empty (0 is in A) bounded, so it has supremum, say a. Let b = f(a).

I. case: a < b. Then, using that f is monotone and a was the sup, we get b = f(a) <
f((a+b)/2) < (a+b)/2, which contradicts a < b.

II. case: @ > b. Then we get b = f(a) > f((a+b)/2) > (a + b)/2 contradiction.
Therefore we must have a = b.

b) No. Let, for example,

flz)=1—2/2 if x2<1/2

and
fle)=1/2—x/2 if x>1/2

This is clearly a good counter-example.

Problem 2.

Let p(z) = 2° + x and q(z) = x° + 22. Find all pairs (w, z) of complex numbers with
w # z for which p(w) = p(z) and q(w) = q(2).

Short solution. Let

p(z) — p(y)

p— — et by et r Syt 41

P(.’,E,y) =

. () — 4(y)
q9\x) —q\y
Qlz,y) = ————
=y
We need those pairs (w, z) which satisfy P(w, z) = Q(w, z) = 0.
From P — () = 0 we have w+ z = 1. Let ¢ = wz. After a short calculation we obtain
c? — 3c+ 2 = 0, which has the solutions ¢ = 1 and ¢ = 2. From the system w + z = 1,
wz = ¢ we obtain the following pairs:

Ciﬂmxﬁﬁ

—st eyt e byt bty

2 2

1+V7i 1FV7i
2 2 ‘



Problem 3.
A and B are square complex matrices of the same size and

rank(AB — BA) =

Show that (AB — BA)? = 0.

Let C' = AB — BA. Since rank C' = 1, at most one eigenvalue of C' is different from 0.
Also tr C' = 0, so all the eigevalues are zero. In the Jordan canonical form there can only
be one 2 x 2 cage and thus C? = 0.

Problem 4.
a) Show that if (x;) is a decreasing sequence of positive numbers then

n 1/2 n
2 Li

b) Show that there is a constant C' so that if (x;) is a decreasing sequence of positive

numbers then .
[e ) 1 [ ) [ )

m=1

Solution.

=1 %]

by checking that it is at most

1+1
1
/ - dr =
o Vavit+l-—z



Alternatively you can observe that
1/2
) D v e
\/_ 1+ 1— \/_ 1+ 1—
i/2

<75 X 7w S

2V/i/2 =4

Problem 5.

Let R be a ring of characteristic zero (not necessarily commutative). Let e, f and g
be idempotent elements of R satisfying e + f + g = 0. Show thate = f = g = 0.

(R is of characteristic zero means that, if a € R and n is a positive integer, then
na # 0 unless a = 0. An idempotent  is an element satisfying xr = x2.)

Solution. Suppose that e + f + g = 0 for given idempotents e, f,g € R. Then

g=g"=(—(e+[f)’=e+(ef + fe)+ f=(ef + fe) -

i.e. ef+fe=2g, whence the additive commutator

e, fl=ef = fe=le,ef + fe] = 2e, g] = 2[e, —e — f] = —=2le, f],

i.e. ef = fe (since R has zero characteristic). Thus ef + fe = 2g becomes ef = g, so that
e+ f+ef =0. On multiplying by e, this yields e + 2ef = 0, and similarly f + 2ef = 0,
so that f = —2ef = e, hence e = f = g by symmetry. Hence, finaly, 3e = e+ f + g = 0,
ie.e=f=g=0.

For part (i) just omit some of this.

Problem 6.
Let f: R — (0,00) be an increasing differentiable function for which lim f(x) = oo

and f' is bounded.

Let F(x f f. Define the sequence (a,,) inductively by

L
flan)’

and the sequence (by) simply by b, = F~1(n). Prove that lim (a, — b,) = 0.

ap =1, apy1 =a,+

Solution. From the conditions it is obvious that F'is increasing and lim b,, = co.
n—oo

By Lagrange’s theorem and the recursion in (1), for all £ > 0 integers there exists a
real number £ € (ag, agy1) such that

F(ary1) — Flag) = f(§)(ag1 —ax) = (2)



By the monotonity, f(ax) < f(§) < f(ag+1), thus

s o) = o s S - Helen
Summing (3) for £ =0,...,n — 1 and substituting F'(b,) = n, we have
n—1
F(bn) < n+ Flao) < F(an) < F(by) + F(ao) + Y flartr) = flar)
k=0 f(a’k)

From the first two inequalities we already have a,, > b, and lim a, = cc.

Let € be an arbitrary positive number. Choose an integer K. such that f(ax_ ) >

If n is sufficiently large, then

n—oo

_ (F(a0)+ Z_ flak+1) _f(ak)> n ni flagy1) — flax) _
— k=K.

n—1

1
< O(1) +

f(ax)

flak.) k;{ (flarsr) — flar)) <

< 0:(1) + 5 (f(an) ~ flax.)) < ef(an).

Inequalities (4) and (5) together say that for any positive ¢, if n is sufficiently large,

F(an) — F(by) < ef(ap).

Again, by Lagrange’s theorem, there is a real number ¢ € (b, a,) such that

F(an) = F(bn) = f(Q)(an — bn) > f(bn)(an — bn),

thus

f(bp)(an —by) < ef(an).
Let B be an upper bound for f'. Apply f(an) < f(b,) + B(a, — by) in (7):

f(by)(an — by) < e(f(byn) + Blan — by)),
(f(bn) —eB)(an —bn) < ef(bn).

Due to lim f(b,) = oo, the first factor is positive, and we have

n—oo

S (bn)

a, — b, <e¢

for sufficiently large n.

f(b,) —eB

< 2¢

(4)

2
=.

(9)

Thus, for arbitrary positive € we proved that 0 < a,, —b,, < 2¢ if n is sufficiently large.

4



Solutions for the second day problems at the IMC 2000

Problem 1.

a) Show that the unit square can be partitioned into n smaller squares if n is large
enough.

b) Let d > 2. Show that there is a constant N(d) such that, whenever n > N(d), a
d-dimenstonal unit cube can be partitioned into n smaller cubes.

Solution. We start with the following lemma: If a and b be coprime positive integers
then every sufficiently large positive integer m can be expressed in the form az + by with
x,y non-negative integers.

Proof of the lemma. The numbers 0, a, 2a, ..., (b—1)a give a complete residue system
modulo b. Consequently, for any m there exists a 0 < z < b—1 so that az =m (mod b).
If m > (b—1)a, then y = (m —ax)/b, for which x + by = m, is a non-negative integer, too.

Now observe that any dissection of a cube into n smaller cubes may be refined to
give a dissection into n + (a? — 1) cubes, for any a > 1. This refinement is achieved by
picking an arbitrary cube in the dissection, and cutting it into a? smaller cubes. To prove
the required result, then, it suffices to exhibit two relatively prime integers of form a¢ — 1.
In the 2-dimensional case, a; = 2 and as = 3 give the coprime numbers 22 — 1 = 3 and
32 — 1 = 8. In the general case, two such integers are 2¢ — 1 and (2¢ — 1)¢ — 1, as is easy
to check.

Problem 2. Let f be continuous and nowhere monotone on [0,1]. Show that the set
of points on which [ attains local minima is dense in [0, 1].

(A function is nowhere monotone if there exists no interval where the function is
monotone. A set is dense if each non-empty open interval contains at least one element of
the set.)

Solution. Let (z — a,x + «) C [0, 1] be an arbitrary non-empty open interval. The
function f is not monoton in the intervals [z — «, ] and [z, x + o], thus there exist some
real numbers z —a <p<q¢<z,z <r<s<z+asothat f(p) > f(¢q) and f(r) < f(s).

By Weierstrass’ theorem, f has a global minimum in the interval [p, s]. The values f(p)
and f(s) are not the minimum, because they are greater than f(q) and f(s), respectively.
Thus the minimum is in the interior of the interval, it is a local minimum. So each non-
empty interval (z — «,z + «) C [0, 1] contains at least one local minimum.

Problem 3. Let p(z) be a polynomial of degree n with complex coefficients. Prove
that there exist at least n+ 1 complex numbers z for which p(z) is 0 or 1.

Solution. The statement is not true if p is a constant polynomial. We prove it only
in the case if n is positive.

For an arbitrary polynomial ¢(z) and complex number ¢, denote by (g, ¢) the largest
exponent « for which ¢(z) is divisible by (z — ¢)®*. (With other words, if ¢ is a root of ¢,
then u(q, ¢) is the root’s multiplicity. Otherwise 0.)

1



Denote by Sy and S; the sets of complex numbers z for which p(z) is 0 or 1, respec-
tively. These sets contain all roots of the polynomials p(z) and p(z) — 1, thus

> ulpe)=) uwlp—1,¢0)=n. (1)

CGSO CESl

The polynomial p’ has at most n — 1 roots (n > 0 is used here). This implies that

S u)<n-1. (2)

cESpUS,
If p(¢) =0 or p(c) —1 =0, then
p(p,e) —p@'c) =1 or plp—1¢ —p@ec) =1, (3)

respectively. Putting (1), (2) and (3) together we obtain

S0l + [S1] = > (ulp.e) = p(@',0)) + > (ulp—1,¢) = u(p, ¢)) =

c€So cESy

= > ppo+ > pp-1,00— Y pp,0)=n+n—(n—-1)=n+1.

cESo cESq ceSgUSq

Problem 4. Suppose the graph of a polynomial of degree 6 is tangent to a straight
line at 3 points A1, As, Az, where Ay lies between Ay and As.

a) Prove that if the lengths of the segments A1 Ay and A3 As are equal, then the areas
of the figures bounded by these segments and the graph of the polynomial are equal as well.

A
b) Let k = A2A3 , and let K be the ratio of the areas of the appropriate figures. Prove
142
that 5 .
K< K < <k
A

Solution. a) Without loss of generality, we can assume that the point A, is the origin
of system of coordinates. Then the polynomial can be presented in the form

Y= (a0x4 + alx?’ + ang + azx + a4)x2 + aszx,
where the equation y = asx determines the straight line A; A3. The abscissas of the points
Aj and A3 are —a and a, a > 0, respectively. Since —a and a are points of tangency, the
numbers —a and a must be double roots of the polynomial agz* + a123 + asx? + azx + aq4.

It follows that the polynomial is of the form

y = ap(z? — a*)* + asm.



The equality follows from the equality of the integrals

0 a
/ao (x2 — a2):v2dm = /ao (:E2 — a2):v2dx
—a 0

due to the fact that the function y = ag(2? — a?) is even.

b) Without loss of generality, we can assume that ag = 1. Then the function is of the
form
y = (z+ a)*(x — b)*2” + a5z,

where a and b are positive numbers and b = ka, 0 < k < oo. The areas of the figures at
the segments A1 A; and As Az are equal respectively to

0
7
/(g; +a)2(z — b)%2%de = ;—m(m? + Tk +2)
and
’ 7
/(:1; +a)*(z — b)*x?dz = QCLTO(2k2 +T7k+7)
0
Then

_ 2R TRAT

K=k _———F7—F7—.
Tk? + Tk + 2

The derivative of the function f(k) = % is negative for 0 < k < og Therefore f(k)
decreases from % to % when k increases from 0 to co. Inequalities % < % < % imply

the desired inequalities.

Problem 5. Let R" be the set of positive real numbers. Find all functions f : Rt —
R such that for all z,y € R

f@)f(yf(x)) = flx+y)

First solution. First, if we assume that f(z) > 1 for some z € RT, setting y =

x
flz) =1
that f is a decreasing function.

If f(z) = 1 for some z € RT, then f(x +y) = f(y) for each y € R™, and by the
monotonicity of f it follows that f = 1.

Let now f(x) < 1 for each € RT. Then f is strictly decreasing function, in particular
injective. By the equalities

gives the contradiction f(z) = 1. Hence f(z) < 1 for each x € R™, which implies

f@)f(yf(@) = flx+y) =

3



= F(yf (@) + 2 +y(1 = f())) = s @) f (= +y(1 = F(@) flul (@)

1-f(1
we obtain that x = (x+y(1 — f(2)))f(yf(x)). Setting z =1, z =z f(1) and a = %5)7
1
we get f(z)—1+az. 1
Combining the two cases, we conclude that f(z) = for each x € R, where

+ ax
a > 0. Conversely, a direct verification shows that the functions of this form satisfy the

initial equality.
Second solution. As in the first solution we get that f is a decreasing function, in
particular differentiable almost everywhere. Write the initial equality in the form

faty) = f@) _ o flaf@) - 1
y =r@ yf(x)

It follows that if f is differentiable at the point € R™, then there exists the limit

. f(Z) —1 . / _ 2 + 1 ! _
zlir&_ . =: —a. Therefore f'(zr) = —af*(x) for each x € R, i.e. <f(x)> = a,

which means that f(z) = 5 Substituting in the initial relaton, we find that b = 1
and a > 0.

axr

Problem 6. For an m x m real matriz A, e is defined as > %A”. (The sum is
n=0

convergent for all matrices.) Prove or disprove, that for all real polynomials p and m x m
real matrices A and B, p(eP) is nilpotent if and only if p(e®?) is nilpotent. (A matriz
A is nilpotent if A¥ =0 for some positive integer k.)

Solution. First we prove that for any polynomial ¢ and m x m matrices A and B,
the characteristic polinomials of ¢(e®) and g(e®4) are the same. It is easy to check that

for any matrix X, g(eX) = > ¢, X™ with some real numbers ¢,, which depend on ¢. Let
n=0

C = i cn- (BA)" B = f: cn - B(AB)" 1.
n=1 n=1

Then q(e?P) = ¢yl + AC and q(eB?) = coI + CA. Tt is well-known that the characteristic
polynomials of AC' and C'A are the same; denote this polynomial by f(z). Then the
characteristic polynomials of matrices g(e?) and q(e®4) are both f(z — c).

Now assume that the matrix p(e“?) is nilpotent, i.e. (p(eAB))k = 0 for some positive
integer k. Chose ¢ = p¥. The characteristic polynomial of the matrix g(e“?) = 0 is 2™,

so the same holds for the matrix ¢(e®4). By the theorem of Cayley and Hamilton, this
implies that (q(eBA))m = (p(eBA))km = 0. Thus the matrix g(e®4) is nilpotent, too.



8th IMC 2001
July 19 - July 25
Prague, Czech Republic

First day

Problem 1.

Let n be a positive integer. Consider an n X n matrix with entries 1,2,...,n
written in order starting top left and moving along each row in turn left—to—
right. We choose n entries of the matrix such that exactly one entry is chosen
in each row and each column. What are the possible values of the sum of the
selected entries?

2

Solution. Since there are exactly n rows and n columns, the choice is of
the form

{(,0() :j=1,...,n}
where o € S, is a permutation. Thus the corresponding sum is equal to

n

Z (=1 +0o() Z”]*Z”JFZ

j=1

*nZ]—anLZ]fnJrl (n+1) 2:@,

which shows that the sum is independent of o.

Problem 2.

Let r, s, t be positive integers which are pairwise relatively prime. If ¢ and b
are elements of a commutative multiplicative group with unity element e, and
a” =b* = (ab)" = e, prove that a = b = e.

Does the same conclusion hold if a and b are elements of an arbitrary non-
commutative group?

Solution. 1. There exist integers u and v such that us + vt = 1. Since
ab = ba, we obtain

ab = (ab)"* " = (ab)"* ((ab)t)v = (ab)*’ e = (ab)"® = a™ (b°)" = a""e = a*.

Therefore, b™ = eb” = a"b" = (ab)" = a**" = (a")"* = e. Since zr +ys = 1 for
suitable integers z and vy,

b= b = (b7)" (0°)Y =e.

It follows similarly that a = e as well.
2. This is not true. Let a = (123) and b = (34567) be cycles of the permu-
tation group S7 of order 7. Then ab = (1234567) and a3 = b® = (ab)” =

n

Problem 3. Find hm 1-1) Z ' where t ' 1 means that ¢ ap-

proaches 1 from below.



Solution.

& tn & tn
tiliri (1-1) Z tal 071 t ~Int) Z
n=1 n=1

> 1 > 1 S|
= lim (-Int)y ———— = lim by ———= L 2.
t—1—0 — 1+ enlnt 200 n:11+e"h 0 l+e®

Problem 4.

Let k be a positive integer. Let p(z) be a polynomial of degree n each of
whose coefficients is -1,1 or 0, and which is divisible by (z — 1)*. Let ¢ be a
prime such that - ng < 1n(n+1) Prove that the complex gth roots of unity are

roots of the polynomial p(z).

Solution. Let p(z) = (z—1)*-r(z) and g; = €2™9/9 (j = 1,2,...,q—1). As
is well-known, the polynomial 297t + 2972+ .. . +x+1=(z—¢1)...(x—g4-1)
is irreducible, thus all &1, ...,&4-1 are roots of r(z), or none of them.

Suppose that none of €1,...,e4—1 is a root of r(z). Then Hg;i r(g;) is a
rational integer, which is not 0 and

q—1 qg—1 q—1
(n+1)7 t> H |p(5])‘ = H(l _Ej)k HT(EJ) 2
j=1 Jj=1 j=1
k
qg—1
>[I -2 =@ +1772 4 41+ )R =g~
j=1

This contradicts the condition L g < ln(n -

Problem 5.

Let A be an n x n complex matrix such that A # A for all A € C. Prove
that A is similar to a matrix having at most one non-zero entry on the main
diagonal.

Solution. The statement will be proved by induction on n. For n = 1,

there is nothing to do. In the case n = 2, write A = [ CCL Z } If b # 0, and

c# 0orb=c=0 then A is similar to

[a}b ?HZ’ ZH—i/b ?][c_gd/b a—l&)-d]

[ [ )

respectively. If b =c¢ =0 and a # d, then A is similar to

ER IRk



and we can perform the step seen in the case b # 0 again.
Assume now that n > 3 and the problem has been solved for all n’ < n. Let

I
A= [ /i . ] , where A’ is (n — 1) x (n — 1) matrix. Clearly we may assume

g
that A’ # NI, so the induction provides a P with, say, P"1A'P = [ S Z } .
n—1
But then the matrix

s [Pt Ol[Aa <[P O]_[PAP «

=l o 1|« gllo 1]~ « B
is similar to A and its diagonal is (0,0,...,0,«, 3). On the other hand, we may
also view B as 2 é‘ } , where C'is an (n—1) x (n — 1) matrix with diagonal

(0,...,0,c, 8). If the inductive hypothesis is applicable to C, we would have
Q-'CQ = D, with D = { 2 z ] so that finally the matrix
n—1

st 0 ][t 0] _[1 o0 0 «1[1 07 [0 =
10 Q! 0 Q| |0 Q! * C 0 Q| |* D
is similar to A and its diagonal is (0,0,...,0,), as required.

The inductive argument can fail only when n — 1 = 2 and the resulting
matrix applying P has the form

0 a b
PlAP=|¢ d 0
e 0 d

where d # 0. The numbers a, b, ¢, e cannot be 0 at the same time. If, say,
b # 0, A is similar to

1 00 0 a b 1 00 =b a b
010 c d 0 0 1 0|= c d 0
1 01 e 0 d -1 0 1 e—b—d a b+d

Performing half of the induction step again, the diagonal of the resulting matrix
will be (0,d — b,d + b) (the trace is the same) and the induction step can be
finished. The cases a # 0, ¢ # 0 and e # 0 are similar.

Problem 6.
Suppose that the differentiable functions a, b, f, g : R — R satisfy

f(x) >0, f'(z) >0,g9(x) >0,g'(x) >0 for all z € R,

lim a(z) =A >0, lim b(z)=B >0, lim f(z)= lim g(z) = oo,

and
Py @)
g T =)
Prove that
lim M = B
z—00 g(m) A+1



Solution. Let 0 < ¢ < A be an arbitrary real number. If z is sufficiently
large then f(x) > 0, g(z) > 0, |a(z) — A| < e, |b(z) — B| < € and

ey @ @) @) L@
W Boe<ble)=Gay el <gw T e <
_ AT+ F@)(g)! + A f@)- (@) @)
A (A+1)- (9(2))" - ¢'(x)
_(A+eAa+n) (f@) (9<w))A)/
A ((g(x))AJ,-l)/
thus

(f(x) : (g(:v))A)l A(B —¢)
(™) D

It can be similarly obtained that, for sufficiently large x,

(r@- @) ameo
(1))~ =D

(2)

3)

From ¢ — 0, we have

- (f(xw(g(x))“‘)': B
200 ((g(x))AJrl)’ A+1

By I’'Hospital’s rule this implies

lim @ = lim f(@)- (g(as))A B
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Second day

Problem 1.
Let r,s > 1 be integers and ag,ai,...,a,-1,b9,b1,...,bs—1 be real non-
negative numbers such that

(ag +arz+asx’+.. . +ap_12" ! +2")(bg +hx+bor? 4. b2t 4 at) =

14+ao+z2+.. .+t 4 mts,

Prove that each a; and each b; equals either 0 or 1.

Solution. Multiply the left hand side polynomials. We obtain the following
equalities:
agbo =1, agbi +aibg =1,

Among them one can find equations

ap + ale,1 + ang,Q +...= 1

and

bo + blaT,1 + bQGJT,Q + ... = 1.

From these equations it follows that ag,bg < 1. Taking into account that
agbg = 1 we can see that ag = by = 1.

Now looking at the following equations we notice that all a’s must be less
than or equal to 1. The same statement holds for the b’s. It follows from
aogby +a1by = 1 that one of the numbers a1, b; equals 0 while the other one must
be 1. Follow by induction.

Problem 2. o
— — - 2 — n
Let apg = \/5, bo = 2, Ap+1 = 2 4 ay, bn+1 = 9+ \/m .
a) Prove that the sequences (ay,), (b,) are decreasing and converge to 0.
b) Prove that the sequence (2"a,,) is increasing, the sequence (2"b,,) is de-
creasing and that these two sequences converge to the same limit.
c¢) Prove that there is a positive constant C' such that for all n the following

inequality holds: 0 < b, —a, < 3

Solution. Obviously as = V2 —+v2 < /2. Since the function flz) =

2 — /4 — 2? is increasing on the interval [0, 2] the inequality a; > ag implies

that as > as. Simple induction ends the proof of monotonicity of (a,). In the
2x

T2+ Vita?

2/ (2/35 ++v1+ 4/952)). It is a matter of simple manipulation to prove that

same way we prove that (b,) decreases (just notice that g(x)

2f(z) > x for all x € (0,2), this implies that the sequence (2"ay,) is strictly



increasing. The inequality 2g(z) < z for = € (0,2) implies that the sequence
402

112
for positive integers n. Since the limit of the decreasing sequence (2"b,) of
positive numbers is finite we have

(27b,,) strictly decreases. By an easy induction one can show that a? =

4-47b2
lim4"a? = lim " b; = lim4"v? .

n

We know already that the limits lim 2"a,, and lim 2"b,, are equal. The first
of the two is positive because the sequence (2"a,,) is strictly increasing. The
existence of a number C follows easily from the equalities

4nip2
4+b2

(2"b,)* 1 1

2", — 2"a, = (47b — P YT/ ETEPEY
an = (470, 4+02 47 27(b, + an)

)/ (27bn +2"ay) =

and from the existence of positive limits lim 2"b,, and lim 2"a,,.
Remark. The last problem may be solved in a much simpler way by
someone who is able to make use of sine and cosine. It is enough to notice that

T T
5T and b, = 2tan ——

an:2$1n2nJr STE

Problem 3.

Find the maximum number of points on a sphere of radius 1 in R™ such that
the distance between any two of these points is strictly greater than v/2.

Solution. The unit sphere in R" is defined by

Sp_1 = {(ml,...,xn) 6R”|in = 1}.
k=1

The distance between the points X = (x1,...,2,) and Y = (y1,...,y,) is:

PX,Y) =) (wx —yr)*.

k=1
We have

dAX,Y)>V2 & d*(X,Y)>2
n n n
D ekt i 2) wyn>2
k=1 k=1 k=1
n
4 Z:ckyk <0
k=1
Taking account of the symmetry of the sphere, we can suppose that

Ay = (-1,0,...,0).

For X = Ay, Y zryr <0 implies y; > 0, VY € M,,.
=1
Let X = (21, X), Y = (11,Y) € M,\{4:}, X,Y ¢ R" 1,



‘We have

n n—1 n—1
Z:ckyk < 0= zy1 + kayk <0& Zz;y,’c <0,

k=1 k=1 k=1
where
/o Tk !’ gk
.Tk = 7_27 yk = 7_2 .
V2T, V2T
therefore

(‘rllﬂ c "‘T;L—l)7 (yia cee ay;z—l) € S"—2

n
and verifies > xpyr < 0.
k=1
If a, is the search number of points in R" we obtain a,, < 1+ a,_1 and
a1 = 2 implies that a, <n + 1.
We show that a, = n + 1, giving an example of a set M, with (n + 1)
elements satisfying the conditions of the problem.

A = (~1,0,0,0,...,0,0)
AQZ(%,7C1,O,O,...,O7O)
A= (L 2 -cl,—cQ,o,...,o,o)

n’n—1
—_ (1 1 1
Ay = o n—1 €1, -1 - €2, —C3, 5070)

_ (1 1 1 1

An—l = (E’ o - Cq, n_2 - C2, n_3 -Cg,...,—cn_Q,O)
_ (1 1 1 1 1

An = (ﬁ’ pr— - C1, P - C1, n_3 "C3y.-h 50 Cn_g,—cn_l)

_ (1 1 1 1 1
AnJrl - (;; 1 Cly 3 €2, 5—3"C3,---,5" Cn72acn71)

1 1 S
Ck\/(lﬁLﬁ) <1m), k—l,nfl.

n n
We have > zpyr = f% <0and Y zi=1, VX, Ye{A,...,Ap1}.
k=1 k—=1
These points are on the unit sphere in R™ and the distance between any two
points is equal to

1
d=vV24/1+ = > V2.
n

Remark. For n = 2 the points form an equilateral triangle in the unit
circle; for n = 3 the four points from a regular tetrahedron and in R™ the points
from an n dimensional regular simplex.

Problem 4.
Let A = (ak)ke=1,..,n be an n x n complex matrix such that for each
m € {l,...,n} and 1 < 51 < ... < jm < n the determinant of the matrix

(@jy 5o k,0=1,...,m i zero. Prove that A™ = 0 and that there exists a permutation
o € S, such that the matrix

(Ao (k),0(0) ) hot=1,...,n



has all of its nonzero elements above the diagonal.

Solution. We will only prove (2), since it implies (1). Consider a directed
graph G with n vertices Vp,...,V, and a directed edge from Vi to V; when
ar¢ # 0. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m. Let
j1 < ... < jm be the vertices the cycle goes through and let oy € S, be a
permutation such that aj, j, ., # 0 for k = 1,...,m. Observe that for any
other o € S;, we have ajy j,, = 0 for some k € {1,...,m}, otherwise we would
obtain a different cycle through the same set of vertices and, consequently, a
shorter cycle. Finally

0 = det(aj, j,)k.e=1,...,m

m
Sl n oo § : Sl n o L
& H a]kdao(k) + & H a]ka]a(k) 7& Oa
k=1

o#ogp

which is a contradiction.

Since G is acyclic there exists a topological ordering i.e. a permutation
o € Sp such that k < £ whenever there is an edge from V() to Vy(p). It is easy
to see that this permutation solves the problem.

Problem 5. Let R be the set of real numbers. Prove that there is no
function f: R — R with f(0) > 0, and such that

fle+y) = f(z) +yf(f(z)) forallz,y € R.

Solution. Suppose that there exists a function satisfying the inequality. If
f(f(z)) <0 for all z, then f is a decreasing function in view of the inequalities

fx+y) > f@) +yf(f(2)) = f(z) for any y < 0. Since f(0) > 0 > f(f(x)),

it implies f(z) > 0 for all x, which is a contradiction. Hence there is a z such
that f(f(z)) > 0. Then the inequality f(z 4+ z) > f(z) + = f(f(z)) shows that
lim f(x) = +o0 and therefore lim f(f(z)) = +oo0. In particular, there exist
x,y > 0 such that f(z) >0, f(f(z)) > 1,y > Wﬂl)_l and f(f(z4+y+1)) >0.
Then f(z+vy) > f(z) +yf(f(x)) > 2+ y+ 1 and hence

f(f(x+y) f@+y+)+ (flea+y) —@+y+1)f(fz+y+1) >
fle+y+1) > flx+y) + f(flz+y))
(

>
f@) +yf(f@)+ f(fz+y) > f(f(z+y)).

This contradiction completes the solution of the problem.

>
>
2



Problem 6.
For each positive integer n, let f,(¥) = sin® - sin(29) - sin(49) - - - sin(2"9).
For all real ¥ and all n, prove that

2
[fn ()] < EIfn(ﬂ/i%)l-

Solution. We prove that g(9) = |sind||sin(29)|'/? attains its maximum
value (v/3/2)%/2 at points 2#7/3 (where k is a positive integer). This can be
seen by using derivatives or a classical bound like

5 2
lg(9)] = | sin || sin(209)|'/? = £ <{1/| sind| - | sind| - | sind| - |\/§c0s19|)

V3
<\/§ 3sin219+3c08219_ V3 i
=3 4 “\2) -
Hence
Fal®) H g(0) - g(20)/2 - g(49)3/4 .. g2 '9)F || sin(2"9) |'TF/
fa(m/3)| Ng(m/3) - g(2m[3)1/2 - g(4m/3)3/4 - - g(2n—1m [3)F | |sin(2"7/3)

sin(2"9)
~ |sin(277/3)

1-E/2 1 1-E/2 9
< | —=— < =
- (ﬁ/fz) RVE]

where E = 2(1 — (—1/2)™). This is exactly the bound we had to prove.




Solutions for problems in the

9" Tnternational Mathematics Competition
for University Students

Warsaw, July 19 - July 25, 2002
First Day

Problem 1. A standard parabola is the graph of a quadratic polynomial
y = 22 + ax + b with leading coefficient 1. Three standard parabolas with
vertices Vi, V,, V3 intersect pairwise at points Ay, Ay, As. Let A+ s(A) be
the reflection of the plane with respect to the z axis.

Prove that standard parabolas with vertices s (A1), s (As), s (A3) intersect
pairwise at the points s (V7), s (V3), s (V5).

Solution. First we show that the standard parabola with vertex V' contains
point A if and only if the standard parabola with vertex s(A) contains point
s(V).

Let A = (a,b) and V = (v,w). The equation of the standard parabola
with vertex V' = (v,w) is y = (z — v)? + w, so it contains point A if and
only if b = (a — v)? + w. Similarly, the equation of the parabola with vertex
s(A) = (a,—b) is y = (x — a)? — b; it contains point s(V) = (v, —w) if and
only if —w = (v —a)? — b. The two conditions are equivalent.

Now assume that the standard parabolas with vertices V; and V5, V; and
V3, Vo and V3 intersect each other at points As, As, Aq, respectively. Then, by
the statement above, the standard parabolas with vertices s(A4;) and s(As),
s(A;p) and s(A3), s(As2) and s(Aj3) intersect each other at points V3, Vs, V7,
respectively, because they contain these points.

Problem 2. Does there exist a continuously differentiable function f: R — R
such that for every z € R we have f(z) > 0 and f'(z) = f(f(z))?

Solution. Assume that there exists such a function. Since f'(z) = f(f(x)) > 0,
the function is strictly monotone increasing.

By the monotonity, f(z) > 0 implies f(f(x)) > f(0) for all x. Thus, f(0)
is a lower bound for f'(x), and for all z < 0 we have f(z) < f(0)+z- f(0) =
(1 4+ 2)f(0). Hence, if x < —1 then f(z) < 0, contradicting the property
f(z) > 0.

So such function does not exist.



Problem 3. Let n be a positive integer and let

apy = —, by=2" for k=1,2,...,n.

Show that

al—bl a2—b2 an—bn_
1 2 * n

Solution. Since k(g) = n(Zj) for all £ > 1, (1) is equivalent to

2:[#+;+...+L]_2_1+2_2+...+2_n (2)
n (%) () G 12 n

We prove (2) by induction. For n = 1, both sides are equal to 2.
Assume that (2) holds for some n. Let

, :z[;+;+...+;l.
T () () (o)

then
on+1 n 1 on n—1 1 1
srms g (s (@)
AR ek Lo — 1 L s
= = — T
n+1k0 (";1) n+1 n (";1) n—+1 " +1

This implies (2) for n + 1.

Problem 4. Let f: [a,b] — [a,b] be a continuous function and let p € [a, b].
Define pg = p and p,.1 = f(pn) for n = 0,1,2,... Suppose that the set
T, =A{pn: n=0,1,2,...} is closed, i.e., if x ¢ T, then there is a § > 0 such
that for all ' € T, we have |2’ — x| > 0. Show that 7, has finitely many
elements.

Solution. If for some n > m the equality p,, = p, holds then 7}, is a finite
set. Thus we can assume that all points pg, p1, ... are distinct. There is
a convergent subsequence p,, and its limit ¢ is in 7},. Since f is continu-
ous pp,+1 = f(Pn,) — f(q), so all, except for finitely many, points p, are
accumulation points of 7,. Hence we may assume that all of them are ac-
cumulation points of T),. Let d = sup{|p,m — pn|: m,n > 0}. Let §, be

2



positive numbers such that Y >, d, < g. Let I, be an interval of length less
than d,, centered at p, such that there are there are infinitely many £’s such

that py ¢ U I;, this can be done by induction. Let ng = 0 and n,,,1 be the
j=0

Nm
smallest integer k& > n,, such that p ¢ U I;. Since T, is closed the limit
j=0
of the subsequence (p,,,) must be in T}, but it is impossible because of the
definition of [,,’s, of course if the sequence (p,,, ) is not convergent we may
replace it with its convergent subsequence. The proof is finished.

Remark. If T, = {p1,pa, ...} and each p, is an accumulation point of T},
then T, is the countable union of nowhere dense sets (i.e. the single-element
sets {pn}). If T is closed then this contradicts the Baire Category Theorem.

Problem 5. Prove or disprove the following statements:

(a) There exists a monotone function f: [0,1] — [0,1] such that for each
y € [0,1] the equation f(x) =y has uncountably many solutions x.

(b) There exists a continuously differentiable function f: [0,1] — [0, 1] such
that for each y € [0, 1] the equation f(z) = y has uncountably many solutions
.

Solution. a. It does not exist. For each y the set {x: y = f(x)} is either
empty or consists of 1 point or is an interval. These sets are pairwise disjoint,
so there are at most countably many of the third type.

b. Let f be such a map. Then for each value y of this map there is an zy such
that y = f(z) and f’(z) = 0, because an uncountable set {x: y = f(z)}
contains an accumulation point xy and clearly f’(xy) = 0. For every € > 0
and every zo such that f'(zg) = 0 there exists an open interval I,, such
that if x € I, then |f'(x)| < e. The union of all these intervals I,, may
be written as a union of pairwise disjoint open intervals J,. The image of
each J, is an interval (or a point) of length < ¢ - length(.J,,) due to Lagrange
Mean Value Theorem. Thus the image of the interval [0, 1] may be covered
with the intervals such that the sum of their lengths is € - 1 = ¢. This is not
possible for € < 1.

Remarks. 1. The proof of part b is essentially the proof of the easy part
of A. Sard’s theorem about measure of the set of critical values of a smooth
map.

2. If only continuity is required, there exists such a function, e.g. the first
co-ordinate of the very well known Peano curve which is a continuous map
from an interval onto a square.



[ Mzl

sermfoy [z
where || -||2 denotes the Euclidean norm on R™. Assume that an n X n matrix
A with real entries satisfies [|A¥ — A*7!|| < z5i= for all positive integers k.
Prove that || A*|| < 2002 for all positive integers k.

Problem 6. For an nxn matrix M with real entries let || M || =

Solution.

Lemma 1. Let (a,)n>0 be a sequence of non-negative numbers such that
Qo —aok 11 < ai, Aop11—Qopr2 < arayy for any k > 0 and lim sup na,, < 1/4.
Then limsup /a, < 1.

Proof. Let ¢; = sup,»q(n + 1)a, for I > 0. We will show that ¢; 41 < 4c.

Indeed, for any integer n > 2*! there exists an integer k > 2! such that
2

. C
n = 2k or n = 2k + 1. In the first case there is ag — aggpr1 < ai < W <
4c? 4c? . .
T—'f-l - TJ’FQ, whereas in the second case there is agpi1 — dopro < apagpyy <
012 < 4cl2 4cl2
(k+1)(k+2) = 2k+2  2k+3"

4cl2 . . .
Hence a sequence (an — n_—|—1>">2l+1 1S non—decreasmg and its terms are

4c?
] +1
g for o> 270,

meaning that ¢, < 4cf. This implies that a sequence ((4¢;)? )50 is non-
increasing and therefore bounded from above by some number ¢ € (0, 1) since
all its terms except finitely many are less than 1. Hence ¢; < q2£ for [ large
enough. For any n between 2 and 2!*! there is a, < L < P < (V)"
yielding lim sup {/a,, < /q < 1, yielding limsup /a, < ,/q < 1, which ends
the proof.

non-positive since it converges to zero. Therefore a, <

Lemma 2. Let T be a linear map from R™ into itself. Assume that
limsup n|| 7" — T"|| < 1/4. Then limsup |77+ —T"||'/" < 1. In particular
T" converges in the operator norm and 7" is power bounded.

Proof. Put a,, = ||[T™" — T™||. Observe that
Tk+m+1 o Tk—l—m — (Tk+m+2 _ Tk—l—m-‘,—l) o (Tk-l—l o Tk)(Tm—l—l . Tm)

implying that axim < @gymi1 + aram. Therefore the sequence (a,)m>o sat-

isfies assumptions of Lemma 1 and the assertion of Proposition 1 follows.

Remarks. 1. The theorem proved above holds in the case of an operator
T which maps a normed space X into itself, X does not have to be finite
dimensional.

2. The constant 1/4 in Lemma 1 cannot be replaced by any greater number
since a sequence a,, = ﬁ satisfies the inequality axim — apime1 < axa,, for
any positive integers k£ and m whereas it does not have exponential decay.
3. The constant 1/4 in Lemma 2 cannot be replaced by any number greater

that 1/e. Consider an operator (T'f)(z) = xf(x) on L*([0,1]). One can easily

4



check that limsup |7 — T"|| = 1/e, whereas T™ does not converge in the
operator norm. The question whether in general lim sup n||T""! — T"|| < oo
implies that T" is power bounded remains open.

Remark The problem was incorrectly stated during the competition: in-
stead of the inequality ||A* — A*"Y| < 5=k, the inequality [|A* — A*1| <

2002k’
1T e 1 ke
L - k_
so0z, Was assumed. If A = (0 1 then A" = <O 1 ) Therefore
AF — AR = (8 g , so for sufficiently small € the condition is satisfied

although the sequence (||A*||) is clearly unbounded.



Solutions for problems in the

9" International Mathematics Competition
for University Students

Warsaw, July 19 - July 25, 2002

Second Day

Problem 1. Compute the determinant of the n x n matrix A = [a;;],
(=)FL i i A,
a;j =
Y 2, if i=j.
Solution. Adding the second row to the first one, then adding the third row

to the second one, ..., adding the nth row to the (n — 1)th, the determinant
does not change and we have

2 -1 41 ... +£1 =F1 1 1 0 0o ... 0 O
-1 2 -1 ... F1 =1 0 1 1 0o ... 0 0
+1 -1 2 ... £1 =F1 0 0 1 1 ... 0 O
det(A) =| . ) . ) =1 ) ) ) .
F1 £1 F1 ... 2 -1 0 0 0 0o ... 1 1
+1 F1 +1 ... -1 2 +1 F1 +1 F1 ... -1 2

Now subtract the first column from the second, then subtract the result-
ing second column from the third, ..., and at last, subtract the (n — 1)th
column from the nth column. This way we have

1 00 0 0

010 ... 0 0
det(A)=|: : i . 1 i |=n+l

000 ... 1 0

0 0 O 0 n+1

Problem 2. Two hundred students participated in a mathematical con-
test. They had 6 problems to solve. It is known that each problem was
correctly solved by at least 120 participants. Prove that there must be two
participants such that every problem was solved by at least one of these two
students.

Solution. For each pair of students, consider the set of those problems which
was not solved by them. There exist (220) = 19900 sets; we have to prove
that at least one set is empty.



For each problem, there are at most 80 students who did not solve it.
From these students at most (820) = 3160 pairs can be selected, so the
problem can belong to at most 3160 sets. The 6 problems together can
belong to at most 6 - 3160 = 18960 sets.

Hence, at least 19900 — 18960 = 940 sets must be empty.
Problem 3. For each n > 1 let

Show that a,, - b, is an integer.

Solution. We prove by induction on n that a,/e and b,e are integers, we
prove this for n = 0 as well. (For n = 0, the term 0° in the definition of the
sequences must be replaced by 1.)

From the power series of €%, a, =e! =e and b, = e~ ! =1/e.

Suppose that for some n > 0, ag,a1,...,a, and by, by, ...b, are all multi-
pliers of e and 1/e, respectively. Then, by the binomial theorem,

S R DL k+1
o= 3 I 33 ()5 -

k=0 k=0 k=0 m=0
= .= am
m=0 m k=0 m=0 m

and similarly
k41 n+1 co k4 1)

E™ AT k™ " (n
=S ()= 3 () e = 2 (e
m=0 k=0 m=0
The numbers a1 and b,11 are expressed as linear combinations of the
previous elements with integer coefficients which finishes the proof.

Problem 4. In the tetrahedron OABC, let ZBOC = «, ZCOA = 3 and
ZAOB = . Let o be the angle between the faces OAB and OAC, and let
7 be the angle between the faces OBA and OBC. Prove that

¥ >[F-coS0+ - COST.

Solution. We can assume OA = OB = OC = 1. Intersect the unit sphere
with center O with the angle domains AOB, BOC and COA; the intersec-
tions are “slices” and their areas are %7, %a and % 0, respectively.



Now project the slices AOC and COB to the plane OAB. Denote by
C' the projection of vertex C, and denote by A" and B’ the reflections of
vertices A and B with center O, respectively. By the projection, OC’ < 1.

The projections of arcs AC' and BC' are segments of ellipses with long
axes AA’ and BB’ respectively. (The ellipses can be degenerate if o or 7
is right angle.) The two ellipses intersect each other in 4 points; both half
ellipses connecting A and A’ intersect both half ellipses connecting B and
B’. There exist no more intersection, because two different conics cannot
have more than 4 common points.

The signed areas of the projections of slices AOC and COB are %a-cos T
and %ﬂ -cos o, respectively. The statement says thet the sum of these signed
areas is less than the area of slice BOA.

There are three significantly different cases with respect to the signs
of coso and cos7 (see Figure). If both signs are positive (case (a)), then
the projections of slices OAC and OBC' are subsets of slice OBC without
common interior point, and they do not cover the whole slice OBC’; this
implies the statement. In cases (b) and (c) where at least one of the signs
is negative, projections with positive sign are subsets of the slice OBC, so
the statement is obvious again.

Problem 5. Let A be an n X n matrix with complex entries and suppose
that n > 1. Prove that

AA=1, < 35 € GL,(C) suchthat A=S5 .

(If A = [a;;] then A = [a;;], where @; is the complex conjugate of a;;;
GL,(C) denotes the set of all n x n invertible matrices with complex entries,
and I, is the identity matrix.)

Solution.  The direction < is trivial, since if A = Sg_l, then
AA =S5 .55 =1,

For the direction =, we must prove that there exists an invertible matrix
S such that AS = S.

Let w be an arbitrary complex number which is not 0. Choosing
S = wA +wl,, we have AS = A(WA + wl,) = wl, + wA = S. If S is
singular, then 1S = A — (w/w)I, is singular as well, so W/w is an eigen-
value of A. Since A has finitely many eigenvalues and w/w can be any

complex number on the unit circle, there exist such w that S is invertible.



Problem 6. Let f : R — R be a convex function whose gradient Vf =

<§Tf, ceey 88_f> exists at every point of R™ and satisfies the condition
1 Tn

AL >0 Vzi,x9 € R" ”Vf(.%l) — Vf(l'g)” < LHl’l — .%'2”
Prove that

V$1,$2 € R" HVf(CL‘l) - Vf(l‘g)Hz S L<Vf(:l/‘1) - Vf(l‘Q),l'l - $2>. (1)

In this formula (a,b) denotes the scalar product of the vectors a and b.

Solution. Let g(z) = f(x)— f(x1) —(V f(x1),x—2x1). It is obvious that ¢ has
the same properties. Moreover, g(x1) = Vg(x1) = 0 and, due to convexity,
g has 0 as the absolute minimum at x;. Next we prove that

o(r2) > 5= Vg )

Let yo = 29 — %HVg(a:Q)H and y(t) = yo + t(x2 — yo). Then

1
g(x2) = glyo) + /O (Vo(y(t)), w3 — o) dt =

1
= 9lo0) + (Vo). 22 = o) = [ (Valaz) = Valu(t).a2 = ) dt >
> ! 2 1 dt >
>0+ 7199l = [ [¥gte2) = Votu(e] - oo — il e >
1
> ¥ = Loz =l [ Llles = gl dt =

1 1 1
= EIIVg(:vz)II2 — Lljz2 — yoll2/0 tdt = EIIVg(xz)IIQ-

Substituting the definition of g into (2), we obtain

Flea) = Fn) = (V@) e = 1) > SV (@) = Vi)l
IV f(22) = Vf(@1)|* < 2L(V f(21), 21 — @2) + 2L(f(22) — f(21)).  (3)
Exchanging variables 1 and x2, we have

IV f(z2) = Vf(1)]|* < 2L(V f(w2), 22 — 1) + 2L(f (21) — f(22)).  (4)

The statement (1) is the average of (3) and (4).



10*" International Mathematical Competition for University Students
Cluj-Napoca, July 2003

Day 1
1. (a) Let aq,a9,... be a sequence of real numbers such that a; = 1 and a,4+1 > %an for all n.
Prove that the sequence
an

3\n—1
(3)
has a finite limit or tends to infinity. (10 points)
(b) Prove that for all a > 1 there exists a sequence aj, as, ... with the same properties such
that

(10 points)

. a . .
Solution. (a) Let b, = n 7- Then anq1 > %an is equivalent to b,11 > b,, thus the sequence

3\~

2

(by) is strictly increasing. Each increasing sequence has a finite limit or tends to infinity.
b) For all a > 1 there exists a sequence 1 = by < b < ... which converges to . Choosing

ay, = (%)n_l by, we obtain the required sequence (ay,).

2. Let aj,as...,as1 be non-zero elements of a field. We simultaneously replace each element with
the sum of the 50 remaining ones. In this way we get a sequence b; ..., bs1. If this new sequence is
a permutation of the original one, what can be the characteristic of the field? (The characteristic
of a field is p, if p is the smallest positive integer such that z +x + ...+ x = 0 for any element x

p
of the field. If there exists no such p, the characteristic is 0.) (20 points)
Solution. Let S = a1 +as + -+ + as1. Then by + by + --- + b5y = 505. Since by,bo, -+, b1 is a

permutation of ay, as, - -, a1, we get 50S = S, so 495 = 0. Assume that the characteristic of the
field is not equal to 7. Then 495 = 0 implies that S = 0. Therefore b; = —a; for : = 1,2,---,51.
On the other hand, b; = a,(;), where ¢ € S51. Therefore, if the characteristic is not 2, the sequence
aj,as,---,as; can be partitioned into pairs {a;, a@(i)} of additive inverses. But this is impossible,
since 51 is an odd number. It follows that the characteristic of the field is 7 or 2.

The characteristic can be either 2 or 7. For the case of 7, z;1 = ... = x51 = 1 is a possible
choice. For the case of 2, any elements can be chosen such that S = 0, since then b; = —a; = a;.

3. Let A be an n x n real matrix such that 34% = A% + A + I (I is the identity matrix). Show
that the sequence A* converges to an idempotent matrix. (A matrix B is called idempotent if
B? = B.) (20 points)

Solution. The minimal polynomial of A is a divisor of 322 — 22 — 2 — 1. This polynomial has three
different roots. This implies that A is diagonalizable: A = C~'DC where D is a diagonal matrix.
The eigenvalues of the matrices A and D are all roots of polynomial 323 — 22 — x — 1. One of the
three roots is 1, the remaining two roots have smaller absolute value than 1. Hence, the diagonal
elements of D*, which are the kth powers of the eigenvalues, tend to either 0 or 1 and the limit
M = lim D is idempotent. Then lim A*¥ = C~'MC is idempotent as well.

4. Determine the set of all pairs (a,b) of positive integers for which the set of positive integers
can be decomposed into two sets A and B such that a- A =b- B. (20 points)
Solution. Clearly a and b must be different since A and B are disjoint.



Let {a,b} be a solution and consider the sets A, B such that a- A =b- B. Denoting d = (a, b)
the greatest common divisor of @ and b, we have a = d-ay, b = d-by, (a1,b1) =1and a;-A =b;-B.
Thus {a1, b1} is a solution and it is enough to determine the solutions {a, b} with (a,b) = 1.

If 1€ Athena € a-A=05- B, thus b must be a divisor of a. Similarly, if 1 € B, then a is a
divisor of b. Therefore, in all solutions, one of numbers a, b is a divisor of the other one.

Now we prove that if n > 2, then (1,n) is a solution. For each positive integer k, let f(k)
be the largest non-negative integer for which n/(®|k. Then let A = {k : f(k)is odd} and
B ={k: f(k)is even}. This is a decomposition of all positive integers such that A =n - B.

5. Let g: [0,1] — R be a continuous function and let f,, : [0,1] — R be a sequence of functions
defined by fo(z) = g(z) and

Fasr(z) = %/0 fa)dt (€ (0,1, n=0,1,2,...).

Determine lim f,(z) for every z € (0,1]. (20 points)

B. We shall prove in two different ways that lim, . fn(z) = ¢(0) for every z € (0,1]. (The
second one is more lengthy but it tells us how to calculate f,, directly from g.)

Proof 1. First we prove our claim for non-decreasing g. In this case, by induction, one can
easily see that

1. each f, is non-decrasing as well, and

2. g(x) = folx) = fi(z) = fo(z) = ... 2 g(0)  (x € (0,1)).
Then (2) implies that there exists

hw) =l fuz) (o€ (0,1]).
n—oo
Clearly h is non-decreasing and ¢(0) < h(z) < f,(x) for any = € (0,1],n = 0,1,2,.... Therefore
to show that h(z) = ¢(0) for any = € (0, 1], it is enough to prove that h(1) cannot be greater than
9(0).
Suppose that h(1) > g(0). Then there exists a 0 < § < 1 such that k(1) > g(d). Using the
definition, (2) and (1) we get

1 ) 1
Faia(1) = / fult)dt < / olt)dt + /5 fu(t)dt < 59(8) + (1— 6) fu(1).

Hence
fr(1) = fr41(1) = 6(fa(1) — 9(d)) = 6(h(1) — g(d)) >0,

$0 fn(1) — —o0o, which is a contradiction.
Similarly, we can prove our claim for non-increasing continuous functions as well.
Now suppose that ¢ is an arbitrary continuous function on [0, 1]. Let

M(z) = sup g(¢), m(z) = inf g(¢) (x €[0,1))
te[0,x) t€(0,z]

Then on [0, 1] m is non-increasing, M is non-decreasing, both are continuous, m(z) < g(x) < M(z)
and M (0) = m(0) = ¢(0). Define the sequences of functions M, (x) and m,(x) in the same way
as fy, is defined but starting with My = M and mg = m.

Then one can easily see by induction that m,(z) < f,(z) < M, (x). By the first part of the
proof, lim, m,(z) = m(0) = ¢g(0) = M(0) = lim,, M,,(x) for any = € (0,1]. Therefore we must
have lim,, f,(x) = ¢(0).



Proof II. To make the notation clearer we shall denote the variable of f; by ;. By definition
(and Fubini theorem) we get that

1 Tntl q T2 1
fn+1(‘rn+1) = / / / / / CL'() dl’odl’l .dx,
$n+1 Tn-1

dl‘odl‘l PN dl‘n
9(xo) ————
Tn41 0<zo<z1<...<2p<Tp41 T1...Tn

/I”“ dxy ...dz, p
g(o) . | @To-
Lni1 zo<z1<..<xp<wpp1 L1---Tn

Therefore with the notation

dry...dz,
h b) =
() //a<x1<...<zn<b L1---Tn

and x = x,,41,t = xg we have

fori(x) = 1 /095 g(t)hy, (t, z)dt.

T

Using that h,,(a, b) is the same for any permutation of z1, ..., z, and the fact that the integral
is 0 on any hyperplanes (z; = x;) we get that

n! hy(a,b) = //Sx gy Lo Em / /dxl
- (ff)n:(log(b/a»“.

Jnti(z) = 1 /OgE g(t)wdt.

T n!

Therefore

Note that if g is constant then the definition gives f,, = ¢g. This implies on one hand that we
must have 1 )
x t n
L[ ezl
z Jo n!

and on the other hand that, by replacing g by g — ¢(0), we can suppose that g(0) = 0.
Let 2 € (0,1] and € > 0 be fixed. By continuity there exists a 0 < § < z and an M such that

lg(t)] < e on [0,6] and |g(t)] < M on [0,1] . Since

o (og(w/0))"

n—o0 n!

=0

there exists an ng sucht that log(z/9))"/n! < & whenever n > ng. Then, for any n > ng, we have

@l < 3 [ a0
[t s L [ dt

T n!
< 1/ MdHl/ Medt

x Jo n! x Js
< e+ Me.

Therefore lim,, f(z) =0 = g(0).



6. Let f(2) = apz™+an_12""*+...+ a1z +ap be a polynomial with real coefficients. Prove that
if all roots of f lie in the left half-plane {z € C: Re z < 0} then

Ar0k+3 < Ak+10k+2

holds for every k =0,1,...,n — 3. (20 points)
Solution. The polynomial f is a product of linear and quadratic factors, f(z) = [[,(kiz + 1) -

H]. (pjz®+qjz+rj), with k;, l;,pj, qj,7; € R. Since all roots are in the left half-plane, for each i, k;
and [; are of the same sign, and for each j, p;,q;,r; are of the same sign, too. Hence, multiplying
f by —1 if necessary, the roots of f don’t change and f becomes the polynomial with all positive
coefficients.

For the simplicity, we extend the sequence of coefficients by an4+1 = an42 = ... = 0 and
a_1 =a_o = ... =0 and prove the same statement for —1 < k < n — 2 by induction.

For n < 2 the statement is obvious: ag41 and ag4o are positive and at least one of aj_; and
ap+s3 is 0; hence, agy1ak+2 > agagss = 0.

Now assume that n > 3 and the statement is true for all smaller values of n. Take a divisor of
f(z) which has the form 22 + pz + ¢ where p and ¢ are positive real numbers. (Such a divisor can
be obtained from a conjugate pair of roots or two real roots.) Then we can write

f(2) = (2 +pz+qQ)(byoz" 24+ ...+ b1z +by) = (2% +pz + q)g(x). (1)

The roots polynomial ¢g(z) are in the left half-plane, so we have byi1bx12 < brpbgys for all —1 <
k < n — 4. Defining b, 1 = b, = ... =0and b_; = b_o = ... = 0 as well, we also have
br+1bk+2 < bpb4s for all integer k.

Now we prove ag410k+2 > aragt+s. If k= —1 or k =n — 2 then this is obvious since a+1ak42
is positive and agak4+3 = 0. Thus, assume 0 < k < n — 3. By an easy computation,

Ap4+10k4+2 — ARAK43 =

= (qbr+1 + pbi, + bp—1)(qbry2 + Pbry1 + br) — (qbr + Pbr—1 + br—2)(qbr13 + Pbrt2 + bpt1) =
= (br—1bk — bi—2bi+1) + (b — br—2bkt2) + q(br—1bkt2 — br—2bji3)+
+0% (bbrt1 — br—1bk+2) + > (Dr41brta — bibrgs) + pa(biy — be—1bits).

We prove that all the six terms are non-negative and at least one is positive. Term p?(bpbsy1 —
bi_1bx12) is positive since 0 < k < n—3. Also terms by, _1bg — bx_2bs+1 and ¢ (by1bpro — brbri3)
are non-negative by the induction hypothesis.

To check the sign of p(b — by_oby42) consider

br—1 (b3 — b_obrs2) = by_o(bxbrr1 — bx_1brr2) + br(bg_1bx — bx_obpr1) > 0.

If b1 > 0 we can divide by it to obtain bi —br_2bk12 > 0. Otherwise, if by_1 = 0, either by_o =0
or biyo = 0 and thus bi —bg_obgyo = b% > 0. Therefore, p(b% —bp—2bk42) > 0 for all k. Similarly,
pq(b7,y — br—1brys) > 0.

The sign of q(bx—1bg42 — br—2bk43) can be checked in a similar way. Consider

brt+1(br—1br42 — bp—2br13) = br—1(brt1brt2 — bibrt3) + brys(be—1bx — bp—2br41) > 0.

If bpy1 > 0, we can divide by it. Otherwise either by_o = 0 or bx43 = 0. In all cases, we obtain
br—1bgt2 — bp_2bry3 > 0.
Now the signs of all terms are checked and the proof is complete.
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Day 2

1. Let A and B be n x n real matrices such that AB + A+ B = 0. Prove that AB = BA.

Solution. Since (A+1)(B+1) = AB+ A+ B+1 =1 (I is the identity matrix), matrices
A+ 1 and B + I are inverses of each other. Then (A+I)(B+ 1) = (B+1)(A+I) and
AB + BA.

2. Evaluate the limit

2T :.om
t
im [ 22 lgt (m,neN).
z—0+ [ tr
. sint | . . . sint
Solution. We use the fact that — decreasing in the interval (0, 7) and thg&() — = 1.
sin 2x sint

For all z € (0,%) and t € [z, 2x] we have = 1, thus

2

sin2z\™ [ ¢m 2 gin™ ¢ 2z ym
— < dt < —dt,
2 o ) T otn
2z tm 2
/ —dt = xm”H/ u™ " du.
T t 1

) tends to 1. If m —n + 1 < 0, the limit of 2™ ™! is infinity; if

sin 2x

The factor (

2x
m—n-+1>0then 0. If m —n+1 =0 then 2™ "H! ff u™ "du = In 2. Hence,

2z my 0, m>mn
sin
lim dt=<¢In2, n—m=1.
z—040 tn
x +oo, n—m > 1.

3. Let A be a closed subset of R” and let B be the set of all those points b € R™ for which
there exists exactly one point ag € A such that

—b| = inf |a — b|.
|ao —b] = inf |a —b|
Prove that B is dense in R"; that is, the closure of B is R".

Solution. Let by ¢ A (otherwise by € A C B), o = in£ |a—bg|. The intersection of the ball
ac

of radius ¢+ 1 with centre by with set A is compact and there exists ag € A: |ag — by| = o.

1



Denote by B,(a) = {z € R": |r —a| <r} and IB,(a) = {x € R": |x —a| = r} the
ball and the sphere of center a and radius r, respectively.

If ag is not the unique nearest point then for any point a on the open line segment (ag, by)
we have Bj,_q,|(a) C B,(by) and 0Bjq_q|(a) () OB,(bo) = {ao}, therefore (ag,by) C B and
by is an accumulation point of set B.

4. Find all positive integers n for which there exists a family F of three-element subsets
of S ={1,2,...,n} satisfying the following two conditions:

(i) for any two different elements a,b € S, there exists exactly one A € F containing
both a, b;

(i) if a,b,c,z,y, z are elements of S such that if {a,b,x},{a,c,y},{b,¢c,z} € F, then
{z,y,2} € F.

Solution. The condition (i) of the problem allows us to define a (well-defined) operation
x on the set S given by

a* b= cif and only if {a,b,c} € F, where a # b.

We note that this operation is still not defined completely (we need to define a * a), but
nevertheless let us investigate its features. At first, due to (i), for a # b the operation
obviously satisfies the following three conditions:
(a) a #axb#b;
(b) axb="bxa;
(c) ax(axb)=0b.
What does the condition (ii) give? It claims that
() z*x(axc)=xxy=z=bxc=(xxa)*c
for any three different x,a,c, i.e. that the operation is associative if the arguments are
different. Now we can complete the definition of *. In order to save associativity for non-
different arguments, i.e. to make b = ax (a*b) = (axa)*b hold, we will add to S an extra
element, call it 0, and define
(d)axa=0and ax0=0%xa=a.
Now it is easy to check that, for any a,b,c € SU{0}, (a),(b),(c) and (d), still hold, and
(e)axbxc:=(axb)xc=ax(bxc).
We have thus obtained that (S U {0}, %) has the structure of a finite Abelian group,
whose elements are all of order two. Since the order of every such group is a power of 2,
we conclude that [SU {0} =n+1=2" and n = 2™ — 1 for some integer m > 1.

Given n = 2™ —1, according to what we have proven till now, we will construct a family
of three-element subsets of S satisfying (i) and (ii). Let us define the operation * in the
following manner:

if a =ag+2a1+...+2" a1 and b = by + 2by + ...+ 2™ b, 4, where a;, b;
are either 0 or 1, we put a * b = |ag — bo| + 2|a; — by + ... + 2™ Ham_1 — bu_1].



It is simple to check that this * satisfies (a),(b),(c) and (e’). Therefore, if we include in
F all possible triples a, b, a x b, the condition (i) follows from (a),(b) and (c), whereas the
condition (ii) follows from (e’)

The answer is: n = 2™ — 1.

5. (a) Show that for each function f: Q x Q — R there exists a function g : Q — R such

that f(z,y) < g(z) + g(y) for all z,y € Q.
(b) Find a function f : R x R — R for which there is no function g : R — R such that

f(z,y) < g(x) + g(y) for all 7,y € R.

Solution. a) Let ¢ : Q@ — N be a bijection. Define g(z) = max{|f(s,t)| : s,t € Q, ¢(s) <

p(x), o(t) < p(x)}. We have f(z,y) < max{g(z),g(y)} < g(z) + g(y).
b) We shall show that the function defined by f(x,y) = — for x # y and f(x,z) =0

eyl
satisfies the problem. If, by contradiction there exists a function g as above, it results, that

9(y) > m — f(x) for z,y € R, = # y; one obtains that for each = € R, %13’:12 g(y) = oc.

We show, that there exists no function ¢ having an infinite limit at each point of a bounded
and closed interval [a, b].

For each k € NT denote Ay = {z € [a,b] : |g(x)| < k}.

We have obviously [a,b] = U2, Ax. The set [a,b] is uncountable, so at least one of the
sets Ay is infinite (in fact uncountable). This set Ax being infinite, there exists a sequence
in A having distinct terms. This sequence will contain a convergent subsequence (z,)nen
convergent to a point x € [a, b]. But ilirglg g(y) = oo implies that g(x,) — oo, a contradiction

because |g(z,)| < k, Vn € N.

Second solution for part (b). Let S be the set of all sequences of real numbers. The
cardinality of S is | S| = [R| = 2% = 2% — |R|. Thus, there exists a bijection h : R — S.
Now define the function f in the following way. For any real x and positive integer n,
let f(x,n) be the nth element of sequence h(z). If y is not a positive integer then let
f(z,y) = 0. We prove that this function has the required property.

Let g be an arbitrary R — R function. We show that there exist real numbers z,y
such that f(x,y) > g(z) + g(y). Consider the sequence (n+ ¢g(n))2,. This sequence is an
element of S, thus (n+ g¢(n))s, = h(z) for a certain real . Then for an arbitrary positive
integer n, f(z,n) is the nth element, f(x,n) =n + g(n). Choosing n such that n > g(x),
we obtain f(z,n) =n+ g(n) > g(x) + g(n).

6. Let (an)nen be the sequence defined by

n
1 ag
ap =1, apy1 = g
n

Find the limit



if it exists.

Solution. Consider the generating function f(z) = >"’7  ja,z™. By induction 0 < a,, <1,
thus this series is absolutely convergent for |x| < 1, f(0) = 1 and the function is positive
in the interval [0,1). The goal is to compute f(3).

By the recurrence formula,

fl(x) = Z(n—i—laon _Zzn—k+2 =

n=0 k=0
I W L) M=
prd n—k—i—? m:0m+2
Then
f/ oo (L’erl
In f(x) =In f(z) —In f(0 / m—i—l)(m—i—Z):
o0 m+1 JZerl 1 o0 xm+1 1 1
= =1 1—— — =1 1——]1
:O(mﬂ) <m+2>> +< x);:o(mH) +< x)nl—x’

1
lnf(§> =1—1n2,

1
and thus f(§) ==
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Solutions for problems on Day 1

Problem 1. Let S be an infinite set of real numbers such that |s; + s2 + -+ + sg| < 1 for every finite subset
{s1,82,...,s,} C S. Show that S is countable. [20 points]

Solution. Let S, = SN (%, 00) for any integer n > 0. It follows from the inequality that |Sy| < n. Similarly, if we
define S_, = 5N (—o0, —2), then [S_,| < n. Any nonzero z € S is an element of some S,, or S_,, because there

exists an n such that z > %, orz < —%. Then S C {0}U U (S, US_,), S is a countable union of finite sets, and
nenN
hence countable.

Problem 2. Let P(x) = 22 — 1. How many distinct real solutions does the following equation have:

P(P(...(P(z))...)) =07  [20 points]
2004

Solution. Put P, (x) = P(P(...(P(x))...)). As Pi(z) > —1, for each x € R, it must be that P,;1(z) = Pi(P,(z)) >
——
n

—1, for each n € N and each x € R. Therefore the equation P,(x) = a, where a < —1 has no real solutions.
Let us prove that the equation P,(xz) = a, where a > 0, has exactly two distinct real solutions. To this end we
use mathematical induction by n. If n = 1 the assertion follows directly. Assuming that the assertion holds for a
n € N we prove that it must also hold for n + 1. Since P,y1(z) = a is equivalent to P;(P,(x)) = a, we conclude
that P,(z) = va+ 1 or P,(z) = —va + 1. The equation P,(z) = v/a + 1, as v/a + 1 > 1, has exactly two distinct
real solutions by the inductive hypothesis, while the equation P,(z) = —+v/a + 1 has no real solutions (because
—+va+1 < —1). Hence the equation P,11(x) = a, has exactly two distinct real solutions.

Let us prove now that the equation P,(z) = 0 has exactly n + 1 distinct real solutions. Again we use
mathematical induction. If n = 1 the solutions are = +1, and if n = 2 the solutions are z = 0 and =z = +/2,
so in both cases the number of solutions is equal to n + 1. Suppose that the assertion holds for some n € N.
Note that P,i2(z) = Po(Pu(7)) = P2(z)(P2(x) — 2), so the set of all real solutions of the equation P, 1o = 0 is
exactly the union of the sets of all real solutions of the equations P,(z) = 0, P,(z) = v/2 and P,(z) = —/2.
By the inductive hypothesis the equation P,(x) = 0 has exactly n + 1 distinct real solutions, while the equations
P, (x) = v/2 and P,(z) = —/2 have two and no distinct real solutions, respectively. Hence, the sets above being
pairwise disjoint, the equation P,42(z) = 0 has exactly n + 3 distinct real solutions. Thus we have proved that,
for each n € N, the equation P,(x) = 0 has exactly n + 1 distinct real solutions, so the answer to the question
posed in this problem is 2005.

n
Problem 3. Let S, be the set of all sums ) x, where n > 2, 0 < z1,72,...,2, < § and
k=1

n
Z sinxp =1.
k=1
a) Show that S, is an interval.  [10 points]
b) Let I,, be the length of S,,. Find lim [,. [10 points]
n—oo
Solution. (a) Equivalently, we consider the set
Y = {y = (ylay27 7yn)‘ 0<wyi,y2,-s¥n <1, 1 +y2+ ...+ yn = 1} C R"
and the image f(Y) of Y under
fly) = arcsiny; + arcsinys + ... + arcsin y,,.

Note that f(Y) = S,. Since Y is a connected subspace of R™ and f is a continuous function, the image f(Y) is
also connected, and we know that the only connected subspaces of R are intervals. Thus S,, is an interval.



(b) We prove that

1 T
n ar081n—§a?1+w2+...+:cn§§.
n

Since the graph of sinz is concave down for = € [0, 5], the chord joining the points (0,0) and (7, 1) lies below the
graph. Hence

2
T <sing for all x € [0, E]
T 2

and we can deduce the right-hand side of the claim:

—(x1+x2 + ... + ) <sinzxy +sinzy + ... +sinx, = 1.
T

The value 1 can be reached choosing 1 = § and 29 = --- = 2, = 0.

The left-hand side follows immediately from Jensen’s inequality, since sinz is concave down for = € [0, 5

5] and
T1+To+...+Tn s
0< o <3

1 sinz| +sinzo + ... +sinz, < r1+x9+ ...+,
= sin .

n_ n B n
Equality holds if 1 = --- = z,, = arcsin %

Now we have computed the minimum and maximum of interval S,,; we can conclude that S,, = [n arcsin %, Z1.
Thus [,, = Z — n arcsin l and
arcsin(l/n) 7

. T
S T A R

Problem 4. Suppose n > 4 and let M be a finite set of n points in R3, no four of which lie in a plane. Assume
that the points can be coloured black or white so that any sphere which intersects M in at least four points has
the property that exactly half of the points in the intersection of M and the sphere are white. Prove that all of
the points in M lie on one sphere. [20 points]

1, if X is white
1, if X is black
for any sphere S which passes through at least 4 points of M. For any 3 given points A, B, C in M, denote by
S (A, B, C) the set of all spheres which pass through A, B, C' and at least one other point of M and by |S (4, B, C)|
the number of these spheres. Also, denote by ) the sum )y, f (X).

We have
0= D IX)=(SABOI-D((A)+F(B)+F(C)+)] 1)

SeS(A,B,C) XeS

Solution. Define f: M — {-1,1}, f(X) = . The given condition becomes } g f (X) =0

since the values of A, B, C appear |S (A, B, C)| times each and the other values appear only once.

If there are 3 points A, B, C such that |S (A, B,C)| = 1, the proof is finished.

If |S(A, B,C)| > 1 for any distinct points A, B, C' in M, we will prove at first that ) = 0.

Assume that Y > 0. From (1) it follows that f(A) + f(B) + f(C) < 0 and summing by all (%) possible
choices of (A4, B,C) we obtain that (3) > < 0, which means > < 0 (contradicts the starting assumption). The
same reasoning is applied when assuming > < 0.

Now, from ) = 0 and (1), it follows that f(A) + f(B) + f(C) = 0 for any distinct points A, B, C' in M.
Taking another point D € M, the following equalities take place

FA)+[(B)+f(C)=0
f(A)+F(B)+f(D)=0
F(A)+1(C)+f(D)=0
FB)+[(C)+f(D)=0

which easily leads to f (A) = f(B) = f(C) = f (D) = 0, which contradicts the definition of f.

Problem 5. Let X be a set of (2k 4) + 1 real numbers, k > 2. Prove that there exists a monotone sequence
{z;}%_, C X such that
|Tiv1 — 21| = 2|z — 21

foralli=2, ..., k—1. [20 points]



Solution. We prove a more general statement:
Lemma. Let k,1 > 2, let X be a set of (kﬁ_4) +1 real numbers. Then either X contains an increasing sequence

2
{x;}¥_, € X of length k and
|xip1 —x1| > 2| — x| Vi=2,...,k—1,

or X contains a decreasing sequence {z;}!_; C X of length [ and
‘l’i.‘.l —1'1‘ Z 2‘1’1 —.%'1‘ Vi = 2,...,[— 1.

Proof of the lemma. We use induction on k + . In case k = 2 or [ = 2 the lemma is obviously true.
Now let us make the induction step. Let m be the minimal element of X, M be its maximal element. Let

M M
mt 1, XM:{xEX:x>m—; }.

Xp={reX:z<

k+l—4) _ (k+(l—1)—4) + ((k—1)+l—4

Since ( b e (h—1)—2 ), we can see that either

itz (gl ) oo b= (TR o

In the first case we apply the inductive assumption to X,, and either obtain a decreasing sequence of length [
with the required properties (in this case the inductive step is made), or obtain an increasing sequence {xi}f;f -
X, of length k£ — 1. Then we note that the sequence {x1,z2,...,25-1, M} C X has length k and all the required
properties.

In the case |Xp/| > (k+(l_1)_4) 4+ 1 the inductive step is made in a similar way. Thus the lemma is proved.

k—2
The reader may check that the number (kﬂ;l) + 1 cannot be smaller in the lemma.

Problem 6. For every complex number z ¢ {0, 1} define

f(z) =) (logz)~",

where the sum is over all branches of the complex logarithm.

a) Show that there are two polynomials P and @ such that f(z) = P(z)/Q(z) for all z € C\ {0,1}. [10
points]

b) Show that for all z € C\ {0,1}

224+4z+1

J(2) == 6(z —1)4

[10 points|

Solution 1. It is clear that the left hand side is well defined and independent of the order of summation, because
we have a sum of the type > n~%, and the branches of the logarithms do not matter because all branches are taken.
It is easy to check that the convergence is locally uniform on C\ {0, 1}; therefore, f is a holomorphic function on
the complex plane, except possibly for isolated singularities at 0 and 1. (We omit the detailed estimates here.)

The function log has its only (simple) zero at z = 1, so f has a quadruple pole at z = 1.

Now we investigate the behavior near infinity. We have Re(log(z)) = log|z|, hence (with ¢ := log |z|)

1> (logz)™*| < Y [logz|™* = (log|z| + 2min)~* + O(1)
= /OO (¢ + 2miz) "t dz 4+ O(1)

—00

= ¢* /00 (1 + 2miz/c)~dx 4+ O(1)

= c—3/ (1+2mit) ™ dt + O(1)

— 00

IN

a(log|z))~*

for a universal constant a.. Therefore, the infinite sum tends to 0 as |z| — co. In particular, the isolated singularity
at 0o is not essential, but rather has (at least a single) zero at oc.



The remaining singularity is at z = 0. It is readily verified that f(1/z) = f(z) (because log(1/z) = —log(z));
this implies that f has a zero at z = 0.

We conclude that the infinite sum is holomorphic on C with at most one pole and without an essential singularity
at 0o, so it is a rational function, i.e. we can write f(z) = P(z)/Q(z) for some polynomials P and @) which we
may as well assume coprime. This solves the first part.

Since f has a quadruple pole at z = 1 and no other poles, we have Q(z) = (z — 1)* up to a constant factor
which we can as well set equal to 1, and this determines P uniquely. Since f(z) — 0 as z — oo, the degree of P
is at most 3, and since P(0) = 0, it follows that P(z) = z(az? 4+ bz + ¢) for yet undetermined complex constants
a,b,c.

There are a number of ways to compute the coefficients a, b, ¢, which turn out to be a = ¢ = 1/6, b = 2/3.
Since f(z) = f(1/z), it follows easily that a = ¢. Moreover, the fact 21_)11%(2 —1D*f(2) =1 impliesa +b+c =1

(this fact follows from the observation that at z = 1, all summands cancel pairwise, except the principal branch
which contributes a quadruple pole). Finally, we can calculate

JEn=at on =t D st (Yo Y ) =

nodd n>1lodd n>1 n>leven

This implies a — b+ ¢ = —1/3. These three equations easily yield a, b, c.
Moreover, the function f satisfies f(z) + f(—z) = 16f(2?): this follows because the branches of log(z?) =
log((—z)?) are the numbers 2log(z) and 2log(—z). This observation supplies the two equations b = 4a and a = c,
which can be used instead of some of the considerations above.
Another way is to compute g(z) = >_ m first. In the same way, g(2)

_ _dz
T (-1

can be computed from lini(z —1)%2g(z) = 1; it is d = 1. Then the exponent 2 in the denominator can be increased
Z—

The unknown coefficient d

by taking derivatives (see Solution 2). Similarly, one can start with exponent 3 directly.
A more straightforward, though tedious way to find the constants is computing the first four terms of the
Laurent series of f around z = 1. For that branch of the logarithm which vanishes at 1, for all |w| < % we have

w?  w? wt

log(l+w) =w— -+ 5 77 O(jwl);
after some computation, one can obtain
1 —4 G
—_— = 2 — — O(1).
og(1 + w)? w20 gw T pwT (1)
The remaining branches of logarithm give a bounded function. So
7 1
fA4w) =w 4202+ Ew_Q + éw_l
(the remainder vanishes) and

B 142z — 1)+ Lz =12+ L(z—1)3 2P+ 424 1)
J2) = (z— 1)} T 6(z—1)

Solution 2. ;jFrom the well-known series for the cotangent function,

ol 1 { 1w
I e
anookz_:Nw+27rz’.k 29"

and .
2. lo2g z

N .
1 i itlogz 1 e 1 1 1
I - leglr_te TR .
Ninookz_:Nlonger.k 2T Tt T2t
Taking derivatives we obtain
3 R SR S S S
(logz)? 2 z2-1)  (z2—-1)%
Z 1 . E z ,7 Z(Z+1)
(logz)? 2 \(z—12)  2(z—1)3

1z (z2z+1) 222 +4z+1)
2 '<2<z—1>3> IECE

and

(logz)* 3
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Solutions for problems on Day 2

1. Let A be a real 4 x 2 matrix and B be a real 2 x 4 matrix such that

1 0 -1 0
o 1 0 -1
AB -1 0 1 0
0o -1 0 1

Find BA.  [20 points]

Solution. Let A = (ﬁl) and B = (Bl Bz) where Ay, Ay, B1, By are 2 x 2 matrices. Then
2

1 0 -1 0
0 1 0 —1|_ (A _ (AB1 AiBs
-1 0 1 0 _(Ag) (B BZ)—(AQB1 AQBQ)
0 -1 0 1

therefore, AlBl = AQBQ = IQ and AlBQ = AQBl = __[2. Then Bl = Al_l, BQ = —Al_l and A2 = BQ_I =
—A;. Finally,

A 2 0
BA= (B, By) (AQ) Bi1A; + ByAy =21, = <o 2)

2. Let f,g: [a,b] — [0,00) be continuous and non-decreasing functions such that for each = € [a,b] we

have /: \/mdt _ /am S

andf V() dt = f Vg(t)dt.
Prove thatf \/1—|—f dt>fb\/l+gt dt. [20 points]

Solution. Let F(z) = [7\/f(t)dt and G(z) = [ \/g(t)dt. The functions F,G are convex, F(a) =0 =
G(a) and F(b) = G(b) by the hypothe51s We are Supposed to show that

/b\/1+(F’(t))zdtz/b\/1+(G’(t))2dt

i.e. The length ot the graph of F'is > the length of the graph of G. This is clear since both functions are
convex, their graphs have common ends and the graph of F' is below the graph of G — the length of the
graph of F'is the least upper bound of the lengths of the graphs of piecewise linear functions whose values
at the points of non-differentiability coincide with the values of F'| if a convex polygon P; is contained in
a polygon P, then the perimeter of P; is < the perimeter of P.

3. Let D be the closed unit disk in the plane, and let py, po, ..., p, be fixed points in D. Show that there
exists a point p in D such that the sum of the distances of p to each of py,ps,...,p, is greater than or
equal to 1. [20 points]

Solution. considering as vectors, thoose p to be the unit vector which points into the opposite direction as
n
> pi- Then, by the triangle inequality,

i=1

:n—|—

n
Z lp—pil =
i=1

n
np — Z Di
i=1

n
Zpi >n
i=1




4. Forn > 1 let M be an n x n complex matrix with distinct eigenvalues A1, o, ..., A\x, with multiplicities
my, Ma, . .., my, respectively. Consider the linear operator Ly, defined by Ly (X) = MX + X M7, for any
complex n x n matrix X. Find its eigenvalues and their multiplicities. (MT denotes the transpose of M;
that is, if M = (my,), then M7 = (m;;).)  [20 points]

Solution. We first solve the problem for the special case when the eigenvalues of M are distinct and all sums
A+ Ag are different. Let A, and A, be two eigenvalues of M and ., U eigenvectors associated to them, i.e.
Mu; = A\; for j = r,s. We have M, ()" +0,.(0s) T MT = (Mu,)(0s)T +0, (Mvs) = A\ 0, (Us) T 4+ N0, (T5) 7,
so U, (Us) is an eigenmatrix of Ly, with the eigenvalue A, + Ag.

Notice that if A, # A, then vectors @, are linearly independent and matrices @(w)? and (@) are
linearly independent, too. This implies that the eigenvalue A\, 4+ A, is double if r # s.

The map Lj,; maps n?>~dimensional linear space into itself, so it has at most n? eigenvalues. We already
found n? eigenvalues, so there exists no more and the problem is solved for the special case.

In the general case, matrix M is a limit of matrices My, M, ... such that each of them belongs to the
special case above. By the continuity of the eigenvalues we obtain that the eigenvalues of L, are

e 2)\, with multiplicity m? (r =1,...,k);
e )\, + Ay with multiplicity 2m,ms (1 <r < s < k).

(It can happen that the sums A, + A4 are not pairwise different; for those multiple values the multiplicities
should be summed up.)

5. Prove that

11
dz d

// Ty < 1. [20 points]

o Jo v+ |Iny| -1

Solution 1. First we use the inequality
1> |Inx|, z € (0,1],

which follows from

(@ =1)],_, = |mal[,_, =0,

z=1

1 1
(7' —1) = = < = |Inz|’, z € (0,1].

/1/1 dx dy // dxdy // dxdy
o Jo T g =1 =y Jy Thoal+ [yl TGz - )]

Substituting y = u/x, we obtain

dx dy ! ldx
= |lnu| =1
o @y Jo \U. |1nu| |lnu]

1

Therefore

Solution 2. Substituting s =27 — 1 and u = s — Iny,

1 1 o0 [e’e] sS—u [e%¢] u S —u
/ / du dy = / / e—duds = / (/ 6—ds) 6—alsdu.
o Jo x4 |Iny| -1 o Js (s+1)%u 0 o (s+1)? u

Since the function G

+1)2 is convex,

SO

1 1 o0 u —u 1 o) [e'e]
[t e [ (o) S ([t [T =1
o Jo ™4+ |lny|—1 o 2 \(u+1)2 U 2\ Jy (u+1)2 0



6. For n > 0 define matrices A,, and B, as follows: Ay = By = (1) and for every n > 0

. An—l An—l _ An—l An—l
An B (An—l Bn—l) and Bn B (An—l 0 ) '
Denote the sum of all elements of a matrix M by S(M). Prove that S(A¥™1) = S(A?™!) for every n, k > 1.
[20 points|

Solution. The quantity S(A¥~1) has a special combinatorical meaning. Consider an n x k table filled with
0’s and 1’s such that no 2 x 2 contains only 1’s. Denote the number of such fillings by F),x. The filling of
each row of the table corresponds to some integer ranging from 0 to 2" — 1 written in base 2. F,,; equals
to the number of k-tuples of integers such that every two consecutive integers correspond to the filling of
n x 2 table without 2 x 2 squares filled with 1’s.

Consider binary expansions of integers ¢ and j 4,41 ...% and j,J,_1...J1. There are two cases:

1. If 7,5, = 0 then ¢ and j can be consecutive iff 7, 7 ...4; and j,_1 ... 1 can be consequtive.

2. If i, = j, = 1 then 7 and j can be consecutive iff i, 17,1 =0 and 4,,_o...7; and j,_5...7; can be
consecutive.

Hence i and j can be consecutive iff (i + 1, j + 1)-th entry of A,, is 1. Denoting this entry by a; ;, the sum
S(AF-1y =21 212:;01 iyiy@inis * * * Wiy, counts the possible fillings. Therefore Fy;, = S(Af1).

i1=0
The the obvious statement F,, = F}, completes the proof.
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Problem 1. Let A be the n x n matrix, whose (i, 7)™ entry is ¢ + j for all i, 5 = 1,2,...,n. What is the
rank of A?

Solution 1. For n = 1 the rank is 1. Now assume n > 2. Since A = (i)?,_; + (j)';=1, matrix A is the sum
of two matrixes of rank 1. Therefore, the rank of A is at most 2. The determinant of the top-left 2 x 2

minor is —1, so the rank is exactly 2.
Therefore, the rank of A is 1 for n = 1 and 2 for n > 2.

Solution 2. Consider the case n > 2. For i = n,n —1,...,2, subtract the (i — 1) row from the n'® row.
Then subtract the second row from all lower rows.

9 3 ... n+l 23 ... n+l } ? g‘
3 4 ..o n+2 11 ... 1

rank ) ] ) =rank | . ) ) —rank |0 0 0 =2
n+1 n+2 ... 2n 1 1 ... 1 00 . 0

Problem 2. For an integer n > 3 consider the sets
Sp = A{(x1,29,...,2,) : Vi x; € {0,1,2}}

A, = {(331’9527 ce >$n) €85, :Vi<n-—2 ‘{xi>$i+17$i+2}‘ £ 1}

and
B, ={(z1,22,...,2,) €5, :Vi<n—1(r; =xi41 = 1; #0)}.

Prove that |A,11] = 3| Byl
(|A| denotes the number of elements of the set A.)
Solution 1. Extend the definitions also for n = 1,2. Consider the following sets

A;L:{(‘Thx%"‘?xn)eAn:In—lzxn}a AZ:ATL\A’/H,?

B;L:{(xlvx%---wxn)eBn:xn:O}, BZ:Bn\B;

and denote a,, = |A,|, a), = |ALl|, al =|A|, b, = |By|, b, = |B,|, b, = |B/].
It is easy to observe the following relations between the a—sequences

!/ "
anp = a,+a,
/ _ "
a’n-l—l - an )
" _ / "
apyy = 2a, + 2a,

which lead to a,y1 = 2a,, + 2a,_1.
For the b—sequences we have the same relations

b, = U, +b
b;H—l - b/r,L )
W, = 2b,+2b)
therefore b, 1 = 2b,, + 2b,_1.
By computing the first values of (a,) and (b,) we obtain

ap =3, aa =9, a3 =24
b1:3, b2:8



which leads to

a9 = 3b1

as = 3b2
Now, reasoning by induction, it is easy to prove that a, ., = 3b, for every n > 1.
Solution 2. Regarding x; to be elements of Z3 and working “modulo 3”7, we have that

(1,29, ... x,) EAy= (11 + Lo+ 1,... ;2 + 1) €A, (21 4+2,20+2,...,2,+2) € A,

which means that 1/3 of the elements of A,, start with 0. We establish a bijection between the subset of
all the vectors in A, 1 which start with 0 and the set B,, by

(0,21, 22, ..., 2Tp) € Aps1 — (Y1,%2,---,Yn) € Bn

Y1 =T1,Y2 = T2 —T1,Y3s = T3 — L2, Yn = Tpn — Tp—1

(if yx = yr41 = 0 then xp — 251 = xp41 — xx = 0 (where zg = 0), which gives x;_1 = x} = 241, which
is not possible because of the definition of the sets A,; therefore, the definition of the above function is
correct).

The inverse is defined by

<y17y2,-..,yn) GBnl—>(O,$1,$2,...,$n> 6An+1
T =Y, T2 =Y1 +Y2,..., T =Y1 + Y2+ -+ Yn

Problem 3. Let f : R — [0,00) be a continuously differentiable function. Prove that

/Olf?’(x)dx—fQ(O)/Olf( dx<or£a§1‘f (/f da:).

Solution 1. Let M = Jfax |f/(x)]. By the inequality —M < f"(x) < M, z € [0, 1] it follows:

—Mf(x) < f(x)f (x) <Mf(x), xe€]0,1].
By integration
M [ JO@<3PE@ =3P <M [ faa e
—Mf(x)/o f)dt < §f (x)—if (0) f (x) ng(x)/O f)dt, x €[0,1].
Integrating the last inequality on [0, 1] it follows that
(fo d:L‘) <f0 3 (x dx—f2 fo dx<M<f0 x>2<:)
Lf3 (z) o — f2(0) [ f dq;)<M(fO dm) .

Solution 2. Let M = max ]f’( )| and F(x) = —fxlf; then F' = f, F(0) = —folf and F(1) = 0.

/Olf?’:/olfz-F’:[sz]é—/Ol(fg)’Fz

— P()F(1) - f2(0)F(0) / 2FFf = f2(0) /O ;o /0 2F S

0

Integrating by parts,

Then

[ r@a-ro [ rwal-

2

/ ! / ! _ . 211 < 1)
< [ernpi<m [arr = —ar ([ 1)




Problem 4. Find all polynomials P(r) = a,z" +a, 12" ' + ...+ a1x +ag (a, # 0) satisfying the following
two conditions:

(7) (ag,ai,...,a,) is a permutation of the numbers (0,1, ..., n)
and

(77) all roots of P(x) are rational numbers.

Solution 1. Note that P(z) does not have any positive root because P(z) > 0 for every = > 0. Thus, we can
represent them in the form —a;, i = 1,2,...,n, where a; > 0. If ag # 0 then thereisa k € N;1 < k <n-—1,
with a; = 0, so using Viete’s formulae we get
ay,
Q0. Oy 1Oy + Q2 Oy 101 F oo+ Q1 Qg2 Q10 = — = 0,
n
which is impossible because the left side of the equality is positive. Therefore ag = 0 and one of the roots of
the polynomial, say a,,, must be equal to zero. Consider the polynomial Q(z) = a,2" ' +a, 12" *+...+a;.

It has zeros —a;, i =1,2,...,n — 1. Again, Viete’s formulae, for n > 3, yield:
a109...00p_1 = ﬂ (1)
a2

Q1 Qy...0y—9 + Q... 301 + ... + QaCi3...0 1 = - (2)

Qp—1
041+O[2+...+Oén_1 = . (3)

Dividing (2) by (1) we get

1 1 1 a
—+ — 4.t =2 (4)

an &%) Op—1 ay

From (3) and (4), applying the AM-HM inequality we obtain

Un-1 01+ Qo+ .y n—1 (n—1)a,

(n—1ay, n—1 _ail—i—o%z—i—...—l— L as

Qn—1

I

a2an—1

therefore “2%=1 > (n — 1)*. Hence > @l > (n — 1), implying n < 3. So, the only polynomials
possibly satisfying (i) and (ii) are those of degree at most three. These polynomials can easily be found
and they are P(z) =z, P(x) = 2* + 2z, P(x) = 22*+z, P(z) = 2%+ 32? + 22 and P(z) = 2% + 32° + x.

|

Solution 2. Consider the prime factorization of P in the ring Z[z]. Since all roots of P are rational, P can
be written as a product of n linear polynomials with rational coefficients. Therefore, all prime factor of P

are linear and P can be written as
n

P(z) = [ [ (bez + i)
k=1
where the coefficients by, ¢, are integers. Since the leading coefficient of P is positive, we can assume by, > 0
for all k. The coefficients of P are nonnegative, so P cannot have a positive root. This implies ¢, > 0. It
is not possible that ¢, = 0 for two different values of k, because it would imply ap = a; = 0. So ¢x > 0 in
at least n — 1 cases.
Now substitute x = 1.

n

n(n+1)

Pl)=apn+--+a=0+14-4n= Tzl_I(karck) > onl
k=1
therefore it is necessary that 27! < @, therefore n < 4. Moreover, the number @ can be written

as a product of n — 1 integers greater than 1.

If n =1, the only solution is P(z) = 1z + 0.

If n =2, we have P(1) = 3 = 13, so one factor must be x, the other one is  + 2 or 2z + 1. Both
z(r+2) =122 + 22 + 0 and z(2z + 1) = 22? 4+ 1z + 0 are solutions.



If n =3, then P(1) = 6 = 1-2-3, so one factor must be x, another one is x+1, the third one is again x+2
or 2z+1. The two polynomials are z(z+1)(x+2) = 123+32%+22+0 and z(z+1)(2z+1) = 223+ 322+ 12+0,
both have the proper set of coefficients.

In the case n = 4, there is no solution because
greater than 1.

Altogether we found 5 solutions: 1240, 12242240, 222412 +0, 1224322 +22+0 and 223+ 322+ 12 +0.

n(n+1)
2

= 10 cannot be written as a product of 3 integers

Problem 5. Let f: (0,00) — R be a twice continuously differentiable function such that
(@) +22f'(z) + (2" + 1) f ()| < 1

for all . Prove that lim f(x) = 0.

Solution 1. Let g(x) = f'(x) + xf(z); then f"(z) + 2z f (z) + (2* + 1) f(z) = ¢'(x) + xg(z).
We prove that if h is a continuously differentiable function such that h'(x) + xh(z) is bounded then
limh = 0. Applying this lemma for A = g then for h = f, the statement follows.

Let M be an upper bound for |/ (z)+zh(z)| and let p(z) = h(z)e**/2. (The function e*/2 is a solution
of the differential equation u'(z) + zu(x) = 0.) Then

P (2)] = W (z) + ah(z)|e”/* < Me™/?

and
x T g2
Ih(z)] = plz)| p(0)+ [, P < Ip(0)[+ M [, e 12dx
- er?/2 o er?/2 — er?/2 ’
2 fx exz/QdZL‘
Since lim ¢* /% = oo and lim OW = 0 (by L’Hospital’s rule), this implies lim, .., h(z) = 0.
T—00 et
z2/2
Solution 2. Apply L’Hospital rule twice on the fraction )Te/z. (Note that L’Hospital rule is valid if
eiﬂ

the denominator converges to infinity, without any assumption on the numerator.)

. . f x2/2 . f’ + f z2/2 ‘ f// +2 f/ + 2_|_1 f 22 /2
Jim (o) = Jim PO — g CEIEELENE  py U2 e PN
~ lim f”(w)+2xf’(f)+(x2+ Df) _

z00 22+ 1

Problem 6. Given a group G, denote by G(m) the subgroup generated by the m'™ powers of elements of
G. If G(m) and G(n) are commutative, prove that G(ged(m,n)) is also commutative. (ged(m,n) denotes
the greatest common divisor of m and n.)

Solution. Write d = ged(m,n). It is easy to see that (G(m),G(n)) = G(d); hence, it will suffice to
check commutativity for any two elements in G(m) U G(n), and so for any two generators ™ and b".
Consider their commutator z = a~""b~"a™b"; then the relations

z=(a""ba™)""" = a " (b""ab™)™

show that z € G(m) N G(n). But then z is in the center of G(d). Now, from the relation a™b"™ = b"a™z, it
easily follows by induction that

2
amlbnl — bnlamlzl )

Setting | = m/d and | = n/d we obtain 2(m/d)? — (/4 — ¢ but this implies that z = e as well.
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Problem 1. Let f(z) = z* + bx + ¢, where b and ¢ are real numbers, and let
M={zeR: |f(x)] <1}.

Clearly the set M is either empty or consists of disjoint open intervals. Denote the sum of
their lengths by |M|. Prove that
M| < 2v2.

Solution. Write f(z) = (z + g)Q + d where d = ¢ — % The absolute minimum of f is d.

If d > 1 then f(z) > 1 for all z, M = () and |M| = 0.
If -1 <d<1then f(z) > —1 for all z,

b 2
—1<(x+§) +d<l1l +—

:17—|-g‘<\/1—d

SO

b b
N )
and
M| =2V1—d < 2V2.
If d < —1 then
b\ 2 b
-1< x+§ +d<1l <~ ld| — 1< x+§ <+/|d|+1
SO
M= (=/|dl+1,—/|d — 1) U (\/|d] = 1,/|d| + 1)
and
(Jd] +1) = (|d] — 1) 2
M| =2 d+1—+/|d —-1) =2 <2 = 2V2.
M| <\/H Vi ) VId[+1+/]d -1~ V1I+1+v1-0

Problem 2. Let f : R — R be a function such that (f(x))” is a polynomial for every
n=2,3,.... Does it follow that f is a polynomial?

Solution 1. Yes, it is even enough to assume that f? and f3 are polynomials.
Let p = f2 and ¢ = f3. Write these polynomials in the form of

p=a-pi*-...-pr, q:b~qll’1~...'qlb’,



where a,b € R, ay,...,a, by,...0 are positive integers and py,...,pk,q1,...,q are irre-
ducible polynomials with leading coefficients 1. For p® = ¢? and the factorisation of p* = ¢*
is unique we get that a®> = b?, k = [ and for some (4, ...,1;) permutation of (1,... k) we
have p1 = qi,, ..., Pk = ¢i, and 3a; = 2b;,, ..., 3a; = 2b;,. Hence by, ..., are divisible by
3let r =0b'/3. qll)l/3 S qf’/3 be a polynomial. Since 7° = g = f3 we have f =r.

Solution 2. Let § be the simplest form of the rational function ;—z Then the simplest form

4\ 2
of its square is z—z. On the other hand 5‘5 = <§—;> = f? is a polynomial therefore ¢ must
be a constant and so f = ;—z = § is a polynomial.

Problem 3. In the linear space of all real n X n matrices, find the maximum possible
dimension of a linear subspace V' such that

VX, Y eV trace(XY) =0.

(The trace of a matrix is the sum of the diagonal entries.)

Solution. If A is a nonzero symmetric matrix, then trace(A?) = trace(A'A) is the sum of
the squared entries of A which is positive. So V' cannot contain any symmetric matrix but
0.

Denote by S the linear space of all real n x n symmetric matrices; dim V' =

Since V N S = {0}, we have dimV + dim S < n? and thus dimV < n? — ”(”;1) = "(”2_1).
n(n—1)
2

n(n+1) ‘

and satisfies the

The space of strictly upper triangular matrices has dimension
condition of the problem.

Therefore the maximum dimension of V is 2=1

2

Problem 4. Prove that if f: R — R is three times differentiable, then there exists a real
number ¢ € (—1,1) such that

e _fm-f=n
= e — - ().

Solution 1. Let

M a2 +1) - (O~ D + D).

o) = D2 1) - pO)2 1) +
It is easy to check that g(£1) = f(£1), g(0) = f(0) and ¢'(0) = f'(0).

Apply Rolle’s theorem for the function h(x) = f(x) — g(x) and its derivatives. Since
h(—1) = h(0) = h(1) = 0, there exist n € (—1,0) and ¥ € (0,1) such that A'(n) =
R'(9) = 0. We also have h'(0) = 0, so there exist o € (n,0) and o € (0,9) such that
h"(0) = h"(c) = 0. Finally, there exists a £ € (p,0) C (—1,1) where 2”"(§) = 0. Then

f(=1) fm

F(€) = 9"(6) = =5 >

6= f(0)-0+ 26— f(0)-6=

|

|
=
—
o
SN—



M — 17(0) is the divided difference f[—1,0,0, 1] and

i f"(€)
there exists a number ¢ € (—1,1) such that f[—1,0,0,1] = TR

Problem 5. Find all » > 0 such that whenever f:R? — R is a differentiable function
such that |grad f(0,0)] = 1 and |grad f(u) — grad f(v)| < |u — | for all u,v € R?, then
the maximum of f on the disk {u € R? : |u| < r} is attained at exactly one point.
(grad f(u) = (01f(u),02f(u)) is the gradient vector of f at the point u. For a vector

u=(a,b), lul = va?+b2.)

Solution 2. The expression

2 2
Solution. To get an upper bound for r, set f(z,y) = x — % + % This function satisfies
the conditions, since grad f(z,y) = (1 — z,y), grad f(0,0) = (1,0) and |grad f(z1,y1) —

grad f(z2,y2)| = [(z2 — z1, 91 — v2)| = (@1, 1) — (22, 92)|-
In the disk D, = {(z,y) : 2* +y* < r?}

22 + o2 1\ 1
= — - — — <
f(z,y) 5 (w 2> +1<

+

| o
N

Ifr > % then the absolute maximum is § + }l, attained at the points (%, +4/r2 — i)
Therefore, it is necessary that r < % because if r > % then the maximum is attained twice.

Suppose now that r < 1/2 and that f attains its maximum on D, at u,v, u # v. Since
grad f(z) — grad f(0)| <, |grad f(z)| > 1 —r > 0 for all z € D,. Hence f may attain its
maximum only at the boundary of D,, so we must have |u| = |v| = r and grad f(u) = au
and grad f(v) = bv, where a,b > 0. Since au = grad f(u) and bv = grad f(v) belong
to the disk D with centre grad f(0) and radius r, they do not belong to the interior of
D,. Hence |grad f(u) — grad f(v)| = |au — bv| > |u — v| and this inequality is strict
since D N D, contains no more than one point. But this contradicts the assumption that
grad f(u) — grad f(v)| < |u—v|. So all r <  satisfies the condition.

Problem 6. Prove that if p and ¢ are rational numbers and r = p+¢v/7, then there exists

a matrix (i 2) #+ <(1) (1)> with integer entries and with ad — bc = 1 such that

ar+b
=7
cr+d

Solution. First consider the case when ¢ = 0 and r is rational. Choose a positive integer ¢
such that 72t is an integer and set

a b\ _ [(1+rt —r?t
c d) t 1—rt)”

2
det (“ b =1 and ar+b:(1+rt)r rt:r.
c d cr+d  tr+(1—rt)

Then




Now assume ¢q # 0. Let the minimal polynomial of r in Z[z] be uz®+ vz +w. The other
root of this polynomial is 7 = p—qv/7, so v = —u(r+7) = —2up and w = wr¥ = u(p®—74¢>).
The discriminant is v* — 4uw = 7 - (2uq)?. The left-hand side is an integer, implying that
also A = 2uq is an integer.

ar+b

The equation 257 = r is equivalent to cr? 4+ (d — a)r — b= 0. This must be a multiple

of the minimal polynomial, so we need

for some integer ¢ # 0. Putting together these equalities with ad — bc = 1 we obtain that
(a+d)? = (a—d)?+4dad = 4+ (v’ — duw)t® = 4 + TA*>,

Therefore 4 + 7A?t? must be a perfect square. Introducing s = a + d, we need an integer
solution (s,t) for the Diophantine equation

s —TA** =4 (1)

such that ¢ # 0.

The numbers s and t will be even. Then a +d = s and d — a = vt will be even as well
and a and d will be really integers.

Let (843v/7)" = k,=+1,\/7 for each integer n. Then k2 —712 = (ky,+1,V/7)(kp—1,V/7) =
(8 + 3v7)"(8 — 3v/7))" = 1 and the sequence (I,) also satisfies the linear recurrence
lnt1 = 161, — l,_,. Consider the residue of I, modulo A. There are A? possible residue
pairs for (I,,,1,11) so some are the same. Starting from such two positions, the recurrence
shows that the sequence of residues is periodic in both directions. Then there are infinitely
many indices such that [,, =y =0 (mod A).

Taking such an index n, we can set s = 2k,, and t = 2l,,/A.

Remarks. 1. It is well-known that if D > 0 is not a perfect square then the Pell-like

Diophantine equation

v — Dy* =1
has infinitely many solutions. Using this fact the solution can be generalized to all quadratic
algebraic numbers.

2. Tt is also known that the continued fraction of a real number r is periodic from a certain
point if and only if r is a root of a quadratic equation. This fact can lead to another
solution.
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Problem 1. Let f: R — R be a real function. Prove or disprove each of the following statements.
(a) If f is continuous and range(f) = R then f is monotonic.
(b) If f is monotonic and range(f) = R then f is continuous.
(c) If f is monotonic and f is continuous then range(f) = R.
(20 points)
Solution. (a) False. Consider function f(x) = z® — . It is continuous, range(f) = R but, for example,
f(0)=0, f(3) = —2 and f(1) = 0, therefore f(0) > f(35), f(3) < f(1) and f is not monotonic.
(b) True. Assume first that f is non-decreasing. For an arbitrary number a, the limits lim f and

a—

3

liELn f exist and lim f < hI—‘P f. If the two limits are equal, the function is continuous at a. Otherwise,
if imf =0 < lixllf = ¢, we have f(z) < b for all x < a and f(x) > ¢ for all x > a; therefore

range(f) C (—o00,b) U (¢,00) U{f(a)} cannot be the complete R.
For non-increasing f the same can be applied writing reverse relations or g(x) = — f(x).
(c) False. The function g(z) = arctan z is monotonic and continuous, but range(g) = (—7/2,7/2) # R.

Problem 2. Find the number of positive integers x satisfying the following two conditions:
1. x < 10%09;
2. 2% — z is divisible by 10209,

(20 points)

Solution 1. Let S, = {0 <z <10 ’xQ — x is divisible by 10} and s (k) = |Sk|,k > 1. Let z =
a110k - . . a1 be the decimal writing of an integer © € Siy1,k > 1. Then obviously y = ay ...a; € Sk. Now,
let y = ay...a; € Sy be fixed. Considering ay,, as a variable digit, we have 22 — x = (akHlOk + y)2 —
(ak+110k + y) = (y* — y) + ag4+110% (2y — 1) + a},,10%*. Since y* —y = 10"z for an iteger z, it follows that
2?2 —x is divisible by 105! if and only if 2+ ag41 (2y — 1) =0 (mod 10). Since y = 3 (mod 10) is obviously
impossible, the congruence has exactly one solution. Hence we obtain a one-to-one correspondence between

the sets Sy,1 and Sy for every k > 1. Therefore s (2006) = s (1) = 3, because S; = {1,5,6}.

Solution 2. Since z? —x = z(z — 1) and the numbers x and x — 1 are relatively prime, one of them must

be divisible by 22°% and one of them (may be the same) must be divisible by 52°°°. Therefore,  must
satisfy the following two conditions:

r=0or1 (mod 2%%);

r=0or1 (mod 5%).

Altogether we have 4 cases. The Chinese remainder theorem yields that in each case there is a unique

solution among the numbers 0,1,...,102% — 1. These four numbers are different because each two gives

different residues modulo 22°% or 5209 Moreover, one of the numbers is 0 which is not allowed.
Therefore there exist 3 solutions.

Problem 3. Let A be an n X n-matrix with integer entries and by, ..., by be integers satisfying det A =
by -...-b,. Prove that there exist n x n-matrices By, ..., By with integer entries such that A = By-...- By
and det B; = b; forall i =1,... k.

(20 points)

Solution. By induction, it is enough to consider the case m = 2. Furthermore, we can multiply A with
any integral matrix with determinant 1 from the right or from the left, without changing the problem.
Hence we can assume A to be upper triangular.



Lemma. Let A be an integral upper triangular matrix, and let b, ¢ be integers satisfying det A = bc. Then
there exist integral upper triangular matrices B, C' such that det B =5, det C' = ¢, A = BC.

Proof. The proof is done by induction on n, the case n = 1 being obvious. Assume the statement is true
for n—1. Let A, b, c as in the statement of the lemma. Define B, to be the greatest common divisor of b
and A,,, and put C,,,, = %. Since A,,, divides be, C,,, divides BLC, which divides c¢. Hence C,,, divides

c

c. Therefore, / = B;fm and ¢ = z= are integers. Define A’ to be the upper-left (n —1) x (n — 1)-submatrix
of A; then det A’ = 0'c’. By induction we can find the upper-left (n — 1) x (n — 1)-part of B and C' in such
a way that det B = b, det C' = ¢ and A = BC holds on the upper-left (n — 1) x (n — 1)-submatrix of A. It
remains to define B, ,, and C;,, such that A = BC also holds for the (i,n)-th entry for all i < n.

First we check that B;; and C,, are relatively prime for all ¢ < n. Since B;; divides V', it is certainly
enough to prove that ' and C,,, are relatively prime, i.e.

. b A, .,
8N acd(b, Apn) ged(b, Ay ) —

which is obvious. Now we define B;,, and C},, inductively: Suppose we have defined B;,, and C;,, for all
t=J5+1,7+2,...,n—1. Then B,, and C};, have to satisfy

Ajn = BjjCin+ Bjj+1Cirin + -+ + BjnChpn

Since Bj; and C),, are relatively prime, we can choose integers C;,, and B;, such that this equation is
satisfied. Doing this step by step for all j =n—1,n—2,...,1, we finally get B and C such that A = BC.
O

Problem 4. Let f be a rational function (i.e. the quotient of two real polynomials) and suppose that
f(n) is an integer for infinitely many integers n. Prove that f is a polynomial.

(20 points)

Solution. Let S be an infinite set of integers such that rational function f(x) is integral for all x € S.

Suppose that f(x) = p(x)/q(x) where p is a polynomial of degree k and ¢ is a polynomial of degree n.
Then p, ¢ are solutions to the simultaneous equations p(z) = g(x)f(x) for all z € S that are not roots of
q. These are linear simultaneous equations in the coefficients of p, ¢ with rational coefficients. Since they
have a solution, they have a rational solution.

Thus there are polynomials p’, ¢ with rational coefficients such that p'(z) = ¢/(x) f(x) for all z € S that
are not roots of ¢. Multiplying this with the previous equation, we see that p'(z)q(z) f(z) = p(x)d (z) f(z)
for all x € S that are not roots of ¢. If x is not a root of p or ¢, then f(x) # 0, and hence p'(z)q(x) =
p(z)¢ () for all x € S except for finitely many roots of p and ¢. Thus the two polynomials p'q and pq’
are equal for infinitely many choices of value. Thus p'(x)q(z) = p(z)¢'(z). Dividing by q(z)q'(z), we see
that p'(z)/q'(z) = p(z)/q(x) = f(x). Thus f(z) can be written as the quotient of two polynomials with
rational coefficients. Multiplying up by some integer, it can be written as the quotient of two polynomials
with integer coefficients.

Suppose f(z) = p”(x)/q"(x) where p” and ¢” both have integer coefficients. Then by Euler’s division
algorithm for polynomials, there exist polynomials s and r, both of which have rational coefficients such
that p”(x) = ¢"(x)s(x) + r(x) and the degree of r is less than the degree of ¢”. Dividing by ¢”"(x), we get
that f(z) = s(z) + r(z)/q¢"(x). Now there exists an integer N such that Ns(z) has integral coefficients.
Then N f(z) — Ns(x) is an integer for all x € S. However, this is equal to the rational function Nr/q”,
which has a higher degree denominator than numerator, so tends to 0 as x tends to co. Thus for all
sufficiently large z € S, N f(x) — Ns(xz) = 0 and hence r(z) = 0. Thus r has infinitely many roots, and is
0. Thus f(z) = s(z), so f is a polynomial.

Problem 5. Let a,b, ¢, d, e > 0 be real numbers such that a® +b? + ¢ = d?> 4+ e? and a* + b* + ¢* = d* + €.
Compare the numbers a® + b® + ¢® and d® + e3.
(20 points)



Solution. Without loss of generality a > b > ¢, d > e. Let ¢2 = >+ A, A € R. Then d? = a® + b> + A
and the second equation implies

a4+b4+(e2+A)2 = (a2+bQ+A)2+e4, A=—
(Here a® 4+ 0% — €* > 2(a® +0* + ¢?) — 3(d* + %) = +(d* + €*) > 0.)
Since ¢ = €2 — agfig’ieQ = w;igé 262 > 0 then a > e > b.
Therefored2:a2+b2—cﬁ+z+ieg<a anda>d>e>b>c.

Consider a function f(z) = a* + b* 4+ ¢* — d* — e*, x € R. We shall prove that f(x) has only two
zeroes x = 2 and x = 4 and changes the sign at these points. Suppose the contrary. Then Rolle’s
theorem implies that f’(x) has at least two distinct zeroes. Without loss of generality a = 1. Then
f'(z)=Inb-b* +Inc-c® —Ind-d* —lne-e*, x € R.If f'(z1) = f'(22) =0, 1 < 2, then

Inb-b* +Inc-c* =Ind-d* +1lne-e", i=1,2,
but since 1 > d > e > b > ¢ we have

a?b?
2 b2_e2”

(zlnb) b+ (Zlne) € popai _ o o (ZI0d) d™ 4 (Zlne) e
(=Ind) - b1 + (—1Inc) - &1 — ~ (=Ind)-d*r + (—1Ine) - 21’
a contradiction. Therefore f(z) has a constant sign at each of the intervals (—o0,2), (2,4) and (4, c0).
Since f(0) = 1 then f(z) > 0,2 € (—00,2)J(4,00) and f(z) < 0,z € (2,4). In particular, f(3) =
A+ +S—d—-e<0.
Problem 6. Find all sequences ag,aq,...,a, of real numbers where n > 1 and a, # 0, for which the
following statement is true:
If f:R — Risan n times differentiable function and zq < 27 < ... < x,, are real numbers such that
f(zo) = f(z1) = ... = f(x,) = 0 then there exists an h € (x¢, z,) for which

aof(h) +ar f'(h) + ...+ an f™ (k) = 0.
(20 points)
Solution. Let A(z) = ag + a1z + ... + a,z™. We prove that sequence ay,...,a, satisfies the required
property if and only if all zeros of polynomial A(x) are real.

(a) Assume that all roots of A(z) are real. Let us use the following notations. Let I be the identity
operator on R — R functions and D be differentiation operator. For an arbitrary polynomial P(x) =
Po+ p1x + ...+ pua”, write P(D) = pol + p1D + paD* + ... + p,D". Then the statement can written as
(AD)f)(€) = 0.

First prove the statement for n = 1. Consider the function

204
g(x) = em™ f(x).
Since g(x¢) = g(z1) = 0, by Rolle’s theorem there exists a £ € (xg, z1) for which
aag

) (aof(&) + a1 f'(€)) = 0.

Now assume that n > 1 and the statement holds for n—1. Let A(z) = (z—c¢)B(z) where ¢ is a real root
of polynomial A. By the n = 1 case, there exist yo € (g, 1), y1 € (1,22), .-, Yn—1 € (Tn_1, T,) such that
f'(y;) —cf(y;) =0forall j =0,1,...,n — 1. Now apply the induction hypothesis for polynomial B(x),
function g = f'—cf and points yo, . . ., y,—1. The hypothesis says that there exists a £ € (yo, yn_1) C (o, Tp)
such that

g'(€) = Rewtf(e) 4 entfe) =

ai

(B(D)g)(€) = (B(D)(D — eI) f)(€) = (A(D)f)(€) = 0.

(b) Assume that u + vi is a complex root of polynomial A(z) such that v # 0. Consider the linear
differential equation a,g™ +...4 a1g' +¢g = 0. A solution of this equation is g;(x) = €** sin v which has
infinitely many zeros.

Let k be the smallest index for which a; # 0. Choose a small ¢ > 0 and set f () = g ( ) + ek If
¢ is sufficiently small then ¢ has the required number of roots but agf + a1 f + ... + anf™ = axe 7& 0
everywhere.
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Problem 1. Let V' be a convex polygon with n vertices.

(a) Prove that if n is divisible by 3 then V' can be triangulated (i.e. dissected into non-overlapping
triangles whose vertices are vertices of V') so that each vertex of V' is the vertex of an odd number
of triangles.

(b) Prove that if n is not divisible by 3 then V' can be triangulated so that there are exactly two
vertices that are the vertices of an even number of the triangles.

(20 points)
Solution. Apply induction on n. For the initial cases n = 3,4, 5, chose the triangulations shown in
the Figure to prove the statement.

odd even odd odd

odd odd

odd odd odd even even even

Now assume that the statement is true for some n = k£ and consider the case n = k + 3. Denote
the vertices of V' by Py, ..., Pri3. Apply the induction hypothesis on the polygon Py P ... P; in this
triangulation each of vertices Py, ..., P, belong to an odd number of triangles, except two vertices
if n is not divisible by 3. Now add triangles P, Py Pyio, PyPii1Prio and Py Py, 2P 3. This way we
introduce two new triangles at vertices P, and Py so parity is preserved. The vertices Pj.1, Pry2 and
Py 5 share an odd number of triangles. Therefore, the number of vertices shared by even number of
triangles remains the same as in polygon P\ Ps ... Py.

P Pe-1

Pi+1

Pk +2

Pe+a

& o
. N

Py P,

Problem 2. Find all functions f : R — R such that for any real numbers a < b, the image f ([a, b])
is a closed interval of length b — a.
(20 points)



Solution. The functions f(x) = x + ¢ and f(z) = —z + ¢ with some constant ¢ obviously satisfy
the condition of the problem. We will prove now that these are the only functions with the desired
property.

Let f be such a function. Then f clearly satisfies |f(z) — f(y)| < |x — y| for all z,y; therefore, f
is continuous. Given z,y with x < y, let a,b € [z, y] be such that f(a) is the maximum and f(b) is
the minimum of f on [z, y]. Then f([x,y]) = [f(b), f(a)]; hence

y—x=fla)— f0) <la—b|<y—x

This implies {a,b} = {x,y}, and therefore f is a monotone function. Suppose f is increasing. Then
f(z) = f(y) =z —y implies f(z) —z = f(y) — y, which says that f(z) = x + ¢ for some constant c.
Similarly, the case of a decreasing function f leads to f(z) = —z + ¢ for some constant c.

Problem 3. Compare tan(sin ) and sin(tanx) for all 2 € (0, 7).
(20 points)
Solution. Let f(z) = tan(sinz) — sin(tanz). Then

COS T cos(tanz)  cos®x — cos(tanx) - cos*(sin x)

fle) = -

cos?(sin x) cos?x cos? z - cos?(tan x)

Let 0 < x < arctan 7. It follows from the concavity of cosine on (0, 7) that

tanx + 2sinzx

3 ]<cosx,

1
Y/cos(tan z) - cos?(sin x) < 3 [cos(tan x) + 2 cos(sin z)] < cos [

3 3 Lcos?z cos?
proves that cos® z—cos(tanz)-cos?(sinz) > 0, so f'(x) > 0, so f increases on the interval [0, arctan 5.
To end the proof it is enough to notice that (recall that 4 + 7% < 16)

2
T
1+72/4 4

This implies that if = € [arctan T, 7] then tan(sinx) > 1 and therefore f(x) > 0.

the last inequality follows from [w}, =1 [ L 4+ 2cos x] > \3/ L .cosz-cosx = 1. This

tan [sin (arctan g)} = tan

Problem 4. Let vy be the zero vector in R™ and let vy, vs, ..., v,11 € R™ be such that the Euclidean
norm |v; — v;| is rational for every 0 <i,j <n+ 1. Prove that vq,..., v, are linearly dependent
over the rationals.

(20 points)

Solution. By passing to a subspace we can assume that vy, ..., v, are linearly independent over the
reals. Then there exist Ay, ..., A, € R satisfying

n
Vb1 = A
j=1

We shall prove that A; is rational for all j. From

=2(vi,v5) = i — 5" = oil” = Jvy]®

we get that (v;,v;) is rational for all 7, j. Define A to be the rational n x n-matrix A;; = (v;,v;),
w € Q" to be the vector w; = (v;, v,41), and A € R™ to be the vector ()\;);. Then,

(Vi, V1) = Z Aj (viy v5)
j=1

gives AN = w. Since vy, ...,v, are linearly independent, A is invertible. The entries of A=! are
rationals, therefore A = A~'w € Q", and we are done.

2



Problem 5. Prove that there exists an infinite number of relatively prime pairs (m,n) of positive
integers such that the equation
(x+m) =nx

has three distinct integer roots.
(20 points)

Solution. Substituting y = x + m, we can replace the equation by

y® — ny +mn = 0.

Let two roots be u and v; the third one must be w = —(u + v) since the sum is 0. The roots must
also satisfy
wv + uw + vw = —(u? + ww + v?) = —n, ie. w+uwwtvi=n
and
wow = —uv(u + v) = mn.

So we need some integer pairs (u,v) such that uv(u + v) is divisible by u? 4+ uv + v?. Look for such
pairs in the form u = kp, v = kq. Then

u + uv +v* = KX (p” + pg + ),

and
wv(u +v) = k*pg(p + q).

Chosing p, ¢ such that they are coprime then setting k = p? + pq + ¢*> we have M —
2 2 u? + uv + v?
P~ +pg+q.
Substituting back to the original quantites, we obtain the family of cases

n= @ +pg+q¢)°  m=p’q+pd

and the three roots are
€T = p37 Lo = q37 T3 = _(p + Q)B

Problem 6. Let A;, B;,S; (i = 1,2,3) be invertible real 2 x 2 matrices such that

(1) not all A; have a common real eigenvector;

(2) A; = S;'B;S; for alli = 1,2,3;

10

(3) A1A2A3 - BlBng - (O 1) .
Prove that there is an invertible real 2 x 2 matrix S such that A; = S™1B;S for all i = 1,2, 3.
(20 points)
Solution. We note that the problem is trivial if A; = AI for some j, so suppose this is not the case.
Consider then first the situation where some A;, say As, has two distinct real eigenvalues. We may
assume that A3 = By = ()‘ u) by conjugating both sides. Let Ay = (2%) and By = (Z,/ gf ) Then

a+d=TrAy, = TrBy=d+d
aX +dp = Tr(AsAz) = Tr AyY = TrBy' = Tr(ByBs) = d' A+ d'u.

Hence a = a’' and d = d’ and so also bc = b'c’. Now we cannot have ¢ = 0 or b = 0, for then (1,0) " or
(0,1)" would be a common eigenvector of all A;. The matrix S = (¢ ) conjugates Ay = S71B,S,
and as S commutes with A3 = Bs, it follows that A; = S7'B;S for all j.

3



If the distinct eigenvalues of A3 = Bj are not real, we know from above that 4; = S™'B;S for
some S € GLyC unless all A; have a common eigenvector over C. Even if they do, say Av = A;v,
by taking the conjugate square root it follows that A;’s can be simultaneously diagonalized. If
Ay = (%4) and By = (‘;f Zﬁ), it follows as above that a = a/, d = d’ and so b/d = 0. Now By
and Bj (and hence By too) have a common eigenvector over C so they too can be simultaneously
diagonalized. And so SA; = B;S for some S € GLyC in either case. Let Sy = ReS and S; =Im S.
By separating the real and imaginary components, we are done if either Sy or S is invertible. If not,
Sy may be conjugated to some T1S)T = (j 8), with (z,9)" # (0,0)7, and it follows that all A,
have a common eigenvector 7'(0,1) ", a contradiction.

We are left with the case when no A; has distinct eigenvalues; then these eigenvalues by necessity
are real. By conjugation and division by scalars we may assume that A3 = (! %) and b # 0. By further
conjugation by upper-triangular matrices (which preserves the shape of A3 up to the value of b) we can

also assume that Ay, = (9 ). Here v? = Tr?A; = 4det Ay = —4u. Now A; = A1 A" = (_(bf;z)/“ ! ),

and hence (b +v)?/u? = Tr?A, = 4det A; = —4/u. Comparing these two it follows that b = —2v.
What we have done is simultaneously reduced all A; to matrices whose all entries depend on u and
v (= —det Ay and Tr A,, respectively) only, but these themselves are invariant under similarity. So
Bj’s can be simultaneously reduced to the very same matrices.



IMC2007, Blagoevgrad, Bulgaria

Day 1, August 5, 2007

Problem 1. Let f be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is divisible
by 5 for every integer k. Prove that all coefficients of f are divisible by 5.

Solution 1. Let f(z) = ax?® + bz + c¢. Substituting z = 0, x = 1 and z = —1, we obtain that 5|f(0) = ¢,
5/f(1) = (a+b+c) and 5|f(—1) = (a—b+c). Then 5|f(1)+ f(—1)—2f(0) = 2a and 5| f(1) — f(—1) = 2b.
Therefore 5 divides 2a, 2b and ¢ and the statement follows.

Solution 2. Consider f(z) as a polynomial over the 5-element field (i.e. modulo 5). The polynomial has
5 roots while its degree is at most 2. Therefore f =0 (mod 5) and all of its coefficients are divisible by 5.

Problem 2. Let n > 2 be an integer. What is the minimal and maximal possible rank of an n x n matrix
whose n? entries are precisely the numbers 1,2,...,n%?

Solution. The minimal rank is 2 and the maximal rank is n. To prove this, we have to show that the rank

can be 2 and n but it cannot be 1.

(i) The rank is at least 2. Consider an arbitrary matrix A = [a;;] with entries 1,2,...,n? in some

order. Since permuting rows or columns of a matrix does not change its rank, we can assume that
l=a;1 <agp < - <ap and ay; < ajg2 < - -+ < ay,. Hence a,; > n and ay, > n and at least one of these
: e . a;n a a; a
inequalities is strict. Then det |~ ™| <1-n2—n-n=0so rk(A) > rk L )
Ap1  Gpp Ap1  Gpp
(ii) The rank can be 2. Let

1 2 .on
n+1 n—+ 2 ... 2n
n?—n+1 n2—n+2 ... n?
The i row is (1,2,...,n)+n(i—1)-(1,1,...,1) so each row is in the two-dimensional subspace generated

by the vectors (1,2,...,n) and (1,1,...,1). We already proved that the rank is at least 2, so rk(T") = 2.

(iii) The rank can be n, i.e. the matrix can be nonsingular. Put odd numbers into the diagonal,
only even numbers above the diagonal and arrange the entries under the diagonal arbitrarily. Then the
determinant of the matrix is odd, so the rank is complete.

Problem 3. Call a polynomial P(xy,...,x) good if there exist 2 x 2 real matrices Ay, ..., Ay such that

k
P(xq,...,x) = det (Z :L',A,) .
i=1

Find all values of k£ for which all homogeneous polynomials with k variables of degree 2 are good.
(A polynomial is homogeneous if each term has the same total degree.)

Solution. The possible values for k are 1 and 2.
If k=1 then P(z) = ax? and we can choose A; = (6 2)

If k = 2 then P(z,y) = az? + By* + vyry and we can choose matrices A; = (é g) and Ay = (_01 f)

k
Now let & > 3. We show that the polynomial P(zy,...,x;) = Y. x? is not good. Suppose that
i=0

k
P(xq,...,2,) = det (Z :cZAZ) Since the first columns of Aq,..., A, are linearly dependent, the first
i=0

1



column of some non-trivial linear combination y3A; + ...+ yr Ay is zero. Then det(y1 A1 + ...+ ypdi) =0
but P(y1,...,yx) # 0, a contradiction.

Problem 4. Let G be a finite group. For arbitrary sets U, V., W C G, denote by Nyyw the number of
triples (z,y,2) € U x V x W for which zyz is the unity.

Suppose that G is partitioned into three sets A, B and C (i.e. sets A, B, are pairwise disjoint and
G=AUBU C) Prove that NABC = NC’BA-

Solution. We start with three preliminary observations.
Let U,V be two arbitrary subsets of GG. For each x € U and y € V there is a unique z € G for which
xyz = e. Therefore,

Nyve = U x V| =|U|-|V]. (1)

Second, the equation xyz = e is equivalent to yzx = e and zxy = e. For arbitrary sets U, V., W C G, this
implies

{(z,y,2) e UxVXW : xyz=e} ={(x,y,2) e UXVXW : yzx =e} ={(v,y,2) € UxVXW : zzy = e}

and therefore
Nuvw = Nvwu = Nwov- (2)
Third, if U,V C G and Wy, W5, W3 are disjoint sets and W = W, U W, U W3 then, for arbitrary U,V C G,

{(z,y,2) e UxV xW: zyz=e} ={(x,y,2) e U xV xW;: zyz = e}U

U{(z,y,2) e U XV xWy: zyz =e} U{(z,y,2) e U XV x W3 : zyz=e}

SO
Nuvw = Nuvw, + Nuvw, + Novws - (3)
Applying these observations, the statement follows as
Napc = Napag — Napa — Napp = |A| - |B| = Npaa — Npap =
= Npac — Npaa — Npap = Npac = Ncpa-
Problem 5. Let n be a positive integer and aq,...,a, be arbitrary integers. Suppose that a function

f :7Z — R satisfies Z f(k+ a;f) = 0 whenever k and ¢ are integers and ¢ # 0. Prove that f = 0.
i=1
Solution. Let us define a subset Z of the polynomial ring R[X] as follows:

m m

7= {P(X):ijXj S b f(k+j0) =0 forall k(€ Z, 137&0}.

J=0 J=0

This is a subspace of the real vector space R[X]. Furthermore, P(X) € Z implies X - P(X) € Z. Hence,
7 is an ideal, and it is non-zero, because the polynomial R(X) = > 7"  X* belongs to Z. Thus, 7 is
generated (as an ideal) by some non-zero polynomial Q.

If @ is constant then the definition of Z implies f = 0, so we can assume that () has a complex zero c.
Again, by the definition of Z, the polynomial Q(X™) belongs to Z for every natural number m > 1; hence
Q(X) divides Q(X™). This shows that all the complex numbers

e, 3 et

are roots of (). Since Q can have only finitely many roots, we must have ¢ = 1 for some N > 1; in
particular, (1) = 0, which implies P(1) = 0 for all P € Z. This contradicts the fact that R(X) =
S>or, X% €I, and we are done.



Problem 6. How many nonzero coefficients can a polynomial P(z) have if its coefficients are integers
and |P(z)| < 2 for any complex number z of unit length?

Solution. We show that the number of nonzero coefficients can be 0, 1 and 2. These values are possible,
for example the polynomials Py(z) =0, P;(2) = 1 and P»(z) = 1 + z satisfy the conditions and they have
0, 1 and 2 nonzero terms, respectively.

Now consider an arbitrary polynomial P(z) = ap+aiz+...+a,z" satisfying the conditions and assume
that it has at least two nonzero coefficients. Dividing the polynomial by a power of z and optionally
replacing p(z) by —p(z), we can achieve ap > 0 such that conditions are not changed and the number of
nonzero terms is preserved. So, without loss of generality, we can assume that ag > 0.

Let Q(2) = a1z + ...+ an,_12"1. Our goal is to show that Q(z) =

Consider those complex numbers wg, wy, . .., w,_1 on the unit circle for which a,w} = |a,|; namely, let

(k=0,1,...,n).

e2kmi/n if a,, >0
Wi = .
k 6(2l<c—|—1)7rz/n if a, <0

Notice that B ) )
Z Q wk _ Z Q 2k7r2/n _ Zang Z(e2j7ri/n)k = 0.
k=0 k=0 =1 k=0

Taking the average of polynomial P(z) at the points wy, we obtain

1 1
_Zp(wk> =- (a0 + Q(wk) + anwy) = ag + |ay|
[y =0
and
1 n—1 1 n—1
2> — ‘P(wk)‘ > | = P(wk) :ao—F‘CLn‘ > 2.
[y "=

This obviously implies ag = |a,| = 1 and |P(wy)| = |2+ Q(wy)| = 2 for all k. Therefore, all values of
Q(wy) must lie on the circle |2 + z| = 2, while their sum is 0. This is possible only if Q(wy) = 0 for all k.
Then polynomial Q)(z) has at least n distinct roots while its degree is at most n — 1. So Q(z) = 0 and
P(z) = ap + a,z" has only two nonzero coefficients.

Remark. From Parseval’s formula (i.e. integrating |P(z)|? = P(z)P(z) on the unit circle) it can be
obtained that

1 27 ) 1 2
ol + ol = o [ (PP o [T aar=a 4)
™ Jo ™ Jo

Hence, there cannot be more than four nonzero coefficients, and if there are more than one nonzero term,
then their coefficients are +1.

It is also easy to see that equality in (4) cannot hold two or more nonzero coefficients, so it is sufficient
to consider only polynomials of the form 1+ 2™ + 2™. However, we do not know (yet .)) any simpler
argument for these cases than the proof above.



IMC2007, Blagoevgrad, Bulgaria
Day 2, August 6, 2007

Problem 1. Let f: R — R be a continuous function. Suppose that for any ¢ > 0, the graph
of f can be moved to the graph of ¢f using only a translation or a rotation. Does this imply that
f(z) = ax + b for some real numbers a and b ?

Solution. No. The function f(z) = €® also has this property since ce® = e**1os¢,

Problem 2. Let z, y, and z be integers such that S = z* + y* + 2% is divisible by 29. Show that S
is divisible by 29%.
Solution. We claim that 29| z,y, z. Then, z* + y* + 2% is clearly divisible by 29%.

Assume, to the contrary, that 29 does not divide all of the numbers z,y,z. Without loss of
generality, we can suppose that 291 x. Since the residue classes modulo 29 form a field, there is some
w € Z such that zw =1 (mod 29). Then, (zw)* + (yw)* + (zw)? is also divisible by 29. So we can
assume that z =1 (mod 29).

Thus, we need to show that y? + 2* = —1 (mod 29), i.e. y* = —1 — 2* (mod 29), is impossible.
There are only eight fourth powers modulo 29,

0 = 0%

1 = 1*"=12*=17"=28" (mod 29),

7 = 8 =9"=20"=21" (mod 29),
16 = 2*=5*"=24"=27" (mod 29),
20 = 6*=14"=15"=23" (mod 29),
23 = 3'=7"=22'"=26" (mod 29),
24 = 4*=10"=19"=25" (mod 29),

25 = 11'=13"=16"= 18" (mod 29).

The differences —1 — z* are congruent to 28, 27, 21, 12, 8, 5, 4, and 3. None of these residue classes
is listed among the fourth powers.

Problem 3. Let C' be a nonempty closed bounded subset of the real line and f : C — C be a
nondecreasing continuous function. Show that there exists a point p € C' such that f(p) = p.
(A set is closed if its complement is a union of open intervals. A function g is nondecreasing if

g(x) < g(y) for all z < y.)

Solution. Suppose f(z) # z for all z € C. Let [a, b] be the smallest closed interval that contains C.
Since C'is closed, a,b € C. By our hypothesis f(a) > a and f(b) < b. Letp =sup{z € C: f(x) > x}.
Since C'is closed and f is continuous, f(p) > p, so f(p) > p. For all x > p, x € C' we have f(z) < .
Therefore f(f(p)) < f(p) contrary to the fact that f is non-decreasing.

Problem 4. Let n > 1 be an odd positive integer and A = (a;;); j=1.., be the n X n matrix with

9 ifi=j
a;j =41 ifi—j=42 (mod n)

0 otherwise.

Find det A.



Solution. Notice that A = B? with b;;

det B.

_{1 if i — j = £1 (mod n)
10

otherwise

. So it is sufficient to find

To find det B, expand the determinant with respect to the first row, and then expad both terms
with respect to the first column.

01 11 0 1
Lot 0 10
10
det B = 1 = 1 1
0 1 0 1
0 1 1 01 10
Lol 1 10 1
1 10
1 1 0 1
0 1 10 1
= - o 1 [~ + o 1|—| 1~
1 01 0 1 1 0 0 1
0 1 01 1 10

1
= —(0-1)+(1-0)=2,

since the second and the third matrices are lower/upper triangular, while in the first and the fourth

matrices we have row; — rows + rows — - - - & row,_s = 0.
So det B = 2 and thus det A = 4.
Problem 5. For each positive integer k, find the smallest number ny for which there exist real

ny X ng matrices Ay, Ao, ..., A; such that all of the following conditions hold:
(1) A2= A2— . —A2—0,
(2) AZA] = A]AZ for all 1 S Z,] S k', and

(3) A1Ay... Ap #0.
Solution. The anwser is n; = 2*. In that case, the matrices can be constructed as follows: Let V be

the n-dimensional real vector space with basis elements [S], where S runs through all n = 2* subsets
of {1,2,...,k}. Define A; as an endomorphism of V' by

0
A8l = {[Su{z‘}]

foralli=1,2,...,kand S C {1,2,...,k}. Then A? =0 and A;A; = A;A;. Furthermore,

ifie s
ifig S

AjAy .. Ak[@] = [{1727 e '7k}]7

and hence A1 A ... Ay # 0.
Now let Ay, Ao, ..., Ar be n X n matrices satisfying the conditions of the problem; we prove that

n > 2%, Let v be a real vector satisfying A1 As... Ay v # 0. Denote by P the set of all subsets of
{1,2,...,k}. Choose a complete ordering < on P with the property

X<Y = |X|<|Y| forall X,Y €P.



For every element X = {zy,29,...,2,} € P, define Ay = A, A, ... A;, and vx = Axv. Finally,
write X = {1,2,...,k}\ X for the complement of X.

Now take X,Y € P with X 2 Y. Then Ay annihilates vy, because X 2 Y implies the existence
of somey € Y\ X =Y NX, and

Axvy = Ax\ Ay Ayongyy = 0,

since Ag = 0. So, Ax annihilates the span of all the vy with X 2 Y. This implies that vx does not
lie in this span, because Agvx = v 2. 1y # 0. Therefore, the vectors vy (with X € P) are linearly
independent; hence n > |P| = 2*.

Problem 6. Let f # 0 be a polynomial with real coefficients. Define the sequence fy, f1, f2,... of
polynomials by fo = f and f,.1 = f, + f} for every n > 0. Prove that there exists a number N such
that for every n > N, all roots of f,, are real.

Solution. For the proof, we need the following

Lemma 1. For any polynomial g, denote by d(g) the minimum distance of any two of its real
zeros (d(g) = oo if g has at most one real zero). Assume that g and g + ¢’ both are of degree k > 2
and have k distinct real zeros. Then d(g + ¢') > d(g).

Proof of Lemma 1: Let 17 < x5 < --- < x} be the roots of g. Suppose a,b are roots of g + ¢’
satisfying 0 < b — a < d(g). Then, a,b cannot be roots of g, and

I (1)

Since % is strictly decreasing between consecutive zeros of g, we must have a < z; < b for some j.
Foralli=1,2,...,k—1 we have ;1.1 —x; > b —a, hence a —x; > b — x;1. If © < j, both sides

of this inequality are negative; if ¢ > j, both sides are positive. In any case, a+m < b—:im’ and hence
, k—1 k—1 ,
a 1 1 1 1 b
g((a)): a—:c-+a—:c <Zb—x- +b—:c :g((b))
9 i1 i L i+1 L, 9
<0 >0

This contradicts (1).

Now we turn to the proof of the stated problem. Denote by m the degree of f. We will prove
by induction on m that f,, has m distinct real zeros for sufficiently large n. The cases m = 0,1 are
trivial; so we assume m > 2. Without loss of generality we can assume that f is monic. By induction,
the result holds for f’, and by ignoring the first few terms we can assume that f; has m — 1 distinct

real zeros for all n. Let us denote these zeros by xﬁ") > a:g") > e > xg)_l Then f,, has minima
in 2" 2, 2™ .. and maxima in 2$, 2" 20" ... Note that in the interval (z\7),z{™), the

function f, ., = f, + f/ must have a zero (this follows by applying Rolle’s theorem to the function
(n)

e? f!(x)); the same is true for the interval (—oo, z,,”

has exactly one zero. This shows that

1)- Hence, in each of these m — 1 intervals, f

I AR N G R R ) (RIS (2)
Lemma 2. We have lim,,_ fn(a:§")) = —oo if j is odd, and lim fn(xgn)) = +oo if j is even.

Lemma 2 immediately implies the result: For sufficiently large n, the values of all maxima of f,
are positive, and the values of all minima of f,, are negative; this implies that f,, has m distinct zeros.



Proof of Lemma 2: Let d = min{d(f’),1}; then by Lemma 1, d(f]) > d for all n. Define

-1 dm—l
€= %; we will show that
mm=

fn+1($§n+l)) > fn(x§")) +¢ for j even. (3)

(The corresponding result for odd j can be shown similarly.) Do to so, write f = f,, b = xg-"), and
choose a satisfying d < b — a < 1 such that f’ has no zero inside (a,b). Define ¢ by the relation

b—¢&= %(b— a); then € € (a,b). We show that f(£)+ f'(&) > f(b) +e.
Notice, that

e 1
f1e ; ¢ — 2"

1 1 1
R TErRN e T
————

i<j >
<L <0

<(m-1)

"
|
S
N
|
SH

"
The last equality holds by definition of £. Since f’ is positive and = is decreasing in (a, b), we have

f/
that f” is negative on (£,b). Therefore,

b b
F(b) — £(€) = /5 F()dt < /5 €)= (b &)'(¢)

Hence,

FE)+ (&) = f(b) = (b= f(E)+ f(&)
=f0)+ (1= (E—-0)f' (&)
=f(0) + (1~ (b—a)f ()
> f(b) + (1 =) f' (&)

Together with

m—1 . dm—l
fE=1f©l=m 11 1€ — 2™ > ml¢ — bt > t
T )b
we get
FE)+ 1) = f(b) +e.

Together with (2) this shows (3). This finishes the proof of Lemma 2.




Problem 6. For a permutation o = (i1, ia, ...,4,) of (1,2, ...,n) define D(c) = >_ |iy, — k|. Let Q(n,d) be
k=1

the number of permutations o of (1,2, ...,n) with d = D(c). Prove that Q(n,d) is even for d > 2n.

Solution. Consider the n x n determinant

1 T [V
x 1 a2
Az) = )
In—l 1,71—2 1

A(I) _ Z (_1)inv(h,...,in)xD(il,...,z'n)

(41,018 )ESn

where S, is the set of all permutations of (1,2, ...,n) and inv(iy, ..., 4,) denotes the number of inversions in
the sequence (i, ...,%,). So Q(n,d) has the same parity as the coefficient of z¢ in A(x).

It remains to evaluate A(z). In order to eliminate the entries below the diagonal, subtract the (n—1)-th
row, multiplied by z, from the n-th row. Then subtract the (n — 2)-th row, multiplied by z, from the
(n — 1)-th and so on. Finally, subtract the first row, multiplied by z, from the second row.

o2 gnt 1 x . "2 !
T 1 oot gn2 0 1—22 ... av 3 gt gn=2_gn
Alw)=| 1 == : P ==t
v S | x 0 0 . 1—2a? z— a3
2l 2 L 1 0 0 o 0 1 —2?

For d > 2n, the coefficient of % is 0 so Q(n, d) is even.

IMC2008, Blagoevgrad, Bulgaria

Day 1, July 27, 2008

Problem 1. Find all continuous functions f: R — R such that f(z) — f(y) is rational for all reals  and
y such that x — y is rational.

Solution. We prove that f(z) = ax + b where a € Q and b € R. These functions obviously satify the
conditions.

Suppose that a function f(z) fulfills the required properties. For an arbitrary rational ¢, consider the
function g4(x) = f(x+¢) — f(z). This is a continuous function which attains only rational values, therefore
gq is constant.

Set a = f(1) — f(0) and b = f(0). Let n be an arbitrary positive integer and let » = f(1/n) — f(0).
Since f(z + 1/n) — f(z) = f(1/n) — f(0) = r for all z, we have

Flkfn) = F(0) = (F(L/m) = F(O)) + (F(2/m) = F/m)) + ...+ (F(k/m) = F((k = 1)/m) = kr

and

f(=k/n) = £(0) = =(f(0) = f(=1/n)) = (f(=1/n) = f(=2/n)) — ... = (f(=(k = 1)/n) = f(=k/n) = —kr

for k > 1. In the case k =n we get a = f(1) — f(0) = nr, so r = a/n. Hence, f(k/n)— f(0) = kr = ak/n
and then f(k/n) =a-k/n+ b for all integers k and n > 0.

So, we have f(z) = axz+0 for all rational x. Since the function f is continous and the rational numbers
form a dense subset of R, the same holds for all real x.

Problem 2. Denote by V' the real vector space of all real polynomials in one variable, and let P: V' — R
be a linear map. Suppose that for all f,g € V with P(fg) =0 we have P(f) =0 or P(g) = 0. Prove that
there exist real numbers g, ¢ such that P(f) = ¢ f(zo) for all f € V.
Solution. We can assume that P # 0.

Let f € V be such that P(f) # 0. Then P(f?) # 0, and therefore P(f?) = aP(f) for some non-zero
real a. Then 0 = P(f? — af) = P(f(f — a)) implies P(f —a) = 0, so we get P(a) # 0. By rescaling, we
can assume that P(1) = 1. Now P(X +b) = 0 for b = —P(X). Replacing P by P given as

P(f(X)) = P(F(X +))

we can assume that P(X) = 0.
Now we are going to prove that P(X*) = 0 for all k > 1. Suppose this is true for all k¥ < n. We know
that P(X"™ +¢) =0 for e = —P(X™). From the induction hypothesis we get

P(X+e)(X+1)") =P(X"4¢e) =0,

and therefore P(X + ¢) =0 (since P(X + 1) =1 #0). Hence e = 0 and P(X™) = 0, which completes the
inductive step. From P(1) =1 and P(X*) =0 for k > 1 we immediately get P(f) = f(0) for all f € V.



Problem 3. Let p be a polynomial with integer coefficients and let a; < as < ... < a; be integers.

a) Prove that there exists a € Z such that p(a;) divides p(a) for all i = 1,2,... k.

b) Does there exist an a € Z such that the product p(a;) - p(az) - ... - p(ax) divides p(a)?

Solution. The theorem is obvious if p(a;) = 0 for some ¢, so assume that all p(a;) are nonzero and pairwise
different.

There exist numbers s, ¢ such that s|p(a;), t|p(a2), st = lem(p(ay), p(as)) and ged(s,t) = 1.

As s, t are relatively prime numbers, there exist m,n € Z such that a; + sn = ag +tm =: by. Obviously
slp(ar + sn) — p(a1) and t|p(ag + tm) — p(az), so st|p(bs).

Similarly one obtains bs such that p(as)|p(bs) and p(bs)|p(bs) thus also p(aq)|p(bs) and p(az)|p(bs).

Reasoning inductively we obtain the existence of a = by, as required.

The polynomial p(z) = 222 + 2 shows that the second part of the problem is not true, as p(0) = 2,
p(1) = 4 but no value of p(a) is divisible by 8 for integer a.
Remark. One can assume that the p(a;) are nonzero and ask for a such that p(a) is a nonzero mul-
tiple of all p(a;). In the solution above, it can happen that p(a) = 0. But every number p(a +
np(a1)p(as) ... p(ar)) is also divisible by every p(a;), since the polynomial is nonzero, there exists n such
that p(a + np(a1)p(az) ... p(ay)) satisfies the modified thesis.

Problem 4. We say a triple (aj, az, a3) of nonnegative reals is better than another triple (by, by, bs) if two

out of the three following inequalities a; > by, ag > be, a3 > by are satisfied. We call a triple (,y, 2)

special if x,y, z are nonnegative and x + y + z = 1. Find all natural numbers n for which there is a set

of n special triples such that for any given special triple we can find at least one better triple in S.
Consider the following set of special triples:

8 7 2 3 32 2 11 2
(07ﬁvﬁ> ) (5707 g) ) (37370) ) (B‘Bvﬁ) .

We will prove that any special triple (z,y, z) is worse than one of these (triple a is worse than triple b if
triple b is better than triple a). We suppose that some special triple (z,y, z) is actually not worse than the
first three of the triples from the given set, derive some conditions on x,y, z and prove that, under these
conditions, (z,y, z) is worse than the fourth triple from the set.

Triple (z,y, z) is not worse than (0, %, %) means that y > 2 Forz > % Triple (z,vy, z) is not worse
than (Z,O,g) —x = % or z > '. Triple (z,y, z) is not worse than (3 2 O) — x> % ory > 2. Since
T+ y + z =1, then it is 1mpowble that all inequalities = 2 Ly > 2 zand z > 15 are true. Suppose that

Solution. The answer is n > 4.

T <z theny>—amdz> U@mg1+y+z—1andx>0weget1—()y—g,z—g.W e obtain
the trlple (07 ?, 5) which is wors.e than (1207 % ﬁ) Suppose that y < 2 then z > 2 and 2z > ]75 and this
is a contradlctlon to the adm1s51b111ty of (z, y z). Suppose that z < £, then z > g and y > 185 We get

(by admissibility, again) that z < 35 and y < < 2. The last inequalities 1mply that (— 1—5 %) is better than
)

We will prove that for any given set of three special triples one can find a special triple which is not
worse than any triple from the set. Suppose we have a set .S of three special triples

(w1,91,21), (w2,Y2, 22), (73,3, 23).

Denote a(S) = min(xy, 2, x3), b(S) = min(y1, y2, ys), c(S) = min(z1, z2, z3). It is easy to check that S;:

T —a Yy —b 2 —c

l—a—b—-c'l—a—-b—-cl—a—-b—c

b )
Ty —a Yo — b 2 —C
l-a—b—c'l—a—b—c'l—a—b—

T3 —a ys — b Z3—c
l-a—-b—cl—a—b—c'l—a—b—

2

is a set of three special triples also (we may suppose that a + b+ ¢ < 1, because otherwise all three triples
are equal and our statement is trivial).
If there is a special triple (z,y, z) which is not worse than any triple from S;, then the triple

(l-a=-b—cz+a,(l—a—-b—c)y+db(1—a—-b—c)z+c¢)

is special and not worse than any triple from S. We also have a(S;) = b(S;) = ¢(S1) = 0, so we may
suppose that the same holds for our starting set S.

Suppose that one element of S has two entries equal to 0.

Note that one of the two remaining triples from .S is not worse than the other. This triple is also not
worse than all triples from S because any special triple is not worse than itself and the triple with two
zeroes.

So we have a = b = ¢ = 0 but we may suppose that all triples from S contain at most one zero. By
transposing triples and elements in triples (elements in all triples must be transposed simultaneously) we
may achieve the following situation x1 = yp = 23 = 0 and x5 > x3. If 25 > 2, then the second triple
(22,0, 29) is not worse than the other two triples from S. So we may assume that z; > zo. If y; > v,
then the first triple is not worse than the second and the third and we assume y3 > ;. Consider the
three pairs of numbers xs,y1; 21, 3; ys, 22. The sum of all these numbers is three and consequently the
sum of the numbers in one of the pairs is less than or equal to one. If it is the first pair then the triple
(22,1 — 29,0) is not worse than all triples from S, for the second we may take (1 — 2,0, z;) and for the
third — (0,y3,1 — y3). So we found a desirable special triple for any given S.

Problem 5. Does there exist a finite group G with a normal subgroup H such that |Aut H| > |Aut G|?

Solution. Yes. Let H be the commutative group H = F3, where Fy & Z /27 is the field with two elements.
The group of automorphisms of H is the general linear group GL3Fs; it has

(8—1)-(8—2)-(8—4)=7-6-4=168

elements. One of them is the shift operator ¢ : (1, za, z3) — (22, 23, 21).
Now let T' = {a°, a', a®} be a group of order 3 (written multiplicatively); it acts on H by 7(a) = ¢. Let
G be the semidirect product G = H x, T. In other words, G is the group of 24 elements

G={bad": bec H,ic(Z/3Z)}, ab=¢(b)a.

G has one element e of order 1 and seven elements b, b € H, b # e of order 2.
If g = ba, we find that g? = baba = bp(b)a® # e, and that

g° = bo(b)a*ba = bp(b)ag(b)a® = bo(b)¢* (b)a® = 1 (b),

where the homomorphism ¢ : H — H is defined as ¢ : (@1, 22, 23) — (21 + 22+ 23)(1,1,1). It is clear that
g% = 1(b) = e for 4 elements b € H, while ¢g° = ¢?(b) = e for all b € H.

We see that G has 8 elements of order 3, namely ba and ba? with b € Ker ), and 8 elements of order 6,
namely ba and ba? with b ¢ Ker. That accounts for orders of all elements of G.

Let by € H\Kery be arbitrary; it is easy to see that G is generated by by and a. As every automorphism
of G is fully determined by its action on by and a, it follows that G has no more than

7-8=256

automorphisms.

Remark. G and H can be equivalently presented as subgroups of Sg, namely as H = ((12), (34), (56)) and
G = ((135)(246), (12)).



is a Cauchy sequence in H. (This is the crucial observation.) Indeed, for m > n, the norm ||y, — yul|
may be computed by the above remark as

2
| " el 1 1 11 1\" @2 (n(m—-n)> m-n
Ym — 1 =—l==-=...,—===,...,= = — | —
Y = Yn 2 m n 7 m onm’ T m . 2 m2n?2 m?2
& (m-n)(m—-—n+n) &m-n d&[(1 1
- = — =—|—-———]—0, m,n— oo
2 m2n 2 mn 2 \n m ’

By completeness of H, it follows that there exists a limit
y = lim y, € H.
n—oo

We claim that y sastisfies all conditions of the problem. For m > n > p, with n, p fixed, we compute

2
, d? 1 1 11 1\ "
Hxnfym” :? —— el == ==
m m m’ m m)
dZm—-1 (m—1)? dm-1
=— =— — —, m—00
2 | m? m? 2 m 2’ ’

showing that ||z, — y|| = d/v/2, as well as

& 1 1 1 1\ "
<1’n—ym71’p_ym>:3 __7“'7__7“‘71__7“"__ ;

m m m m

2 _ 2
B TR R (A | I
m

2 | m? m
showing that (x, —y,z, —y) = 0, so that

{\f(xn —y): n€ N}

is indeed an orthonormal system of vectors.

This completes the proof in the case when 7' = S, which we can always take if S is countable. If
it is not, let 2, 2” be any two distinct points in S\ T. Then applying the above procedure to the set
T = {‘T/, IN7 L1, X2y« Tpy -« }

it follows that
R o 2 T SR a7 T 2 U S S oo
lim =lim —— =y
n—o00 n—+ 2 n—oo n

{g(m/ - ’!/%?(fl;” - !/)} U {?(’n —y):ne N}

is still an orthonormal system.
This it true for any distinct 2/, 2" € S\ T it follows that the entire system

{g(:p—y): IGS}

is an orthonormal system of vectors in H, as required.

satisfies that

IMC2008, Blagoevgrad, Bulgaria
Day 2, July 28, 2008

Problem 1. Let n,k be positive integers and suppose that the polynomial 22 — 2* 4 1 divides
2 4 2" + 1. Prove that #2* + 2% + 1 divides 22" + 2™ + 1.

Solution. Let f(z) = 2?" + 2" + 1, g(x) = 2% — 2* + 1, h(x) = 2% + 2* + 1. The complex number
xy = cos(gy;) + isin(gr) is a root of g(w).

Let o = Z&. Since g(z) divides f(z), f(21) = g(z1) = 0. So, 0 = z" + 27 + 1 = (cos(2a) +
isin(2a)) + (cosa+isina) +1 =0, and (2cosa+ 1)(cosa +isina) = 0. Hence 2cosa+ 1 =0, i.e.
a= :I:%’r + 27e, where ¢ € Z.

Let x5 be a root of the polynomial h(z). Since h(z) = L=,
are distinct and they are zo = cos 5> + i sin 23%, where s =3a + 1,a € Z. It is enough to prove that
f(z2) = 0. We have f(z3) = 23" + a5 + 1 = (cos(4sa) + sin(4sa)) + (cos(2sa) + sin(2sa)) + 1 =
(2cos(2sar) 4 1)(cos(2sa) + isin(2sar)) = 0 (since 2cos(2sa) + 1 = 2cos(2s(£Z + 27mc)) + 1 =
2cos(%2) + 1 =2cos((3a £ 1)) + 1 =0).

Problem 2. Two different ellipses are given. One focus of the first ellipse coincides with one focus
of the second ellipse. Prove that the ellipses have at most two points in common.

z3k—1

the roots of the polynomial h(x)
2ms

Solution. It is well known that an ellipse might be defined by a focus (a point) and a directrix (a
straight line), as a locus of points such that the distance to the focus divided by the distance to
directrix is equal to a given number e < 1. So, if a point X belongs to both ellipses with the same
focus F and directrices Iy, I, then €, - ;X = FX = ey - 13X (here we denote by [, X, o X distances
between the corresponding line and the point X). The equation e; - [; X = ey - [, X defines two lines,
whose equations are linear combinations with coefficients e, +e5 of the normalized equations of lines
l1, [ but of those two only one is relevant, since X and F' should lie on the same side of each directrix.
So, we have that all possible points lie on one line. The intersection of a line and an ellipse consists
of at most two points.

Problem 3. Let n be a positive integer. Prove that 2! divides

S (ah)*

0<k<n/2
n n
Solution. As is known, the Fibonacci numbers F), can be expressed as F,, = % <<1+2\/5> — (%) )
Expanding this expression, we obtain that F, = zn%l ((711) + (2)5 +..+ (7)5%>, where [ is the

greatest odd number such that [ < n and s = 1—71 <3

So, Fr = gt 2 (y4,) 5%, which implies that 2"~ divides Yooy, (54,)5"-
k=0

Problem 4. Let Z[z] be the ring of polynomials with integer coefficients, and let f(x), g(z) € Z[z] be
nonconstant polynomials such that g(x) divides f(z) in Z[x]. Prove that if the polynomial f(x)—2008
has at least 81 distinct integer roots, then the degree of g(x) is greater than 5.
Solution. Let f(z) = g(z)h(x) where h(z) is a polynomial with integer coefficients.

Let ay, ..., as; be distinct integer roots of the polynomial f(z)—2008. Then f(a;) = g(a;)h(a;) =
2008 for ¢ = 1,...,81, Hence, g(a1), ..., g(as1) are integer divisors of 2008.

Since 2008 = 23-251 (2,251 are primes) then 2008 has exactly 16 distinct integer divisors (including
the negative divisors as well). By the pigeonhole principle, there are at least 6 equal numbers among
g(a1), ..., g(as1) (because 81 > 16 - 5). For example, g(a;) = g(as) = ... = g(ag) = c. So g(z) —cis

1



a nonconstant polynomial which has at least 6 distinct roots (namely ay, ..., ag). Then the degree
of the polynomial g(x) — ¢ is at least 6.

Problem 5. Let n be a positive integer, and consider the matrix A = (a;j)1<; j<n, Where

1 if i+ j is a prime number,
Qij = .
0 otherwise.

Prove that | det A| = k? for some integer k.

Solution. Call a square matrix of type (B), if it is of the form

0 bio 0 oo biopea 0

o1 0 by ... 0 ba,2k—1

0 b3a 0 oo b3opa 0
bok—21 0 bok—23 ... 0 bok—2.2k—1

0 bgk,Lg 0 e b2k—172k72 0

Note that every matrix of this form has determinant zero, because it has k columns spanning a vector
space of dimension at most k — 1.
Call a square matrix of type (C), if it is of the form

0 C11 0 c2 ... 0 Cl,k

C11 0 C12 0 e Gk 0
0 Co1 0 Co2 ... 0 Cok

C, = Co1 0 Co9 0 .. Cok 0
0 Ck,1 0 Ck2 .. 0 Ck.k

aga 0 a2 0 ... cagr O

By permutations of rows and columns, we see that

det (C O)’ — | det OP2,

|det O = 0 C

where C' denotes the k x k-matrix with coefficients ¢; ;. Therefore, the determinant of any matrix of
type (C) is a perfect square (up to a sign).

Now let X’ be the matrix obtained from A by replacing the first row by (1 00 ... 0)7 and
let Y be the matrix obtained from A by replacing the entry a;; by 0. By multi-linearity of the
determinant, det(A) = det(X') + det(Y"). Note that X’ can be written as

. (10
(0 %)
for some (n — 1) X (n — 1)-matrix X and some column vector v. Then det(A4) = det(X) + det(Y").
Now consider two cases. If n is odd, then X is of type (C), and Y is of type (B). Therefore,
|det(A)| = | det(X)]| is a perfect square. If n is even, then X is of type (B), and Y is of type (C);

hence | det(A)| = | det(Y)] is a perfect square.
The set of primes can be replaced by any subset of {2} U{3,5,7,9,11,...}.

Problem 6. Let H be an infinite-dimensional real Hilbert space, let d > 0, and suppose that S is a
set of points (not necessarily countable) in H such that the distance between any two distinct points
in S is equal to d. Show that there is a point y € H such that

{?(xy): xES}

is an orthonormal system of vectors in H.

Solution. Tt is clear that, if B is an orthonormal system in a Hilbert space H, then {(d/v2)e: e € B}
is a set of points in H, any two of which are at distance d apart. We need to show that every set S
of equidistant points is a translate of such a set.

We begin by noting that, if 1, z2, x5, 24 € S are four distinct points, then

(Tg — 21,00 —21) = d27
(T2 — 1,23 — 71) = B (Hfl’z - 301||2 + ||z — 1’1||2 =22~ 1‘3||2) = %d27
(xg — @1, 04 — x3) = (T2 — X1, 4 — T1) — (X2 — X1, X3 — X1) = %dQ — %dz =0.
This shows that scalar products among vectors which are finite linear combinations of the form
ATy + ATy + - -+ Ay,

where x1, s, .. ., x, are distinct points in S and Ay, g, ..., A, are integers with Ay + Ao+ -+ A, =0,
are universal across all such sets S in all Hilbert spaces H; in particular, we may conveniently evaluate
them using examples of our choosing, such as the canonical example above in R™. In fact this property
trivially follows also when coefficients \; are rational, and hence by continuity any real numbers with
sum 0.

If S = {x1,29,...,2,} is a finite set, we form

1
I:E(?L'1+ZE2+"'+$”),

pick a non-zero vector z € [Span(xy — z, 29 — @, ..., Ty — Jc)]L and seek y in the form y = z + Az for
a suitable A € R. We find that

(71 —y, w0 —y) = (31 — 2 — Az, 39 — . — A2) = (v1 — x, 29 — @) + A 2.

(x1 — x, 29 — x) may be computed by our remark above as

2/ /1 11 NN /11 1 1\’
<1’1—I,I2—1’>_—<(——1,—,—,.‘.,—> 7(_5__17_7‘“7_)
2 n n'n n n'n n n .
& (21 ) =2y d?
2 \n\n n2 oo

2
will make all vectors %(xl — y) orthogonal to each other; it is easily

d
So the choice A = ——
V2n||z]|
checked as above that they will also be of length one.
Let now S be an infinite set. Pick an infinite sequence T' = {x1, 22, ..., Ty, ...} of distinct points

in S. We claim that the sequence

1
yn:ﬁ(x1+x2+~~+xn)
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Day 1

Problem 1.
Suppose that f and g are real-valued functions on the real line and f(r) < g(r) for every rational r. Does this
imply that f(z) < g(z) for every real z if

a) f and g are non-decreasing?

b) f and g are continuous?

Solution. a) No. Counter-example: f and g can be chosen as the characteristic functions of [v/3, 00) and (v/3, c0),
respectively.

b) Yes. By the assumptions g — f is continuous on the whole real line and nonnegative on the rationals. Since
any real number can be obtained as a limit of rational numbers we get that ¢ — f is nonnegative on the whole real
line.

Problem 2.
Let A, B and C' be real square matrices of the same size, and suppose that A is invertible. Prove that if (A—B)C =
BA~! then C(A— B) = A"'B.

Solution. A straightforward calculation shows that (A— B)C = BA~! is equivalent to AC—BC—~BA '+ AA™1 =
I, where I denotes the identity matrix. This is equivalent to (A— B)(C'+A™1) = I. Hence, (A—B)™' =C+ A},
meaning that (C' + A~1)(A — B) = I also holds. Expansion yields the desired result.

Problem 3.

In a town every two residents who are not friends have a friend in common, and no one is a friend of everyone else.
Let us number the residents from 1 to n and let a; be the number of friends of the i-th resident. Suppose that
S a? =n? —n. Let k be the smallest number of residents (at least three) who can be seated at a round table
in such a way that any two neighbors are friends. Determine all possible values of k.

Solution. Let us define the simple, undirected graph G so that the vertices of G are the town’s residents and the
edges of G are the friendships between the residents. Let V(G) = {v1,v2,...,v,} denote the vertices of G; a; is
degree of v; for every i. Let E(G) denote the edges of G. In this terminology, the problem asks us to describe the
length £ of the shortest cycle in G.

Let us count the walks of length 2 in G, that is, the ordered triples (v;, v;, v;) of vertices with v;vj, vju; € E(G)
(i = [ being allowed). For a given j the number is obviously a?, therefore the total number is >, a? =n?—n.

Now we show that there is an injection f from the set of ordered pairs of distinct vertices to the set of these
walks. For viv; & E(G), let f(vi,vj) = (v;, vy, v5) with arbitrary [ such that v;vu;, vv; € E(G). For viv; € E(G), let
f(vi,v;) = (vi,v5,v;). fis an injection since for ¢ # [, (v;,vj,v;) can only be the image of (v;,v;), and for i = [, it
can only be the image of (v;, v;).

Since the number of ordered pairs of distinct vertices is n? — n, S a? > n? —n. Equality holds iff f is
surjective, that is, iff there is exactly one [ with v;v;, vjv; € E(G) for every i, j with v;v; ¢ E(G) and there is no
such [ for any i, j with v;v; € E(G). In other words, iff G contains neither C3 nor Cy (cycles of length 3 or 4), that
is, G is either a forest (a cycle-free graph) or the length of its shortest cycle is at least 5.

It is easy to check that if every two vertices of a forest are connected by a path of length at most 2, then the
forest is a star (one vertex is connected to all others by an edge). But G has n vertices, and none of them has
degree n — 1. Hence G is not forest, so it has cycles. On the other hand, if the length of a cycle C' of G is at
least 6 then it has two vertices such that both arcs of C' connecting them are longer than 2. Hence there is a path
connecting them that is shorter than both arcs. Replacing one of the arcs by this path, we have a closed walk
shorter than C. Therefore length of the shortest cycle is 5.

Finally, we must note that there is at least one G with the prescribed properties — e.g. the cycle C5 itself
satisfies the conditions. Thus 5 is the sole possible value of k.



Problem 4.
Let p(z) = ag + a1z + a2z + - - - + a,2" be a complex polynomial. Suppose that 1 =cq>¢; >--->¢, > 0is a
sequence of real numbers which is convex (i.e. 2¢c; < ¢x_1 + cxy1 for every k = 1,2,...,n — 1), and consider the
polynomial

q(2) = coap + c1a12 + c2a92° + -+ - + cpan 2",

Prove that

< .
max q(2)| < e p(2)|

Solution. The polynomials p and g are regular on the complex plane, so by the Maximum Principle, max|.|<; lg(2)| =
max|,|—; |¢(2)|, and similarly for p. Let us denote My = max,|—; |f(2)| for any regular function f. Thus it suffices
to prove that M, < M,,.

First, note that we can assume ¢, = 0. Indeed, for ¢, = 1 we get p = ¢ and the statement is trivial; otherwise,
q(2) = cap(2) + (1 — ¢)r(2), where 7(z) = >0, cf:f: a;z’. The sequence ;= cljfcc" also satisfies the prescribed
conditions (it is a positive linear transform of the sequence ¢, with ¢ = 1), but ¢, = 0 too, so we get M, < M),
This is enough: M, = |q(20)| < en|p(20)] + (1 — )| (20)] < enMp + (1 — ¢) M, < M,,.

Using the Cauchy formulas, we can express the coefficients a; of p from its Values taken over the positively

oriented circle S = {|]z| = 1}:
a':L p(z)dz:i/ ()|d|
T omi Jg 20Tt 21 Jg 27

/ ZLj)|dz| =0.
g Z

Let us use these identities to get a new formula for g, using only the values of p over S:

2m - q(w) = Zn:Cj (/SP(Z)Zj!dZD w’

J=0

for 0 < j < n, otherwise

We can exchange the order of the summation and the integration (sufficient conditions to do this obviously apply):

2 - g(w / ch (w2 | p(2))dz].

It would be nice if the integration kernel (the sum between the brackets) was real. But this is easily arranged — for
—n < 7 < —1, we can add the conjugate expressions, because by the above remarks, they are zero anyway:

n n

2 a(w) = 3¢ ([ o)) wl = 3 e ([ o)zl )

j=0 j=—n

n

2m - q(w) = Y eyw/2) | p(2)ldz] = | K(w/2)p(2)ldz],
S S

j=—n

where
n

K(u) = Z cmuj =co+ QchSR(uj)

jzfn j=1

foru e S.
Let us examine K (u). It is a real-valued function. Again from the Cauchy formulas, [¢ K (u)|du| = 2m¢o = 27.
If [¢|K (u)||du| = 27 still holds (taking the absolute value does not increase the integral), then for every w:

Irlg(w)) = 1 [ Ko

< [1KG/2)]- bl < My /S [ (w)du| = 27

this would conclude the proof. So it suffices to prove that [¢|K(u)||du| = [¢ K(u)|du|, which is to say, K is
non-negative.
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Now let us decompose K into a sum using the given conditions for the numbers ¢; (including ¢, = 0). Let
dp = cp—1 —2c + cpqq for k= 1,... n (setting cp41 = 0); we know that dj, > 0. Let Fi(u) = Z?;ikﬂ(kz — i)
Then K(u) = Y ,_, dpFj(u) by easy induction (or see Figure for a graphical illustration). So it suffices to prove
that Fy(u) is real and Fj(u) > 0 for u € S. This is reasonably well-known (as % is the Fejér kernel), and also very
easy:
Fow)=(0+u+u’+ - +u" A +u " +u 2+ 4o )=

=(l4+ut+u?+ -+ A +ut+u+ - ub ) = T+ut+u? a2 >0
This completes the proof.

Problem 5.
Let n be a positive integer. An n-simplex in R™ is given by n + 1 points Py, Py, ..., Py, called its vertices, which
do not all belong to the same hyperplane. For every n-simplex S we denote by v(S) the volume of S, and we write
C(S) for the center of the unique sphere containing all the vertices of S.

Suppose that P is a point inside an n-simplex S. Let S; be the n-simplex obtained from S by replacing its ¢-th
vertex by P. Prove that

0(S0)C/(So) + v(S1)C(S1) + - -+ + v(Sn)C(Sp) = v(S)C(S).

Solution 1. We will prove this by induction on n, starting with n = 1. In that case we are given an interval [a, b]
with a point p € (a,b), and we have to verify

b+p

b=p)——+(—a)

pta b+a
9 _(b a) 9 )

which is true.
Now let assume the result is true for n — 1 and prove it for n. We have to show that the point

" v(S))

X = 120(S;
Z v(S) ()
7=0

has the same distance to all the points Py, Pj,...,P,. Let i« € {0,1,2,...,n} and define the sets

M; = {Py,P1,...,P,_1,Pi+1,...,P,}. The set of all points having the same distance to all points in M; is a

line h; orthogonal to the hyperplane F; determined by the points in M;. We are going to show that X lies on every

h;. To do so, fix some index 7 and notice that

_ () ey, 00S) —v(S) v(S;) A
X_U(S)O(SZ)+ o) -ZU ZO(S])

and O(S;) lies on h;, so that it is enough to show that Y lies on h;.

A map f: Ryg — R” will be called affine if there are points A, B € R™ such that f(A\) = AMA + (1 — \)B.
Consider the ray g starting in P; and passing through P. For A > 0 let Py, = (1 — A)P + AP, so that Py is an
affine function describing the points of g. For every such A let S])f be the n-simplex obtained from S by replacing
the j-th vertex by Py. The point O(S;‘) is the intersection of the fixed line h; with the hyperplane orthogonal to

3



g and passing through the midpoint of the segment P; P\ which is given by an affine function. This implies that

also O(S])»‘) is an affine function. We write ¢; = %, and then

Y= Z 0;0(57)
J#i
is an affine function. We want to show that Yy € h; for all A (then specializing to A = 1 gives the desired result).
It is enough to do this for two different values of .

Let g intersect the sphere containing the vertices of S in a point Z; then Z = P, for a suitable A > 0, and we
have O(S])»‘) = O(S) for all j, so that Y\ = O(S) € h;. Now let g intersect the hyperplane E; in a point @Q; then
Q@ = P, for some A > 0, and @ is different from Z. Define T' to be the (n — 1)-simplex with vertex set M;, and
let T; be the (n — 1)-simplex obtained from 7' by replacing the vertex P; by Q. If we write v for the volume of
(n — 1)-simplices in the hyperplane E;, then

V(1) _ U(S]‘A) _ U(S]‘A)
v'(T) v(S) Zk;ﬁi U(Sﬁ)
Av(S;) v(S;)

T (S oS) —o(S)

If p denotes the orthogonal projection onto F; then p(O(SjA)) = O(Tj), so that p(Yx) = >_,; »;O(T}) equals O(T)
by induction hypothesis, which implies Y € p~1(O(T)) = h;, and we are done.

Solution 2. For n =1, the statement is checked easily.
Assume n > 2. Denote O(S;) — O(S) by ¢; and P; — P by p;. For all distinct j and k in the range 0, ...,n the
point O(S;) lies on a hyperplane orthogonal to py and P; lies on a hyperplane orthogonal to g;. So we have

(pisqj —ar) =0

(¢i,pj —p) =0
for all j # i # k. This means that the value (p;,q;) is independent of j as long as j # 4, denote this value by A;.
Similarly, (g;,p;) = p; for some p;. Since n > 2, these equalities imply that all the A\; and p; values are equal, in

particular, (p;, qj) = (pj, ;) for any i and j.
We claim that for such p; and ¢;, the volumes

V= | det(po, wsPj—1,Pj+1, ey Pn)|

and
Wj = | det(qo, vy Q51545415 -0y Qn)|

are proportional. Indeed, first assume that pg, ..., p,—1 and qq, ..., ¢n—1 are bases of R"™, then we have

1
V= det (P, @1)) ) kzj| =
= Taettao, gy |0 (Pr ) )iy
1 det(p(]a"'apnfl)
= det(((pr> @1))) 15 | = Wj.
[dotla, )] |- PR @) 1 1= |G g |

If our assumption did not hold after any reindexing of the vectors p; and ¢;, then both p; and ¢; span a subspace
of dimension at most n — 1 and all the volumes are 0.

Finally, it is clear that ) ¢;W;/det(qo, ..., qn) = 0: the weight of p; is the height of 0 over the hyperplane
spanned by the rest of the vectors g, relative to the height of p; over the same hyperplane, so the sum is parallel
to all the faces of the simplex spanned by qq,...,¢,. By the argument above, we can change the weights to the
proportional set of weights V;/ det(po, ..., pn) and the sum will still be 0. That is,

V. .
0= ZQjcie‘g(p—J =Y (0(S)) = O(9)) o(8)

05+ Pn)

= ﬁ (Z O(8;)v(S5) — O(9) Zv(sj)) =3O (Z O(8;)v(S;) — O(S)v(S)) ,
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Day 2

Problem 1.
Let ¢ be a line and P a point in R3. Let S be the set of points X such that the distance from X to ¢ is greater
than or equal to two times the distance between X and P. If the distance from P to £ is d > 0, find the volume of

S.

Solution. We can choose a coordinate system of the space such that the line £ is the z-axis and the point P
is (d,0,0). The distance from the point (z,y,z) to £ is \/x? + y?, while the distance from P to X is |[PX| =
\/ (x —d)? 4+ y2 + 22. Square everything to get rid of the square roots. The condition can be reformulated as
follows: the square of the distance from £ to X is at least 4|PX|?.

22> A(x—d)? +y? + 22)
0 > 322 — 8dx + 4d> + 3y? + 42°

16 4 \?
<§—4> d223<x—§d> + 3y? + 427

A translation by %d in the z-direction does not change the volume, so we get

4
§d2 > 322 + 3y? + 422

= (5 () (%)

where x1 = x— %d. This equation defines a solid ellipsoid in canonical form. To compute its volume, perform a linear

. s 2d d : 2d\2 d _ 4d®
transformation: we divide z1 and y by 5 and z by Net This changes the volume by the factor (3) 3% =03 angd
turns the ellipsoid into the unit ball of volume %77. So before the transformation the volume was % . %77 = 12(;7:% )

Problem 2.
Suppose f: R — R is a two times differentiable function satisfying f(0) = 1, f/(0) = 0, and for all z € [0, 00),
f(@) = 5f'(x) + 6f(x) > 0.
Prove that for all z € [0, c0),
f(z) > 3e*® — 23,
Solution. We have f”(x) —2f'(x) — 3(f'(z) — 2f(x)) > 0, z € [0, c0).
Let g(z) = f'(z) — 2f(x), z € [0,00). It follows that
g,(l') - 39('%.) > 07 T € [07 OO),
hence
(g(x)e™") >0, w € [0,00),

therefore
g(z)e > > g(0) = —2, z € [0,00) or equivalently

f'(x) —2f(z) > =23, x € [0,00).

Analogously we get
(f(z)e ") > —2¢*, x € [0,00) or equivalently

(f(z)e 2 +2e7) >0, z € [0,00).

It follows that
f(z)e™® +2¢° > f(0)+2=3, z €[0,00) or equivalently

f(z) > 3e*® — 23 2 € [0,00).



Problem 3.
Let A, B € M,,(C) be two n x n matrices such that

A’B + BA? = 2ABA.

Prove that there exists a positive integer k such that (AB — BA)¥ = 0.

Solution 1. Let us fix the matrix A € M,,(C). For every matrix X € M,(C), let AX := AX — XA. We need to
prove that the matrix AB is nilpotent.
Observe that the condition A2B + BA? = 2ABA is equivalent to

A’B = A(AB) = 0. (1)
A is linear; moreover, it is a derivation, i.e. it satisfies the Leibniz rule:
A(XY)=(AX)Y + X(AY), VX,Y € M,(C).
Using induction, one can easily generalize the above formula to k factors:
AXy-Xp) = (AX)Xg - X+ -+ Xp - X1 (AX) X1 Xp + X1 - X1 AXG, (2)
for any matrices X1, Xo, ..., X} € M,(C). Using the identities (1) and (2) we obtain the equation for A*(B¥):
A*(BF) = E(AB)k, vk eN. (3)

By the last equation it is enough to show that A™(B™) = 0.
To prove this, first we observe that equation (3) together with the fact that A2B = 0 implies that A¥T1 Bk =0,

for every k € N. Hence, we have '
AFB) =0, Vk,jEN, j<k. (4)

By the Cayley—Hamilton Theorem, there are scalars «aq, a1, ..., a,_1 € C such that
B"=aol + a1 B+ -+ a,_1B" !,

which together with (4) implies that A"B™ = 0.
Solution 2. Set X = AB — BA. The matrix X commutes with A because

AX — XA = (A’B— ABA) — (ABA — BA?) = A’2B+ BA? —2ABA = 0.
Hence for any m > 0 we have
Xl — X™(AB — BA) = AX™B — X™BA.

Take the trace of both sides:
tr X" = tr A(X™B) — tr(X™B)A =0

(since for any matrices U and V, we have trUV = tr VU). As tr X! is the sum of the m + 1-st powers of
the eigenvalues of X, the values of tr X, ..., tr X™ determine the eigenvalues of X uniquely, therefore all of these
eigenvalues have to be 0. This implies that X is nilpotent.

Problem 4.
Let p be a prime number and F,, be the field of residues modulo p. Let W be the smallest set of polynomials with
coefficients in ), such that

e the polynomials  + 1 and 2P~2 4+ 2P~3 + ... + 22 + 22 + 1 are in W, and

e for any polynomials hy(z) and ha(x) in W the polynomial r(z), which is the remainder of hj(h2(x)) modulo

xP — x, is also in W.

How many polynomials are there in W7



Solution. Note that both of our polynomials are bijective functions on Fy: fi(z) = z + 1 is the cycle 0 — 1 —
2— - —(p—1)—0and fo(z) = 2P 24+ 2P 3 +... 422+ 2x+ 1 is the transposition 0 <> 1 (this follows from the

formula fo(z) = xpx:f L + 2 and Fermat’s little theorem). So any composition formed from them is also a bijection,

and reduction modulo 2 — x does not change the evaluation in IF,. Also note that the transposition and the cycle

generate the symmetric group ( f{“ o fyo f¥ ~* is the transposition k < (k + 1), and transpositions of consecutive
elements clearly generate S)), so we get all p! permutations of the elements of ).

The set W only contains polynomials of degree at most p — 1. This means that two distinct elements of W
cannot represent the same permutation. So W must contain those polynomials of degree at most p — 1 which
permute the elements of F),. By minimality, W has exactly these p! elements.

Problem 5.
Let M be the vector space of m x p real matrices. For a vector subspace S C M, denote by §(S) the dimension of
the vector space generated by all columns of all matrices in S.

Say that a vector subspace T' C M is a covering matriz space if

U ker A = RP.
AET, A#0

Such a T is minimal if it does not contain a proper vector subspace S C T which is also a covering matrix space.
(a) (8 points) Let 7" be a minimal covering matrix space and let n = dim7". Prove that

8(T) < (’;)

(b) (2 points) Prove that for every positive integer n we can find m and p, and a minimal covering matrix space

T as above such that dim7T =n and 6(T") = <Z

Solution 1. (a) We will prove the claim by constructing a suitable decomposition 7' = Zy @ Z; @ --- and a
corresponding decomposition of the space spanned by all columns of T"as W@ W1 & - - -, such that dim Wy < n—1,
dim Wy < n — 2, etc., from which the bound follows.

We first claim that, in every covering matrix space S, we can find an A € S with rk A < dim S — 1. Indeed, let
Sp C S be some minimal covering matrix space. Let s = dim Sy and fix some subspace S’ C Sy of dimension s — 1.
S’ is not covering by minimality of Sy, so that we can find an v € RP with u ¢ Ugcg/ proKer B. Let V = 5'(u);
by the rank-nullity theorem, dimV = s — 1. On the other hand, as Sy is covering, we have that Au = 0 for some
A€ Sp\ S We claim that Im A C V' (and therefore rk(A4) < s —1).

For suppose that Av € V for some v € RP. For every o € R, consider the map f, : Sop — R" defined by
fa: (T4 BA) — 7(u+ av) + BAv, 7 € S', f € R. Note that fy is of rank s = dim Sy by our assumption, so that
some s X § minor of the matrix of fj is non-zero. The corresponding minor of f, is thus a nonzero polynomial of
a, so that it follows that rk f, = s for all but finitely many «. For such an « # 0, we have that Ker f, = {0} and
thus

0# 7(u+ aw) 4+ BAv = (7 + a1 BA) (u + av)

for all 7 € S’, 5 € R not both zero, so that B(u + av) # 0 for all nonzero B € Sy, a contradiction.

Let now T be a minimal covering matrix space, and write dim7T" = n. We have shown that we can find an
A € T such that Wy = Im A satisfies wg = dim Wy < n — 1. Denote Zy = {B € T : Im B C Wy}; we know that
to=dimZy > 1. U T = Zp, then 6(T) < n— 1 and we are done. Else, write T' = Zy ® T}, also write R™ = Wy @ V;
and let m; : R™ — R"™ be the projection onto the Vi-component. We claim that

Tlti = {7‘(‘17’1 I T € Tl}

is also a covering matrix space. Note here that 71'? : T — Tf, 71 +— (m171) is an isomorphism. In particular we note
that &6(T) = wo + 6(T7).

Suppose that Tf is not a covering matrix space, so we can find a v; € RP with v; € U er, rz0Ker(m7). On
the other hand, by minimality of 7" we can find a u; € RP with u; € Uy ez,, r-0Ker 7. The maps g, : Zg — V,



70 — To(u1 + avr) and hg : T1 — Vi, 71 — mi(71(v1 + Buy)) have rk gy = tp and rkhg = n — ¢y and thus both
rk go = tg and rkh,-1 = n — tg for all but finitely many o # 0 by the same argument as above. Pick such an «
and suppose that

(0 +71)(u1 + avy) =0

for some 1y € Zy, 71 € T1. Applying 71 to both sides we see that we can only have 71 = 0, and then 75 = 0 as well,
a contradiction given that T is a covering matrix space.

In fact, the exact same proof shows that, in general, if T is a minimal covering matrix space, R™ = V[, ® V1,
To ={r €T : Im7 C W}, T ="Ty®Th, m : R™ — R™ is the projection onto the Vj-component, and
Tlti ={mm : 1 € T}, then Tf is a covering matrix space.

We can now repeat the process. We choose a m A1 € Tf such that Wy = (m141)(RP) has w; = dimW; <
n—ty—1<n—2 Wewrite Z1 ={m € T1 : Im(mm) C Wi}, T1 =Z1® T, (and so T = (Zy ® Z1) ® T3),
tp =dimZ; > 1, Vi = W1 &V, (and so R™ = (Wy @ Wy) @ Vi), me : R™ — R™ is the projection onto the
Va-component, and Tg = {mamy : T € T3}, so that Tg is also a covering matrix space, etc.

We conclude that
5(T) = wWo +5(T1) = wo + wq +5(T2) — ...

<-1)+m-2)+ < (Z)

(b) We consider (g) X n matrices whose rows are indexed by (g) pairs (i, 7) of integers 1 < i < j < n. For every
u = (u1,uz,...,up) € R", consider the matrix A(u) whose entries A(u)(; ;) With 1 <i<j<nand1<k<n
are given by
Ug, k= j’
(Aw) Gk = —uj, k=1,

0, otherwise.

It is immediate that Ker A(u) = R - u for every u # 0, so that S = {A(u) : u € R"} is a covering matrix space,
and in fact a minimal one.

On the other hand, for any 1 < i < j < n, we have that A(e;)( ) ; is the (i,7)™ vector in the standard basis
of ]R(g), where e; denotes the i*" vector in the standard basis of R™. This means that §(S) = (g), as required.

Solution 2. (for part a)

Let us denote X = RP, Y = R™. For each z € X, denote by p; : T — Y the evaluation map 7 — 7(z). As T
is a covering matrix space, ker p, > 0 for every z € X. Let U = {x € X : dimker p, = 1}.

Let T7 be the span of the family of subspaces {ker u, : x € U}. We claim that T} = T. For suppose the
contrary, and let 77 C T be a subspace of T of dimension n — 1 such that 73 C T”. This implies that T” is a
covering matrix space. Indeed, for = € U, (ker ;) N T" = ker p,, # 0, while for x ¢ U we have dim p, > 2, so that
(ker pi;) VT # 0 by computing dimensions. However, this is a contradiction as T' is minimal.

Now we may choose z1,22,...,2, € U and 11,72,...,7, € T in such a way that ker y,, = R7; and 7; form a
basis of T'. Let us complete x1,...,z, to a sequence 1, ...,z which spans X. Put y;; = 7;(x;). It is clear that
v;; span the vector space generated by the columns of all matrices in 7. We claim that the subset {y;; : ¢ > j} is
enough to span this space, which clearly implies that §(7") < (g)

We have y; = 0. So it is enough to show that every y;; with ¢ < j can be expressed as a linear combination of
Yii, K =1,...,n. This follows from the following lemma:

Lemma. For every xg € U, 0 # 19 € ker py, and x € X, there exists a 7 € T such that m9(x) = 7(x¢).

Proof. The operator pi, has rank n — 1, which implies that for small € the operator pi,+c» also has rank n — 1.
Therefore one can produce a rational function 7(¢) with values in 7" such that mg,4e.(7(¢)) = 0. Taking the
derivative at € = 0 gives iz, (70) + 12 (7'(0)) = 0. Therefore 7 = —7/(0) satisfies the desired property.

Remark. Lemma in solution 2 is the same as the claim Im A C V at the beginning of solution 1, but the proof given here

is different. It can be shown that all minimal covering spaces T" with dim7T = (g) are essentially the ones described in our
example.
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Problem 1. Let 0 < a < b. Prove that
b 2 2 2
/ (22 + Ve de>e @ —e .

Solution 1. Let f(z)= [ (t*+ 1)e ~dt and let g(x) = —e*"; both functions are increasing.
By Cauchy’s Mean Value Theorem, there exists a real number x € (a,b) such that

)= fla)  fx) @P+1De™ 1 1 1
o) —gla)  g@) 2ee” 2 <“ E) S
Then ,
[ @ 0e s = £0) - f@) 2 9(0) - gla) = -
Solution 2. , ,
/ 2 + le —2* > / e dr = [— e_xQ]Z —e @ — e,

Problem 2. Compute the sum of the series

= 1 1 1
]; W+ D)@k +2)dk+3)dk+4) 1.2.3.4 5678

Solution 1. Let
00 ikt

kzzo (4k + 1)(4k + 2)(4k + 3)(4k +4)°

F(x) =

This power series converges for |z| < 1 and our goal is to compute F(1).
Differentiating 4 times, we get
(IV 4k _
E Z v 1— a:4

Since F'(0) = F'(0) = F”(0) = F"(0) = 0 and F is continuous at 1 — 0 by Abel’s continuity theorem,




integrating 4 times we get

" /// Y dx ]' ]' 1
F"(y)=F F ) dz = 1 x4:iarctany+zlog(1+y)—Zlog(l—y),
0 I
=71 1 1
F"(z) = F"(0 / F"(y) dz = / (5 arctany + 1 log(1+4y) — 1 log(1 — y)) dy =
0 0

e ) i<(1+z)log(1+z)—/ozdy)—i—i((l—z)log(l—z)—i—/ozdy):

1 1 1 1
=357 arctan z — 1 log(1 + 2%) + 1(1 + z)log(1+ 2) + Z(l — 2z)log(1l — 2),

b1 1 1 1
F'(t) = / (52 arctan z — 1 log(1 + 2%) + Z(l + z)log(1+ 2) + Z(l — z)log(1 — z)) dt =
0

1
4

1
= — t —
5 <Z arctan z

1
<(1 + t*) arctant — t) e (t log(1 +t%) — 2t +2 arctant) +

1 1 1 1
+ (1 +t)2log(1+t) —t—=t? | — = (1 —t)*log(1 —t) +t— =t* | =
8 2 8 2
1 2 1 2 1 2 1 2
= Z(—1+t )arctant—itlog(lth )+§(1+t) log(1+t)—§(1—t) log(1 —t),

L1 1 1 1
F(1) = /0 (Z(_l + %) arctant — Ztlog(l + %) + g(l +t)?log(1 +t) — g(l —t)?log(1 — t)) dt =

3t 4+ 17 1—3t2 (141) (1—1)3 '"m2 7«
= | ——— arctant log(1 + 2 log(1 + ¢ log(l—1t)| = —= — —.
{ parctant + — = log(1+47) + = log(1 41) + ——7— log )0 FREY

Remark. The computation can be shorter if we change the order of integrations.

1 t z Y 1
:/ / // 4dxdydzdt:/ 4/ / / dt dz dy dz =
t=0 J 2=0 Jy=0 01_3j 01—1’ y=x Jz=y Jt=z2
1 (1
/ </ / / dtdzdy)dx—/ Il
:vOl_'r y=z Jz=zx Jt=x 01_']; 6

t log(1 + 2%) + 1 (1+ )1 2 _ 7
= ——arcanx——o x 0 )| =———.
6 12 % 3% .4

Solution 2. Let

m

1 1 1 1 1 1 1
Ay = )

;(4k+1)(4k+2)(4k+3 1+ 4) Z<6 M+l 2 412 2 3+3 6 k14

k=0

" 1 1
Bm: - )
kzzo(llk—i-l 4k+3)
—i ! — ! + ! — 1 and
_k:O Ak +1 4k+2 ' 4k +3 4k +4

" 1 1
DD o] e m———
c\dk+2 4k +4

It is easy check that

1 1 1
A, ==-C, — =B, —=D,,.
3 6 6
Therefore,
22— T~ Iino
_ _ n2———-In

limAmzlimQCm Bin Dm: 4 2 :11n2—1.
6 6 4 24



Problem 3. Define the sequence xy, xs, ... inductively by z; = V5 and Tpil = xi — 2 for each n > 1.

Compute
. X1 T2 T3 Tp
lim .
n—oo Jj‘nJrl

Solution. Let y, = 2. Then y,11 = (y, — 2)? and y,11 — 4 = Yn(y, — 4). Since y» = 9 > 5, we have
ys = (y2 — 2)? > 5 and inductively y, > 5,n > 2. Hence, yni1 — Yo = ¥ — 5y, +4 > 4 for all n > 2, so
Yp — O0.

BY Y1 — 4= yn(yn — 4),

(xl-x2~x3-~-xn)2 Y Y Us Y

Ln+1 Yn+1
_ Yo —4 Yt Ys o Yn  Ynn — 4 YoYU Ynor
Yn+1 Ynt1 — 4 Yn+1 Yn —4
_ Ynt1 — 4 1 :yn+1—4_>1.

Yn+1 Y1 — 4 Yn+1

Therefore,

. X1 T2 T3 Tp
lim =1.
n—oo Tnt1

Problem 4. Let a,b be two integers and suppose that n is a positive integer for which the set
Z\ {az" +by" | x,y € Z}

is finite. Prove that n = 1.

Solution. Assume that n > 1. Notice that n may be replaced by any prime divisor p of n. Moreover,
a and b should be coprime, otherwise the numbers not divisible by the greatest common divisor of a,b
cannot be represented as az™ + by™.

If p = 2, then the number of the form ax? + by? takes not all possible remainders modulo 8. If, say, b is
even, then ax? takes at most three different remainders modulo 8, by? takes at most two, hence az? + by?
takes at most 3 X 2 = 6 different remainders. If both a and b are odd, then ax? + by? = 2% £ y* (mod 4);
the expression z2 + 2 does not take the remainder 3 modulo 4 and 22 — y? does not take the remainder 2
modulo 4.

Consider the case when p > 3. The pth powers take exactly p different remainders modulo p?. Indeed,
(z + kp)?P and zP have the same remainder modulo p?, and all numbers 0P, 17, ..., (p — 1)? are different
even modulo p. So, ax? + byP take at most p? different remainders modulo p?. If it takes strictly less then
p? different remainders modulo p?, we get infinitely many non-representable numbers. If it takes exactly
p? remainders, then ax? + by? is divisible by p? only if both = and y are divisible by p. Hence if ax? + by
is divisible by p?, it is also divisible by pP. Again we get infinitely many non-representable numbers, for
example the numbers congruent to p> modulo p? are non-representable.

Problem 5. Suppose that a,b, ¢ are real numbers in the interval [—1, 1] such that
1+ 2abe > a2 + 1% + 2.

Prove that
1+ 2(abe)™ > a® + b* + ™

for all positive integers n.



Solution 1. Consider the symmetric matrix

1 a b
A=|a 1 ¢
b ¢ 1
) 1 a 10 1 ¢ . -
By the constraint we have det A > 0 and det 0 1 , det b1 , det 1 > 0. Hence A is positive
semidefinite, and A = B? for some symmetric real matrix B.
Let the rows of B be z, y, z. Then |z| =|y|=|2|=1,a=xz-y,b=y- 2z and ¢ = 2z - z, where |z| and

x -y denote the Euclidean norm and scalar product. Denote by X = ®™x, Y = Q™y, Z = ®"z the nth
tensor powers, which belong to R*". Then |[X|=|Y|=|Z|=1, XY =a", Y -Z=0"and Z - X = "

1 a™ b
So, the matrix [ a® 1 ¢" |, being the Gram matrix of three vectors in R3", is positive semidefinite, and
o1

its determinant, 1 + 2(abc)™ — a®* — b** — ¢*" is non-negative.

Solution 2. The constraint can be written as
(a —bc)* < (1 =05 (1 —c?). (1)
By the Cauchy-Schwarz inequality,
(an_l +a"%be+ ...+ b"_lc"_1)2 < (|a|"_1 + la|"2|be| 4 ... + |bc|"_1)2
< (L bef 44 b ) < (L B2 4+ PO (1 4 e 4+ [0
Multiplying by (1), we get
(a—be)*(a™ ' +a" Pbe+ ...+ 0L
(=8 1+ ) ) (= @)+ e+ [ef2D) ),

(a™ —b"c™)? < (1 —b")(1 — "),
1+ 2(abc)™ > a® + b*" + b*".



IMC2010, Blagoevgrad, Bulgaria
Day 2, July 27, 2010

Problem 1. (a) A sequence w1, s, ... of real numbers satisfies
Tpi1 = Tpcosx, forall n>1.

Does it follow that this sequence converges for all initial values x;?

(b) A sequence y1, s, ... of real numbers satisfies
Ynt1 = Ypsiny, forall n>1.

Does it follow that this sequence converges for all initial values y,7

Solution 1. (a) NO. For example, for z; = 7 we have x,, = (—1)""!7, and the sequence is divergent.

(b) YES. Notice that |y,| is nonincreasing and hence converges to some number a > 0.

If a = 0, then limy,, = 0 and we are done. If a > 0, then @ = lim |y,,41| = lim |y, sin y,,| = a-| sin al,
sosina = +1 and a = (k + %)7? for some nonnegative integer k.

Since the sequence |y,| is nonincreasing, there exists an index ng such that (k + 3)7 < |y,| <
(k + 1)m for all n > ng. Then all the numbers Y, 41, Yng+2, - - lie in the union of the intervals
[(k+3)m, (k+ 1)m) and (— (k+ L)m, —(k + 1)x].

Depending on the parity of k, in one of the intervals [(k+3)m, (k+1)7) and (—(k+1)m, —(k-+3)7]
the values of the sine function is positive; denote this interval by I,. In the other interval the sine
function is negative; denote this interval by I_. If y,, € I_ for some n > ng then y,, and y,11 = y, siny,
have opposite signs, so y,+1 € Iy. On the other hand, if If y,, € I, for some n > ng then y, and y,, 1,
have the same sign, so 4,11 € I,. In both cases, y,.1 € ..

We obtained that the numbers 12, Yno+3, - - - lie in I, so they have the same sign. Since |y, | is
convergent, this implies that the sequence (y,) is convergent as well.

Solution 2 for part (b). Similarly to the first solution, |y,| — a for some real number a.
Notice that ¢ -sint = (—t) sin(—t) = |¢|sin |¢| for all real ¢, hence y, 1 = |y,|sin |y,| for all n > 2.
Since the function ¢t — tsint is continuous, ¥,4+1 = |y»| sin |y,| — |a|sin |a| = a.

Problem 2. Let ag,aq,...,a, be positive real numbers such that a1 —ap > 1 for all £k =
0,1,...,n — 1. Prove that

1 1 1 1 1 1
I o B GRS
QAo a; — Qo Ay — Qo QAo ay (7%

Solution. Apply induction on n. Considering the empty product as 1, we have equality for n = 0.

Now assume that the statement is true for some n and prove it for n+ 1. For n+ 1, the statement
can be written as the sum of the inequalities

1 1 1 1 1
Qo ay — Qo an — Qo Qo (7%

(which is the induction hypothesis) and

1 1 1 1 1 1 1
—(1+ 14 . <(14+—)---(1+—)- . (1)
Qo a1 — ag apn — Qo Ap+1 — Ao Qg Qn An1

Hence, to complete the solution it is sufficient to prove (1).

1



To prove (1), apply a second induction. For n = 0, we have to verify

1 1 1 1
— < (14— |—.
Qg a1 — Qo Qg / ay

Multiplying by aga;(a; — ap), this is equivalent with

a1 < (CLO + 1)(&1 — ao)
ag < apa; — a%

1§a1—a0.

For the induction step it is sufficient that

1 a —a 1 a
<1 + ) . n+1 0 S <1 + ) . n+1 .
Apy1 — Ao Qpy2 — Ao Ant1 Apt2

Multiplying by (a0 — ag)anio,

(an+1 — ao + 1)anto < (ans1 + 1)(@ns2 — ag)
ag < Aolpy2 — Aolni1

1 S Ap42 — Ap41-

Remark 1. It is easy to check from the solution that equality holds if and only if ag,q — ax = 1 for
all k.

Remark 2. The statement of the problem is a direct corollary of the identity

1+i<%ﬂ<1+xix>> :ﬁ<1+%).

i=0 i J i=0

Problem 3. Denote by S, the group of permutations of the sequence (1,2,...,n). Suppose that
G is a subgroup of S, such that for every m € G \ {e} there exists a unique k& € {1,2,...,n} for
which (k) = k. (Here e is the unit element in the group S,.) Show that this £ is the same for all
T e G\ {e}.

Solution. Let us consider the action of G on the set X = {1,...,n}. Let

G,={9€G: g(x)=2} and Gz ={g(x): g€ G}
be the stabilizer and the orbit of x € X under this action, respectively. The condition of the problem

states that
G=JG. (1)

rzeX

and
G,NGy,={e} forall z#uy. (2)

We need to prove that G, = G for some = € X.
Let Gxy,...,Gxy be the distinct orbits of the action of G. Then one can write (1) as

¢=J U a6 (3)

i=1yeGz;

2



It is well known that

|G|
|G| = = (4)
|G
Also note that if y € Gz then Gy = Gz and thus |Gy| = |Gz|. Therefore,
Gl _ 1G]
Gyl=——=—-=1G,| forall yeGz. 5

Combining (3), (2), (4) and (5) we get

J U é \{}' ZE (1G] — 1),

i=1yeGx;

Gl =1 =G\ {e}| =

hence
k

i=1

If for some 4,j € {1,...,k} |G4,|,|Gz,| > 2 then

()2 (1-3) ()=

i=1
which contradicts with (6), thus we can assume that

Gl = . = Gy | = 1
Then from (6) we get |G, | = |G|, hence G,, = G.

Problem 4. Let A be a symmetric m X m matrix over the two-element field all of whose diagonal
entries are zero. Prove that for every positive integer n each column of the matrix A™ has a zero
entry.

Solution. Denote by ¢ (1 < k < m) the m-dimensional vector over Fy, whose k-th entry is 1 and all
the other elements are 0. Furthermore, let u be the vector whose all entries are 1. The k-th column
of A™ is A™e. So the statement can be written as A"e, # u for all 1 < k <m and all n > 1.

For every pair of vectors z = (x1,...,2,) and y = (y1, ..., Ym), define the bilinear form (z,y) =
2Ty = 191 + ... + TYm. The product (z,y) has all basic properties of scalar products (except the
property that (z,x) = 0 implies = 0). Moreover, we have (z,x) = (x,u) for every vector = € Fj".

It is also easy to check that (w, Aw) = wT Aw = 0 for all vectors w, since A is symmetric and its
diagonal elements are 0.

Lemma. Suppose that v € F}* a vector such that A"v = u for some n > 1. Then (v,v) = 0.

Proof. Apply induction on n. For odd values of n we prove the lemma directly. Let n = 2k + 1 and
w = A*v. Then

(v,v) = (v,u) = (v, A") = vT A" = VT A? Ty = (AFv, A¥) = (w, Aw) = 0.

Now suppose that n is even, n = 2k, and the lemma is true for all smaller values of n. Let
w = A*v; then A*w = A" = u and thus we have (w,w) = 0 by the induction hypothesis. Hence,

(v,v) = (v,u) = vT A" = vT A%y = (A*)T (A*v) = (AP, AFv) = (w,w) = 0.

The lemma is proved.



Now suppose that A"e, = u for some 1 < k < m and positive integer n. By the Lemma, we
should have (e, e;) = 0. But this is impossible because (e, ex) = 1 # 0.

Problem 5. Suppose that for a function f: R — R and real numbers a < b one has f(z) = 0 for
all z € (a,b). Prove that f(z) =0 for all z € R if

p—1
k
f (y + —) =0
k=0 p

for every prime number p and every real number y.

Solution. Let N > 1 be some integer to be defined later, and consider set of real polynomials
In =1 co+azr+...+c2" € Rlz] ’ Vr e R icf(ijﬁ)—O
N=19 Cta ST Cp 2 i N~ .

Notice that 0 € Jy, any linear combinations of any elements in 7y is in Jy, and for every P(z) € Jy
we have 2P (z) € Jn. Hence, Jy is an ideal of the ring R|x].

By the problem’s conditions, for every prime divisors of N we have 1 € Jn. Since R[x]

;L'N/p —

is a principal ideal domain (due to the Euclidean algorithm), the greatest common divisor of these
N

polynomials is an element of Jy. The complex roots of the polynomial are those Nth

alNr —1
roots of unity whose order does not divide N/p. The roots of the greatest common divisor is the
intersection of such sets; it can be seen that the intersection consist of the primitive Nth roots of
unity. Therefore,

|
SR

is the Nth cyclotomic polynomial. So &y € Jy, which polynomial has degree p(N).

N N
Now choose N in such a way that % < b—a. It is well-known that li]{fn inf % = 0, so there
exists such a value for N. Let ®n(z) = ag + a17 + ... + ayn)z?™) where ayvy) = 1 and |ag| = 1.
@(N)
Then, by the definition of Jy, we have akf(:c + %) =0 for all x € R.
k=0
If z € [b,b+ +), then
e(N)-1
fla)== 3 acf(z—2F).
k=0
e(N)—k

On the right-hand side, all numbers » — =~ lie in (a,b). Therefore the right-hand side is zero,
and f(z) =0 for all z € [b,b+ +). It can be obtained similarly that f(z) = 0 for all z € (a — <, a]
as well. Hence, f = 0 in the interval (a — %, b+ %) Continuing in this fashion we see that f must

vanish everywhere.



IMC2011, Blagoevgrad, Bulgaria

Day 1, July 30, 2011

Problem 1. Let f: R — R be a continuous function. A point z is called a shadow point if there exists a point y € R with
y > x such that f(y) > f(x). Let a < b be real numbers and suppose that

e all the points of the open interval I = (a,b) are shadow points;
e ¢ and b are not shadow points.

Prove that
) flz) <

a (b) for all a < x < b;
b) fla) = f(b

f
f(0).
(José Luis Diaz-Barrero, Barcelona)

Solution. (a) We prove by contradiction. Suppose that exists a point ¢ € (a,b) such that f(c) > f(b).
By Weierstrass’ theorem, f has a maximal value m on [c,b]; this value is attained at some point d € [c,b]. Since
fld) = I[néﬁ(f > f(e) > f(b), we have d # b, so d € [c,b) C (a,b). The point d, lying in (a,b), is a shadow point, therefore

f(y) > f(d) for some y > d. From combining our inequalities we get f(y) > f(d) > f(b).
Case 1: y > b. Then f(y) > f(b) contradicts the assumption that b is not a shadow point.
Case 2: y <b. Then y € (d,b] C [e, b], therefore f(y) > f(d) =m = I[néﬁ(f > f(y), contradiction again.

(b) Since a < b and a is not a shadow point, we have f(a) > f(b).
By part (a), we already have f(z) < f(b) for all € (a,b). By the continuity at a we have

fla)= lim f(z) < lm f(b)=f(b)

r—a+0 r—a+0

Hence we have both f(a) > f(b) and f(a) < f(b), so f(a) = f(b).

Problem 2. Does there exist a real 3 x 3 matrix A such that tr(A) = 0 and A% + A* = I? (tr(A) denotes the trace of A,
A! is the transpose of A, and I is the identity matrix.)
(Moubinool Omarjee, Paris)

Solution. The answer is NO.
Suppose that tr(A) = 0 and A? + A* = I. Taking the transpose, we have

A=T1— (A =T (A2 =1 (I - A?)?=24% - A%,

A*—24%2+ A=0.

The roots of the polynomial z* — 222 + 2 = x(x — 1)(z? + 2 — 1) are 0, 1, %\/g so these numbers can be the eigenvalues of

A; the eigenvalues of A? can be 0, 1, 1i2‘/5.
By tr(A) = 0, the sum of the eigenvalues is 0, and by tr(A?) = tr(I — A*) = 3 the sum of squares of the eigenvalues is 3.

It is easy to check that this two conditions cannot be satisfied simultaneously.

Problem 3. Let p be a prime number. Call a positive integer n interesting if
" —1= (2" —z+1)f(z) + pg(x)

for some polynomials f and g with integer coefficients.
a) Prove that the number p? — 1 is interesting.
b) For which p is p? — 1 the minimal interesting number?
(Eugene Goryachko and Fedor Petrov, St. Petersburg)

Solution. (a) Let’s reformulate the property of being interesting: n is interesting if 2™ — 1 is divisible by 2P — 2 + 1 in the
ring of polynomials over IF,, (the field of residues modulo p). All further congruences are modulo #? — z + 1 in this ring. We

have 27 =z — 1, then a?’ = (2P)P = (z — 1)’ =aP — 1=z -2, 2 = (P P =(z—2)P =aP -2 =3 -2 — 1=z — 3 and
so on by Fermat’s little theorem, finally 2" =z — p = «,

(@ "t —1) = 0.

Since the polynomials z” — 4+ 1 and x are coprime, this implies 2P"~! — 1 = 0.



(b) We write
L S L = 2z—1)(z—-2)...(z—(p—1)) =aP —z = -1,

hence z21FPHP"+ 47" = 1 and a = 2(1 4+ p+ p*> + --- + pP~1) is an interesting number.
If p> 3, then a = %(pp —1) < pP — 1, so we have an interesting number less than p? — 1. On the other hand, we show

that p = 2 and p = 3 do satisfy the condition. First notice that by ged(z™ — 1,2F — 1) = x9¢d(mk) _ 1 for every fixed p the
greatest common divisors of interesting numbers is also an interesting number. Therefore the minimal interesting number
divides all interesting numbers. In particular, the minimal interesting number is a divisor of p?” — 1.

For p = 2 we have pP? — 1 = 3, so the minimal interesting number is 1 or 3. But 22 — 2 + 1 does not divide z — 1, so 1 is
not interesting. Then the minimal interesting number is 3.

For p = 3 we have pP? — 1 = 26 whose divisors are 1,2,13,26. The numbers 1 and 2 are too small and '3 = —1 # +1 as
shown above, so none of 1,2 and 13 is interesting. So 26 is the minimal interesting number.

Hence, p? — 1 is the minimal interesting number if and only if p =2 or p = 3.

Problem 4. Let A, Ao, ..., A, be finite, nonempty sets. Define the function

n
t) = }: Z (_1)k—1t\Ai1uAi2u...uAik|_
k=1 1<i;<iz<...<ip<n

Prove that f is nondecreasing on [0, 1].

(|A| denotes the number of elements in A.)
(Levon Nurbekyan and Vardan Voskanyan, Yerevan)

Solution 1. Let Q = U A;. Consider a random subset X of Q2 which chosen in the following way: for each x € €2, choose

the element x for the set X with probability ¢, independently from the other elements.
Then for any set C' C €2, we have
P(C c X)=tl°.

By the inclusion-exclusion principle,

P((Ay c X)or (A;CcX)or ... or (A, CX))=

— i Z (f1)k71p(Ai1 UA,U...U4;, CX)=

k=1 1<i1<i2<...<ix<n

n

k=1 1<i1<i2<...<ip<n

The probability P((4; C X) or ... or (4, C X)) is a nondecreasing function of the probability ¢.

Problem 5. Let n be a positive integer and let V' be a (2n — 1)-dimensional vector space over the two-element field.
Prove that for arbitrary vectors vi,...,v4n_1 € V, there exists a sequence 1 < i1 < ... < 19, < 4n — 1 of indices such that
Vi +---+Ui2n, =0.

(Ilya Bogdanov, Moscow and Géza Kdés, Budapest)

Solution. Let V = aff{v1,...,v4n,—1}. The statement v;, + - - - + v;,, = 0 is translation-invariant (i.e. replacing the vectors
by v1 — a,...,V4n—1 — a), SO we may assume that 0 € V. Let d = dim V.
Lemma. The vectors can be permuted in such a way that vy + va,v3 4+ vy, ..., V2g—1 + V24 form a basis of V.

Proof. We prove by induction on d. If d =0 or d = 1 then the statement is trivial.
First choose the vector v; such a way that aff(va, vs,...,v4,—1) = V; this is possible since V is generated by some d + 1
vectors and we have d + 1 < 2n < 4n — 1. Next, choose vo such that ve # v1. (By d > 0, not all vectors are the same.)

Now let £ = {0,v; +v2} and let V! = V/{. For any w € V, let @ = £ + w = {w,w + v1 + va2} be the class of the factor

space V' containing w. Apply the induction hypothesis to the vectors v, ..., v4,_1. Since dim V' = d — 1, the vectors can
permuted in such a way that v3 + ¥y, ..., v2g_1 + V34 is a basis of V/. Then vy + vo,v3 + v4,...,V24_1 + Vaq is a basis of V.
Now we can assume that vy + vg, v3+ vy, . . ., V24—1 + V24 is a basis of V. The vector w = (v1 +vs+ -+ -+ vag—1) + (v2g+1 +

Vadt2 + -+ + Vontq) is the sum of 2n vectors, so w € V. Hence, w + e1(v1 + v2) + -+ + €4(vadg—1 + v24) = 0 with some
€1y...,Eq € Fy, therefore

d 2n-+d
Z(l_EzUQz 1+5U21)+ Z v; = 0.
=1 1=2d+1

The left-hand side is the sum of 2n vectors.



IMC2011, Blagoevgrad, Bulgaria
Day 2, July 31, 2011

Problem 1. Let (a,)22, be a sequence with % < ap < 1for all n > 0. Define the sequence ()22, by

An+1 + Zn

n > 0).
1+an+1xn )

Zo = aop, Tn41 =

What are the possible values of lim x,?7 Can such a sequence diverge?
n—oo

Johnson Olaleru, Lagos

Solution 1. We prove by induction that

Then we will have (1 — ;) — 0 and therefore x,, — 1.
The case n = 0 is true since % <xg=ag<l.
Supposing that the induction hypothesis holds for n, from the recurrence relation we get

Gn41 + Tn o 1— an+1
1+ An4+1Tn 1+ An+4+1Tn

(1 — ).

1—Cﬂn+1:1—

By

1- 1-1
0< il ~ "3
1+ An+1Tn 1+0

we obtain

1 1
0<1—xn+1<§(1—xn)<§-—:—

Hence, the sequence converges in all cases and z,, — 1.

Solution 2. As is well-known,
tanh tanh
tanh(u + v) — anhu + tanh v

1+ tanhwutanhv

for all real numbers u and v.
Setting u,, = ar tanh a,, we have z,, = tanh(ug +uj + -+ + u,). Then ug +uy + -+ +u, > (n+ 1)ar tanh%

and lim z, = lim tanhu = 1.
n—oo U—r00

Remark. If the condition a,, € (4

3, 1) is replaced by a, € (0,1) then the sequence remains increasing and bounded,
but the limit can be less than 1.

Problem 2. An alien race has three genders: male, female, and emale. A married triple consists of three persons,
one from each gender, who all like each other. Any person is allowed to belong to at most one married triple. A
special feature of this race is that feelings are always mutual — if x likes y, then y likes x.

The race is sending an expedition to colonize a planet. The expedition has n males, n females, and n emales.
It is known that every expedition member likes at least k persons of each of the two other genders. The problem
is to create as many married triples as possible to produce healthy offspring so the colony could grow and prosper.

a) Show that if n is even and k = %, then it might be impossible to create even one married triple.

b) Show that if k& > ‘%", then it is always possible to create n disjoint married triples, thus marrying all of the
expedition members.

Fedor Duzhin and Nick Gravin, Singapore



Solution. (a) Let M be the set of males, F' the set of females, and E the set of emales. Consider the (tripartite)
graph G with vertices M U F'U E and edges for likes. A 3-cycle is then a possible family. We’ll call G the graph
of likes.

First, let & = 5. Then n has to be even and we need to construct a graph of likes with no 3-cycles. We'll do
the following: divide each of the sets M, F', and E into two equal parts and draw all edges between two parts as
shown below:

Clearly, there is no 3-cycle.

(b) First divide the the expedition into male-emale-female triples arbitrarily. Let the unhappiness of such a
subdivision be the number of pairs of aliens that belong to the same triple but don’t like each other. We shall show
that if unhappiness is positive, then the unhappiness can be decreased by a simple operation. It will follow that
after several steps the unhappiness will be reduced to zero, which will lead to the happy marriage of everybody.

Assume that we have an emale which doesn’t like at least one member of its triple (the other cases are similar).
We perform the following operation: we swap this emale with another emale, so that each of these two emales will
like the members of their new triples. Thus the unhappiness related to this emales will decrease, and the other
pairs that contribute to the unhappiness remain unchanged, therefore the unhappiness will be decreased.

So, it remains to prove that such an operation is always possible. Enumerate the triples with 1,2,...,n and
denote by E;, F;, M; the emale, female, and male members of the ith triple, respectively. Without loss of generality
we may assume that Fq doesn’t like either F; or M or both. We have to find an index ¢ > 1 such that E; likes
the couple Fy, M7 and F; likes the couple F;, M;; then we can swap F7 and E;.

There are at most n/4 indices ¢ for which F; dislikes F; and at most n/4 indices for which F; dislikes M;, so
there are no more than n/2 indices i for which Fj dislikes someone from the couple M;, F;, and the set of these
undesirable indexes includes 1. Similarly, there are no more than n/2 indices such that either M; or F; dislikes
E;. Since both undesirable sets of indices have at most n/2 elements and both contain 1, their union doesn’t cover
all indices, so we have some ¢ which satisfies all conditions. Therefore we can always perform the operation that

decreases unhappiness.

Solution 2 (for part b). Suppose that k > % and let’s show that it’s possible to marry all of the colonists.

First, we’ll prove that there exists a perfect matching between M and F. We need to check the condition of Hall’s
marriage theorem. In other words, for A C M, let B C F be the set of all vertices of F' adjacent to at least one
vertex of A. Then we need to show that |A| < |B|. Let us assume the contrary, that is |A| > |B|. Clearly, |B| > k
if A is not empty. Let’s consider any f € F'\ B. Then f is not adjacent to any vertex in A, therefore, f has degree
in M not more than n — [A| <n — |B| <n —k < %, a contradiction.

Let’s now construct a new bipartite graph, say H. The set of its vertices is P U F, where P is the set of pairs
male—female from the perfect matching we just found. We will have an edge from (m, f) =p € P to e € E for
each 3-cycle (m, f,e) of the graph G, where (m, f) € P and e € E. Notice that the degree of each vertex of P in
H is then at least 2k — n.

What remains is to show that H satisfies the condition of Hall’s marriage theorem and hence has a perfect
matching. Assume, on the contrary, that the following happens. There is A C P and B C E such that |[A] =,
|B| < I, and B is the set of all vertices of E adjacent to at least one vertex of A. Since the degree of each vertex
of P is at least 2k — n, we have 2k —n < |B| < [. On the other hand, let ¢ € E \ B. Then for each pair
(m, f) = p € P, at most one of the pairs (e,m) and (e, f) is joined by an edge and hence the degree of e in G is
at most |[M \ A| + |F\ A| + |A] =2(n — 1) + 1 = 2n — [. But the degree of any vertex of G is 2k and thus we get
2k < 2n — [, that is, [ < 2n — 2k.

Finally, 2k — n <1 < 2n — 2k implies that k£ < %. This contradiction concludes the solution.

Problem 3. Determine the value of

iln 1+l -In 1—|—i In (14 L
— n 2n n+1)°

Gerhard Woeginger, Utrecht



Solution. Define f(n) = In(“) for n > 1, and observe that f(2n)+ f(2n+1) = f(n). The well-known inequality
In(1 + z) < z implies f(n) < / n. Furthermore introduce

2n—1

gn) = Y fAk) < nfin) < 10’

k=n
Then
g(n) —gn+1) = f*(n) = f3(2n) — f(2n+1)
(f2n) + f@2n+ 1)) = f3(2n) — f*(2n + 1)
+f(2n+1)) f(2n) f(2n+1)
2n) f(2n+1),

therefore

(9(1) —g(N +1)).

W[ =

Zf f@n+1) = %Zg(n)—g(n—i—l) =

n=1

Since g(N + 1) — 0 as N — oo, the value of the considered sum hence is

g f@n+1) = ég(l) = éln3(2).

f(k) = f(m)
k—m
for all integers 0 < k < m < n. Prove that a — b divides f(a) — f(b) for all pairs of distinct integers a and b.

Fedor Petrov, St. Petersburg

Problem 4. Let f(z) be a polynomial with real coefficients of degree n. Suppose that is an integer

Solution 1. We need the following
Lemma. Denote the least common multiple of 1,2,...,k by L(k), and define

hy(z) = L(k) - <k> (k=1,2,...).

Then the polynomial hy(x) satisfies the condition, i.e. a — b divides hy(a) — hy(b) for all pairs of distinct integers

(0576

Proof. It is known that
(This formula can be proved by comparing the coefficient of 2* in (14 2)® and (1 + x)*°(1 + z)°.) From here we
get

i (0)- () = () B

On the right-hand side all fractions # are integers, so the right-hand side is a multiple of (a,b). The lemma is
proved.

Expand the polynomial f in the basis 1, (), (5), ... as

f(m):AoJrAl(:lC)+A2<§>+---+An<z>. (1)

We prove by induction on j that A; is a multiple of L(j) for 1 < j <n. (In particular, A; is an integer for j > 1.)
Assume that L(j) divides A; for 1 < j <m — 1. Substituting m and some k € {0,1,...,m — 1} in (1),

F(m) = £(k) "

j=1

1
J . jm)_hj(k)+ Am
L(j) m—k m—k’




Since all other terms are integers, the last term % is also an integer. This holds for all 0 < k < m, so 4,, is an
integer that is divisible by L(m).
Hence, A; is a multiple of L(j) for every 1 < j < n. By the lemma this implies the problem statement.

Solution 2. The statement of the problem follows immediately from the following claim, applied to the polynomial
g(z,y) = {20,
Claim. Let g(x,y) be a real polynomial of two variables with total degree less than n. Suppose that g(k, m) is an

integer whenever 0 < k < m < n are integers. Then g(k,m) is a integer for every pair k, m of integers.
Proof. Apply induction on n. If n = 1 then g is a constant. This constant can be read from ¢(0,1) which is an
integer, so the claim is true.

Now suppose that n > 2 and the claim holds for n — 1. Consider the polynomials

gi(z,y) =gz +1Ly+1) —g(z,y+1) and ga(z,y) =g(z,y +1) - g(z,y). (1)

For every pair 0 < k < m < n — 1 of integers, the numbers g(k,m), g(k,m + 1) and g(k + 1,m + 1) are all
integers, so g1(k,m) and go(k, m) are integers, too. Moreover, in (1) the maximal degree terms of g cancel out, so
deg g1,deg go < degg. Hence, we can apply the induction hypothesis to the polynomials g; and g and we thus
have g1 (k,m), g2(k,m) € Z for all k,m € Z.

In view of (1), for all k,m € Z, we have that
(a) 9(0,1) € Z;
(b) g(k,m) € Z if and only if g(k + 1,m + 1) € Z;
(¢) g(k,m) € Z if and only if g(k,m + 1) € Z.
For arbitrary integers k,m, apply (b) |k| times then apply (¢) [m — k — 1| times as
glkkm)eZ < ... g9g(0m—k)eZ < ... g(0,1) € Z.
Hence, g(k,m) € Z. The claim has been proved.

Problem 5. Let FF = AgA;... A, be a convex polygon in the plane. Define for all 1 < k < n — 1 the operation
fr which replaces F' with a new polygon

FoF) = Ag.. Ay 1 A Apsr ... Ay

where Aj is the point symmetric to Aj with respect to the perpendicular bisector of Ap_1Aj41. Prove that
(fiofao...o fr—1)"(F) = F. We suppose that all operations are well-defined on the polygons, to which they are
applied, i.e. results are convex polygons again. (Ag, A1, ..., A, are the vertices of F' in consecutive order.)

Mikhail Khristoforov, St. Petersburg

Solution. The operations f; are rational maps on the 2(n — 1)-dimensional phase space of coordinates of the
vertices Aj,...,Ap—1. To show that (fi o foo...0 f,—1)" is the identity, it is sufficient to verify this on some
open set. For example, we can choose a neighborhood of the regular polygon, then all intermediate polygons in
the proof will be convex.

Consider the operations f;. Notice that (i) f; o f; =id and (ii) f; o f; = fj o f; for |i — j| > 2. We also show
that (iii) (f; o fiy1)® =id for 1 <i <n — 1.

The operations f; and f;4+1 change the order of side lengths by interchanging two consecutive sides; after
performing (f; o fi;1)2, the side lengths are in the original order. Moreover, the sums of opposite angles in
the convex quadrilateral A;_1A4;A;11A;12 are preserved in all operations. These quantities uniquely determine
the quadrilateral, because with fixed sides, both angles ZA;A3A3 and £A1A4A3 decrease when A Az increases.
Hence, property (iii) is proved.

In the symmetric group Sy, the transpositions o; = (4,7 + 1), which from a generator system, satisfy the same
properties (i-iii). It is well-known that S, is the maximal group with n — 1 generators, satisfying (i-iii). In S,, we
have (01 0090...00,-1)" =(1,2,3,...,n)" = id, so this implies (f; o foo...0 f,_1)" = id.



IMC 2012, Blagoevgrad, Bulgaria
Day 1, July 28, 2012

Problem 1. For every positive integer n, let p(n) denote the number of ways to express n as a sum
of positive integers. For instance, p(4) = 5 because

4=3+1=24+2=2+1+1=14+1+1+1

Also define p(0) = 1.
Prove that p(n) — p(n — 1) is the number of ways to express n as a sum of integers each of which is
strictly greater than 1.
(Proposed by Fedor Duzhin, Nanyang Technological University)

Solution 1. The statement is true for n = 1, because p(0) = p(1) = 1 and the only partition of 1
contains the term 1. In the rest of the solution we assume n > 2.

Let P, = {(a1,...,ax) : k € Nya; > ... > ax, a1 + ... + ap, = n} be the set of partitions of n,
and let Q, = {(a1,...,ax) € P, : ar = 1} the set of those partitions of n that contain the term 1.
The set of those partitions of n that do not contain 1 as a term, is P, \ Q,. We have to prove that
[P\ Qnl = [Pul = [Pp-1].

Define the map ¢: P,_1 — Q,, as

olag, ... ar) = (a,...,ax1).

This is a partition of n containing 1 as a term (so indeed ¢(ay, ..., a;) € Q,). Moreover, each partition
(a1,...,ax,1) € Q, uniquely determines (ay,...,ax). Therefore the map ¢ is a bijection between the

sets P,_1 and Q,,. Then |P,_1| = |Q,|. Since Q,, C Py,
Po\ Qnl = [Pu] = Q] = |Pu| — [Pua| = p(n) —p(n —1).

Solution 2 (outline). Denote by ¢(n) the number of partitions of n not containing 1 as term (¢(0) = 1
as the only partition of 0 is the empty sum), and define the generating functions

F(z) = Zp(n)x" and G(x)= Z q(n)z".

n=0

Since g(n) < p(n) < 2", these series converge in some interval, say for |z| < %, and the values uniquely
determine the coefficients.
According to Euler’s argument, we have

o [oe) o 1
F(SU)Izp(n)xnzn(1+xk+x2k+---):Hl .
n=0 k=1 o1t ¥
and
o0 [oe) o0 1
G(x):Zq(n)x":H(1+xk+x2k+'“):H1_3319'
n=0 k=2 k=2

Then G(z) = (1—x)F(z). Comparing the coefficient of 2™ in this identity we get ¢(n) = p(n) —p(n—1).

Problem 2. Let n be a fixed positive integer. Determine the smallest possible rank of an n x n matrix
that has zeros along the main diagonal and strictly positive real numbers off the main diagonal.

1



(Proposed by Ilya Bogdanov and Grigoriy Chelnokov, MIPT, Moscow)

Solution. For n = 1 the only matrix is (0) with rank 0. For n = 2 the determinant of such a matrix
is negative, so the rank is 2. We show that for all n > 3 the minimal rank is 3.

Notice that the first three rows are linearly independent. Suppose that some linear combination of
them, with coefficients ¢y, o, c3, vanishes. Observe that from the first column one deduces that ¢, and
c3 either have opposite signs or both zero. The same applies to the pairs (c1,¢2) and (¢, ¢3). Hence
they all must be zero.

It remains to give an example of a matrix of rank (at most) 3. For example, the matrix

(—n+1)* (—n+2)* (—n+3)? 0?
12 1 1
22 2 1
= . (1717 71)_2 . (1727 ,77,)+ (127227 ,77,2>
n? n 1

is the sum of three matrices of rank 1, so its rank cannot exceed 3.

Problem 3. Given an integer n > 1, let S,, be the group of permutations of the numbers 1,2,... n.
Two players, A and B, play the following game. Taking turns, they select elements (one element at a
time) from the group S,. It is forbidden to select an element that has already been selected. The game
ends when the selected elements generate the whole group S,,. The player who made the last move
loses the game. The first move is made by A. Which player has a winning strategy?

(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. Player A can win for n = 2 (by selecting the identity) and for n = 3 (selecting a 3-cycle).

We prove that B has a winning strategy for n > 4. Consider the moment when all permitted
moves lose immediately, and let H be the subgroup generated by the elements selected by the players.
Choosing another element from H would not lose immediately, so all elements of H must have been
selected. Since H and any other element generate S,,, H must be a maximal subgroup in S,,.

If |H| is even, then the next player is A, so B wins. Denote by n; the order of the subgroup generated
by the first i selected elements; then ni|ns|ng|.... We show that B can achieve that ny is even and
ny < n!l; then |H| will be even and A will be forced to make the final — losing — move.

Denote by ¢ the element chosen by A on his first move. If the order n; of g is even, then B may
choose the identical permutation id and he will have ny = n; even and ny = ny < nl.

If ny is odd, then ¢ is a product of disjoint odd cycles, so it is an even permutation. Then B can
chose the permutation h = (1,2)(3,4) which is another even permutation. Since g and h are elements
of the alternating group A,, they cannot generate the whole S,,. Since the order of h is 2, B achieves
2|TLQ.

Remark. If n > 4, all subgrups of odd order are subgroups of A,, which has even order. Hence, all maximal
subgroups have even order and B is never forced to lose.

Problem 4. Let f: R — R be a continuously differentiable function that satisfies f'(t) > f(f(t)) for
all t € R. Prove that f(f(f(t))) <0 for all ¢ > 0.



(Proposed by Toméas Barta, Charles University, Prague)

Solution.

Lemma 1. Either lim f(¢) does not exist or lim f(t) # +oo.
t——+o00 t—+00

Proof. Assume that the limit is +00. Then there exists 77 > 0 such that for all t > T} we have f(¢) > 2.
There exists T > 0 such that f(¢t) > T} for all ¢ > T5. Hence, f'(t) > f(f(t)) > 2 for t > T5. Hence,
there exists T3 such that f(¢) > ¢ for t > T5. Then f'(t) > f(f(t)) > f(t), f'(t)/f(t) > 1, after
integration In f(t) —InTy > t — Ty, i.e. f(t) > T3e!™™ for all t > Ty. Then f'(t) > f(f(t)) > Tzef/ O~
and f'(t)e 7" > Tye™ ™. Integrating from T to ¢ yields e (73 —e=/®) > (¢t —T3)T3e~". The right-hand
side tends to infinity, but the left-hand side is bounded from above, a contradiction. a

Lemma 2. For all t > 0 we have f(t) < t.

Proof. By Lemma 1, there are some positive real numbers ¢ with f(t) < ¢t. Hence, if the statement is
false then there is some ty > 0 with f(t) = to.

Case I: There exist some value t > to with f(t) < to. Let T' = inf{t > t5 : f(t) < to}. By the
continuity of f, f(T') = to. Then f'(T) > f(f(T)) = f(to) = to > 0. This implies f > f(T) =1ty in a
right neighbourhood, contradicting the definition of T

Case II: f(t) > to for all t > ty. Now we have f'(t) > f(f(t)) > to > 0. So, f’ has a positive lower
bound over (tg, o0), which contradicts Lemma 1. O

Lemma 3. (a) If f(s1) > 0 and f(s2) > s1, then f(s) > s; for all s > ss.
(b) In particular, if s; <0 and f(s1) > 0, then f(s) > s; for all s > s.

Proof. Suppose that there are values s > sy with f(s) < s; and let S = inf{s > s : f(s) < s1}. By
the continuity we have f(S) = s;. Similarly to Lemma 2, we have f'(S) > f(f(S)) = f(s1) > 0. If
S > sy then in a left neighbourhood of S we have f < s1, contradicting the definition of S. Otherwise,
if S = s5 then we have f > s; in a right neighbourhood of sy, contradiction again.

Part (b) follows if we take sy = s7. O

With the help of these lemmas the proof goes as follows. Assume for contradiction that there exists
some ty > 0 with f(f(f(t9))) > 0. Let t; = f(to), t2 = f(t1) and t3 = f(t2) > 0. We show that
0 <tz <ty <ty <tyg. Bylemma 2 it is sufficient to prove that ¢; and t, are positive. If £; < 0, then
f(t1) <0 (if f(¢1) > 0 then taking s; = ¢, in Lemma 3(b) yields f(tyo) > t;, contradiction). If t; =0
then f(¢;) < 0 by lemma 2 and the continuity of f. Hence, if t; < 0, then also ¢, < 0. If 5 = 0 then
f(t2) <0 by lemma 2 and the continuity of f (contradiction, f(ts) =t3 > 0). If t5 < 0, then by lemma
3(b), f(to) > ta, so t; > to. Applying lemma 3(a) we obtain f(¢;) > t2, contradiction. We have proved
0 <tz <ty <ty <ty

By lemma 3(a) (f(t1) > 0, f(to) > t1) we have f(t) > t; for all t > ¢y and similarly f(¢) > ¢, for all
t > t;. It follows that for ¢ > ¢, we have f'(t) > f(f(t)) > ta > 0. Hence, lim; 1~ f(t) = +00, which
is a contradiction. This contradiction proves that f(f(f(t))) <0 for all ¢ > 0. For ¢t = 0 the inequality
follows from the continuity of f.

Problem 5. Let a be a rational number and let n be a positive integer. Prove that the polynomial
X?"(X 4+ a)?" + 1 is irreducible in the ring Q[X] of polynomials with rational coefficients.
(Proposed by Vincent Jugé, Ecole Polytechnique, Paris)

Solution. First let us consider the case a = 0. The roots of X2

+ 1 are exactly all primitive roots
of unity of order 2"*2, namely e2™zne for odd k = 1,3,5,...,2""2 — 1. It is a cyclotomic polynomial,
hence irreducible in Q[X].

Let now a # 0 and suppose that the polynomial in the question is reducible. Substituting X =Y —2
we get a polynomial (Y — 2)*"(Y 4+ 2)*" +1 = (Y? — %)Qn + 1. It is again a cyclotomic polynomial

in the variable Z = Y2 — Z—Q, and therefore it is not divisible by any polynomial in Y? with rational

3



coefficients. Let us write this polynomial as the product of irreducible monic polynomials in Y with
appropriate multiplicities, i.e.

(v~

Since the left-hand side is a polynomial in ¥ we must have [], f;(Y)™ =[], fi(=Y)™. By the above
argument non of the f; is a polynomial in Y2 ie. f;(=Y) # f;(Y). Therefore for every i there is ¢’ # i
such that f;(=Y) = £f#(Y). In particular r is even and irreducible factors f; split into pairs. Let us
renumber them so that fi,..., fr belong to different pairs and we have f;;r(=Y) = £fi(Y). Consider

the polynomial f(Y) = []//2 f;(Y)™. This polynomial is monic of degree 2" and (Y2 — %)W +1=

i=1J1?

FY)f(=Y). Let us write f(Y) = Y + ... + b where b € Q is the constant term, i.e. b = f(0).

n+1 n—1
Comparing constant terms we then get (%)2 +1 = b*. Denote ¢ = (9)2 . This is a nonzero

rational number and we have ¢* + 1 = 2. ’

It remains to show that there are no rational solutions ¢, b € Q to the equation ¢*+1 = b* with ¢ # 0
which will contradict our assumption that the polynomial under consideration is reducible. Suppose
there is a solution. Without loss of generality we can assume that ¢,b > 0. Write ¢ = ¥ with u and
v coprime positive integers. Then u* + v* = (bv?)?. Let us denote w = bv?, this must be a positive
integer too since u,v are positive integers. Let us show that the set 7 = {(u,v,w) € N* | u* +0v* =
w? and u, v, w > 1} is empty. Suppose the contrary and consider some triple (u,v,w) € T such that
w is minimal. Without loss of generality, we may assume that u is odd. (u? v? w) is a primitive
Pythagorean triple and thus there exist relatively prime integers d > e > 1 such that u? = d? — €2,

2 = 2de and w = d* + 2. In particular, considering the equation u? = d*> — e* in Z/4Z proves that
d is odd and e is even. Therefore, we can write d = f? and e = 2¢. Moreover, since u? + e = d?,
(u, e, d) is also a primitive Pythagorean triple: there exist relatively prime integers h > i > 1 such that
u=h?—14% e =2hi = 2¢*> and d = h? + 2. Once again, we can write h = k? and i = [?, so that we
obtain the relation f2=d = h%*+4> =k*+1* and (k,[, f) € T. Then, the inequality w > d*> = f* > f
contradicts the minimality of w.

2

271
a4 ) +1= H fi(y fi monic, irreducible, all different.

Remark 1. One can also use Galois theory arguments in order to solve this question. Let us denote the
polynomial in the question by P(X) = X2"(X + a)?" + 1 and we will also need the cyclotomic polynomial
T(X) = X?" 4+ 1. As we already said, when a = 0 then P(X) is itself cyclotomic and hence irreducible. Let
now a # 0 and x be any complex root of P(x) = 0. Then ¢ = z(z+a) satisfies T'({) = 0, hence it is a primitive
root of unity of order 2"*!. The field Q[z] is then an extension of Q[¢]. The latter field is cyclotomic and
its degree over Q is dimg (@[C]) = 2", Since the polynomial in the question has degree 2"*! we see that it is
reducible if and only if the above mentioned extension is trivial, i.e. Q[z] = Q|¢]. For the sake of contradiction
we will now assume that this is indeed the case. Let S(X) be the minimal polynomial of z over Q. The
degree of S is then 2" and we can number its roots by odd numbers in the set I = {1,3,...,2""! — 1} so that
S(X) = [Tes(X — 2p) and ag(z) 4+ a) = (¥ because Galois automorphisms of Q[¢] map ¢ to ¢*,k € I. Then
one has

S(X)S(—a—X) = [[(X — ax)(~a— X —zz) = (-1 H( (X +a) g’“) = T(X(X +a)) = P(X).
kel kel
. . on+1 on 2 ) gn—1
In particular P(—%) = S(—%)?,i.e. (%) +1= ((%) —i—l) . Therefore the rational numbers ¢ = (%) # 0

and b = (%)2n + 1 satisfy ¢* + 1 = b? which is a contradiction as it was shown in the first proof.

Remark 2. It is well-known that the Diophantine equation z* + y* = 22 has only trivial solutions (i.e. with
x =0 or y = 0). This implies immediately that ¢* + 1 = b2 has no rational solution with nonzero c.



IMC 2012, Blagoevgrad, Bulgaria
Day 2, July 29, 2012

Problem 1. Consider a polynomial
f(@) =2 +apon 2™ + ...t arz+ao.

Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the
coefficients ag, . . . , asg1; and assign a real value to it. Albert has the first move. Once a value is assigned
to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been
assigned values.

Homer’s goal is to make f(z) divisible by a fixed polynomial m(z) and Albert’s goal is to prevent
this.

(a) Which of the players has a winning strategy if m(z) = x — 20127
(b) Which of the players has a winning strategy if m(x) = 2* + 17

(Proposed by Fedor Duzhin, Nanyang Technological University)

Solution. We show that Homer has a winning strategy in both part (a) and part (b).

(a) Notice that the last move is Homer’s, and only the last move matters. Homer wins if and only if
f(2012) =0, i.e.

20122012 4 9017 2012201 + 4 @) 20128 + ...+ @y 2012 4 ag = 0. (1)

Suppose that all of the coefficients except for a; have been assigned values. Then Homer’s goal is to
establish (1) which is a linear equation on aj. Clearly, it has a solution and hence Homer can win.

(b) Define the polynomials
g(y) = ap + asy + asy> + ...+ a0y + ¢ and h(y) = a1 + azy + asy® + ...+ a1y,

so f(x) = g(2?) + h(«?) - z. Homer wins if he can achieve that g(y) and h(y) are divisible by y + 1, i.e.
g(—=1) = h(-1) =0.

Notice that both ¢g(y) and h(y) have an even number of undetermined coefficients in the beginning
of the game. A possible strategy for Homer is to follow Albert: whenever Albert assigns a value to a
coefficient in g or h, in the next move Homer chooses the value for a coefficient in the same polynomial.
This way Homer defines the last coefficient in g and he also chooses the last coefficient in h. Similarly
to part (a), Homer can choose these two last coefficients in such a way that both g(—1) = 0 and
h(—1) = 0 hold.

Problem 2. Define the sequence ag, aq, ... inductively by ag =1, a; = % and
2
na
pi1 = ———— forn>1.
T4 (n+ Day -

o
. Af+1 .
Show that the series E + converges and determine its value.
g
k=0

(Proposed by Christophe Debry, KU Leuven, Belgium)



Solution. Observe that
(1 + (/{3 + l)ak)akH

kay, = = By (k4 Dagys forall k> 1,
Qe Qg
and hence
"~ apyn @ - 1
SO S (kg — (k+ Dawpr) = 5 + 1@ = (04 Dangy = 1= (04 Dangr (1)
=0 Yk LU —1
for all n > 0.

n o0
By (1) we have kz—o a’;—:l < 1. Since all terms are positive, this implies that the series kz_oa’;—:l is

convergent. The sequence of terms, a’;:l must converge to zero. In particular, there is an index ng such
that a‘;—:l < % for n > ng. Then, by induction on n, we have a, < 2% with some positive constant C.

From na,, < % — 0 we get na,, — 0, and therefore

[e.e] n

Q41 . Q41 .
) = lim > =1 (1— +1)ay )—_1.
o lim ~ lim (n+1)aps1

k=0 k=0

Remark. The inequality a, < =

< 5= can be proved by a direct induction as well.

Problem 3. Is the set of positive integers n such that n! + 1 divides (2012n)! finite or infinite?
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. Consider a positive integer n with n! 4 1}(201271)!. It is well-known that for arbitrary
nonnegative integers ay, ..., ag, the number (a; + ...+ ax)! is divisible by a;!- ... ag!. (The number
of sequences consisting of a; digits 1, ..., a; digits k, is (62:7726,??)'
(2012n)!.

Since n! + 1 is co-prime with (n!)?12 their product (n! + 1)(n!)?°'? also divides (2012n)!, and
therefore

.) In particular, (n!)?"1? divides

(n!+1) - (n))®* < (2012n)!.

By the known inequalities ("jl)n <n! <n" we get
n 2018n 112013 | 112012 | 2012n
< (M) < (nl4+1) - (n))™* < (2012n)! < (2012n)
e

n< 2012201262013.

Therefore, there are only finitely many such integers n.

Remark. Instead of the estimate ("T'fl)n < n!, we may apply the Multinomial theorem:

N!
(z1+ -+ z)N = Z ﬁxlflx?[
it k=N LT
Applying this to N = 2012n, ¢ = 2012 and 21 = ... = 2y = 1,
2012n)!
((1)72073 < (L+14...41)2012n — 901220127
n ———
2012
(2012n)! ot
n!<n!+1§(n!)w<2012 n



On the right-hand side we have a geometric progression which increases slower than the factorial
on the left-hand side, so this is true only for finitely many n.

Solution 2. Assume that n > 2012 is an integer with n! 4 1‘(201271)!. Notice that all prime divisors
of n! 4+ 1 are greater than n, and all prime divisors of (2012n)! are smaller than 2012n.

Consider a prime p with n < p < 2012n. Among 1,2, ...,2012n there are [%} < 2012 numbers

divisible by p; by p? > n? > 2012n, none of them is divisible by p?. Therefore, the exponent of p in the
prime factorization of (2012n)! is at most 2011. Hence,

nl+1=ged(nl+1,(20120)) < [ »p™"

n<p<2012p
Applying the inequality ] p < 4%,
p<X
2011
n 2011 2012:2011\7
n! < H p?t < < H p) < (£PM)7 = (4 )" (2)
n<p<2012p p<2012n

Again, we have a factorial on the left-and side and a geometric progression on the right-hand side.
Problem 4. Let n > 2 be an integer. Find all real numbers a such that there exist real numbers z1,
..., x, satisfying
ri(l—x9) =0l —23)=... =2, 1(1 —2,) =2,(1 —21) = a. (1)
(Proposed by Walther Janous and Gerhard Kirchner, Innsbruck)

Solution. Throughout the solution we will use the notation =, = ;.
We prove that the set of possible values of a is

1 1 n
—00, — —— keN 1< — 5.
( ’4:|U{4C082—k:’ g ’ b < 2}

In the case a < i we can choose x; such that z1(1 —x;) = a and set 1 = x5 = ... = z,,. Hence we
will now suppose that a > i.
The system (1) gives the recurrence formula
a Ti—a

x2+1:(p<xl):1__: s Z:L,n
&y L

The fractional linear transform ¢ can be interpreted as a projective transform of the real projective

line R U {oo}; the map ¢ is an element of the group PGLs(R), represented by the linear transform
1 - .

M = (1 Oa). (Note that det M # 0 since a # 0.) The transform ¢™ can be represented by M™. A

point [u, v] (written in homogenous coordinates) is a fixed point of this transform if and only if (u,v

is an eigenvector of M"™. Since the entries of M™ and the coordinates u, v are real, the corresponding

eigenvalue is real, too.

)T

The characteristic polynomial of M is 22> — x + a, which has no real root for a > i. So M has two
conjugate complex eigenvalues A\ o = %(1 + Vda — 12’). The eigenvalues of M" are A} ,, they are real
if and only if arg A\; 2 = j:%” with some integer k; this is equivalent with

k
+v3a — 1 =tan -~
n

(1 + tan? %’r) = 1

a = _W
4 cos?® ==
n

e~ =



If arg A\; = % then A} = A3, so the eigenvalues of M™ are equal. The eigenvalues of M are distinct,
so M and M™ have two linearly independent eigenvectors. Hence, M" is a multiple of the identity. This
means that the projective transform ¢" is the identity; starting from an arbitrary point z; € RU{oo},
the cycle x1, zo, . . ., z, closes at x,,,1 = x1. There are only finitely many cycles z1, xs, ..., x, containing
the point oo; all other cycles are solutions for (1).

Remark. If we write x; = P + Qtant; where P,Q and ty,...,t, are real numbers, the recurrence relation
re-writes as

(P+ Qtant;)(1 — P —Qtant;11) =a
(1 - P)Qtant; — PQtant; 1 =a+ P(P — 1)+ Q%tantjtantj 1 (j=1,2,...,n).
tan o« — tan

In view of the identity tan(a — ) = m, it is reasonable to choose P = %, and Q = /a — %. Then
an o tan

the recurrence leads to
tj —tj41 = arctanv4a —1 (mod 7).

Problem 5. Let ¢ > 1 be a real number. Let G be an abelian group and let A C G be a finite set
satisfying |A + A| < ¢|A|, where X +Y :={x+y |z € X, y € Y} and |Z] denotes the cardinality of
Z. Prove that
A+ A+.. .+ Al <A
k t?:nes
for every positive integer k. (Pliinnecke’s inequality)
(Proposed by Przemyslaw Mazur, Jagiellonian University)

Solution. Let B be a nonempty subset of A for which the value of the expression ¢; = |A|J];f3| is the
least possible. Note that ¢; < ¢ since A is one of the possible choices of B.

Lemma 1. For any finite set D C G we have |A+ B+ D| < ¢;|B + D|.

Proof. Apply induction on the cardinality of D. For |D| = 1 the Lemma is true by the definition of ¢;.
Suppose it is true for some D and let x ¢ D. Let By ={y € B|x+y € B+ D}. Then B+ (DU {x})
decomposes into the union of two disjoint sets:

B+ (DU{z})=(B+D)U((B\ Bi) + {z})

and therefore |B+ (DU {z})| = |B+ D| + |B| — |B1|]. Now we need to deal with the cardinality of the
set A+ B+ (DU{z}). Writing A+ B+ (DU{z}) =(A+ B+ D)U (A+ B+ {z}) we count some
of the elements twice: for example if y € By, then A+ {y} + {z} C (A+ B+ D)n(A+ B+ {z}).
Therefore all the elements of the set A+ By + {z} are counted twice and thus

A+ B+ (DU{a})| < |A+ B+ D|+|A+ B+ {z} —[A+ B+ {z}| =
=[A+ B+ D|+[A+ B|=|A+ Bi| <a(|B+ D] = [B] = [Bi]) = e1| B+ (D U{x})],

where the last inequality follows from the inductive hypothesis and the observation that |A‘j§f3| = <
‘A‘Eﬁ” (or By is the empty set). O

Lemma 2. For every k > 1 we have |A+ ...+ A+B| < cf|B].

k times
Proof. Induction on k. For k = 1 the statement is true by definition of ¢;. For greater k set D =

A+ ...+ Ain the previous lemma: |A+ ...+ A+B| <c|A+...+ A+B| < c}|B|. O
k-1 ti k ti k1 ti

Now notice that
|A+...+A|<|A+...+ A+B| < c}|B| < " A

TV
k times k times

Remark. The proof above due to Giorgios Petridis and can be found at http://gowers.wordpress.com/
2011/02/10/a-new-way-of-proving-sumset-estimates/



IMC 2012, Blagoevgrad, Bulgaria
Day 1, July 28, 2012

Problem 1. Let A and B be real symmetric matrices with all eigenvalues strictly greater than 1. Let
A be a real eigenvalue of matrix AB. Prove that |A| > 1.
(Proposed by Pavel Kozhevnikov, MIPT, Moscow)

Solution. The transforms given by A and B strictly increase the length of every nonzero vector, this
can be seen easily in a basis where the matrix is diagonal with entries greater than 1 in the diagonal.
Hence their product AB also strictly increases the length of any nonzero vector, and therefore its real
eigenvalues are all greater than 1 or less than —1.

Problem 2. Let f: R — R be a twice differentiable function. Suppose f(0) = 0. Prove that there
exists £ € (—m/2,m/2) such that
(&) = f(E)(1 + 2tan"¢).

(Proposed by Karen Keryan, Yerevan State University, Yerevan, Armenia )

Solution. Let g(z) = f(x)cosz. Since g(—7/2) = ¢g(0) = g(w/2) = 0, by Rolle’s theorem there exist
some & € (—7/2,0) and & € (0,7/2) such that

g'(&) =g (&) =0.

Now consider the function

cos? x cos? x

We have h(&;) = h(&) = 0, so by Rolle’s theorem there exist £ € (&1, &) for which

g"(§) cos® § + 2 cos & sin {g'(£)

h(z) = g(x)  f'(x)cosz — f(x) sinx.

O:h/(g) - cost & -
_ (f"(§) cos§ —2f'(§) sin g — f(§) cos§) cos§ + 2sin £(f'(€) cos§ — f(£)sin)
cos3 &
- [eJeos £ 2 JOR S22 E) (10 - FO( + 2tan9)),

The last yields the desired equality.

Problem 3. There are 2n students in a school (n € N, n > 2). Each week n students go on a trip.
After several trips the following condition was fulfilled: every two students were together on at least
one trip. What is the minimum number of trips needed for this to happen?

(Proposed by Oleksandr Rybak, Kiev, Ukraine)

Solution. We prove that for any n > 2 the answer is 6.

First we show that less than 6 trips is not sufficient. In that case the total quantity of students in
all trips would not exceed 5n. A student meets n — 1 other students in each trip, so he or she takes
part on at least 3 excursions to meet all of his or her 2n — 1 schoolmates. Hence the total quantity of
students during the trips is not less then 6n which is impossible.

Now let’s build an example for 6 trips.



If n is even, we may divide 2n students into equal groups A, B, C, D. Then we may organize the

trips with groups (A, B), (C, D), (A,C), (B, D), (A, D) and (B, C), respectively.

If n is odd and divisible by 3, we may divide all students into equal groups E, F, G, H, I, J.
Then the members of trips may be the following: (E, F,G), (F,F,H), (G,H,I), (G,H,J), (E,I,J),

(F,1,J).

In the remaining cases let n = 2z+ 3y be, where x and y are natural numbers. Let’s form the groups
A, B, C, D of x students each, and E, F', G, H, I, J of y students each. Then we apply the previous
cases and organize the following trips: (A, B, E, F,G), (C,D,E,F,H), (A,C,G,H,I), (B,D,G,H,J),

(A,D,E,1,.J), (B,C,F,I,J).

n

Problem 4. Let n > 3 and let zy,. .., z, be nonnegative real numbers. Define A = > z;, B=_ x?

i=1
n

and C' = Y 3. Prove that
i=1

(n+1)A’B+ (n —2)B* > A* 4 (2n — 2)AC.

(Proposed by Géza Kos, Eotvos University, Budapest)

Solution. Let

= A2 - B A% —3AB +2
[[(xX =) =x"—Ax"" + X2 - 3AB +2C

p(X) = 5 5

i=1

The (n — 3)th derivative of p has three nonnegative real roots 0 < u < v < w. Hence,

6 [ 3A 3(A? — B) A% —3AB +2C
—p (X)) = X — = X? X — = (X —u)(X —0v)(X —
nt? (X) T n(n—1) n(n—1)(n—2) ( u)l o) w),
SO
u+tvtw=-— zw—irvw—l—wu—M and uvw—A3_3AB+2O
o on  n(n—1) Cnn—1)(n-2)

From these we can see that

n*(n —1)%(n — 2)
9

(n+1)A’B+ (n—2)B>— A" — 2n—2)AC) =... =

= u*v? + v*w? + wiu? — wow(u+ v+ w) = wu —w)(v —w) +vwv —u)(w —u) + wu(w —v)(u —v)

>0+ uw(v—u)(w—v) +wu(w —v)(u—1v) =0.

Problem 5. Does there exist a sequence (a,) of complex numbers such that for every positive integer

p we have that Y >° | aP converges if and only if p is not a prime?

(Proposed by Toméas Barta, Charles University, Prague)

Solution. The answer is YES. We prove a more general statement; suppose that N = C' U D is an
arbitrary decomposition of N into two disjoint sets. Then there exists a sequence (a,)?, such that

%% aP is convergent for p € C' and divergent for p € D.

n=1"n

Define Cy, = C' N [1, k] and Dy N [1, k].

X34

>



Lemma. For every positive integer k there exists a positive integer Ny and a sequence X = (x4 1, ..., kN, )
of complex numbers with the following properties:

Ny
(a) For p € Dy, we have in,j > 1.
j=1
N m 1
(b) For p € Cj, we have in,j = (; moreover, zy il < e holds for 1 < m < Nj.
j=1 j=1
Proof. First we find some complex numbers z; ..., 2, with
k
0 peC
>4 = {1 o 1)
= p e g
As is well-known, this system of equations is equivalent to another system o,(z1,...,2x) = w, (v =
1,2,...,k) where o, is the vth elementary symmetric polynomial, and the constants w, are uniquely
determined by the Newton-Waring-Girard formulas. Then the numbers z1,..., 2z, are the roots of the
polynomial z¥ —w;2*~! + — ... 4+ (=1)*w; in some order.
Now let
M = D
Lgm%g}z(oeck 2% —‘
]:
and let Ny, = k-(kM)*. We define the numbers @1 . . ., 25,5, by repeating the sequence (4, 2%, . . ., 7&5)
(KM)* times, i.e. x = 72 if £ =j (mod k). Then we have
Ng k k
M)* k—
> iy = (kM) ) (57)" = (M) ) s
j=1 j=1 j=1

then from (1) the properties (a) and the first part of (b) follows immediately. For the second part of
(b), suppose that p € Cy and 1 < m < Ni; then m = kr + s with some integers r and 1 < s < k and

hence
kr kr+s s Zj » M 1
>, > =) | < <F
C\ kM (kM)P = &
7=1 = j=kr+1 j=1

The lemma is proved.

Now let Sy, = Ny ..., Ny (we also define Sy = 0). Define the sequence (a) by simply concatenating
the sequences X, Xo,...:

(al,aQ, Ce ) = (1'1,1, ce ,1’17]\]1,1'2,1, e ,1'27]\[2, Ce ,13k71, Ce 7$k,Nka .. ), (1)
asy+j = Thy1j (1 < J < Niya). (2)
If pe D and k > p then
Sk1 Nit1
> D Theag| 2 1
j=Sk+1 Jj=1

By Cauchy’s convergence criterion it follows that > a? is divergent.
IfpeC and S, <n < .S,,1 with some u > p then

u—1 n—Su_1 n—>Sy—1

1
> al=| ¥ Yo, 2, o Tl < o
j=Sp+1 k=p+1 j=1 7=1
[e.9] [e.9]
Then it follows that Z a? =0, and thus Z a? = 0 is convergent.
n=5p+1 n=1



IMC 2013, Blagoevgrad, Bulgaria
Day 2, August 9, 2013

Problem 1. Let z be a complex number with |z 4+ 1| > 2. Prove that |2 + 1| > 1.
(Proposed by Walther Janous and Gerhard Kirchner, Innsbruck)

Solution. Since 2° + 1 = (z 4+ 1)(z* — z + 1), it suffices to prove that |22 — z + 1| > 1.
Assume that z + 1 = re¥’, where r = |2 + 1| > 2, and ¢ = arg(z + 1) is some real number. Then

22—z 1= (re? —1)2 — (re? — 1) + 1 = r2e* — 3re?’ 4 3,
and
|22 — 24+ 12 = (7’262“” — 3reft + 3) (7’267&” —3re " 4+ 3) =
=r* 4+ 9r2 +9 — (6r° + 18r) cos ¢ + 612 cos 2p =
=7t 4+ 9% +9— (6r° + 18r) cosp + 6r*(2cos’ p — 1) =
r2 4 3)2 1

=12 | rcosyp — +—(r2—3)2>0+1—1
- L 1 11

This finishes the proof.

Problem 2. Let p and ¢ be relatively prime positive integers. Prove that

] L%J%ﬂ B {O if pq is even,

> (-1 1 if pg is odd
o if pq 1s odd.

(*)
(Here |x| denotes the integer part of x.)

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution. Suppose first that pg is even (which implies that p and ¢ have opposite parities), and let
k| |k
ki |k

in pairs.
For every positive integer k we have {1%} + {p*p%k} = %, hence

52 G- ()2

and similarly
1
4
q q

Since p and ¢ have opposite parities, it follows that L—’jj + EJ and qufplfkj + qufqlfkj have opposite
parities and therefore ap,_1_ = —ai.

. We show that aj + apq—1-r = 0, so the terms on the left-and side of (*) cancel out

Now suppose that pg is odd. For every index k, denote by p, and ¢; the remainders of £ modulo p
and g, respectively. (I.e., 0 < pp < pand 0 < g < ¢ such that k = p, (mod p) and k = ¢ (mod q).)

Notice that
EJ + EJ EpEJ +QEJ = (k—=pe) + (k= q) =pr + g (mod 2).

1



Since p and ¢ are co-prime, by the Chinese remainder theorem the map k — (pg, gx) is a bijection
between the sets {0,1,...,pg — 1} and {0,1,...,p—1} x {0,1,...,¢ — 1}. Hence

pg—1 LEJ L_J pg—1 p—1 ¢g-1 ' p—1 q—1
P D Do P I DO AE DUCH A R DUCE B
k=0 k=0 =0 j=0 =0 j=0
Problem 3. Suppose that vy, ..., v, are unit vectors in R?. Prove that there exists a unit vector u

such that
lu-v;] <1/Vd
fori=1,2,...,d.
(Here - denotes the usual scalar product on R?.)
(Proposed by Tomasz Tkocz, University of Warwick)

Solution. If vy, ..., v, are linearly dependent then we can simply take a unit vector u perpendicular to
span(vy, . ..,v4). So assume that vy,..., v, are linearly independent. Let wy, ..., wy be the dual basis
of (v1,...,v4), i.e.

U}ZUJZCSZ]: ll j fOI‘lS’L,de
0 ifi#y

From w; - v; = 1 we have |w;| > 1.
For every sequence € = (g1,...,&4) € {+1, —1}% of signs define u. = E?Zl g;w;. Then we have

3 el

Now estimate the average of |u|?.

b Y ke Y (ZEM)'<§}E]‘wj):

Uk| i0ik :|5k|:1 fork‘zl,...,d.

ee{+1,—-1}n ee{+1,-1}n —
d 1 d d
YY) 5 2 G| =2 D (wiw)dy =) |wil = d
i=1 j=1 e€{+1,—1}n i=1 j=1 i=1

U
It follows that there is a e such that |u.|?> > d. For that ¢ the vector u = satisfies the conditions.

| |

Problem 4. Does there exist an infinite set M consisting of positive integers such that for any
a,b € M, with a < b, the sum a + b is square-free?
(A positive integer is called square-free if no perfect square greater than 1 divides it.)
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. The answer is yes. We construct an infinite sequence 1 = n; < 2 = ny < n3 < ... so that
n; +n; is square-free for all ¢ < j. Suppose that we already have some numbers n; < ... < ny (k > 2),
which satisfy this condition and find a suitable number n;,; to be the next element of the sequence.

We will choose nyq of the form nyy = 1+ Mz, with M = ((ny+...+ny+2k)!)? and some positive
integer x. For ¢ = 1,2,...,k we have n; + ng.1 = 1 + Mz + n; = (1 + n;)m;, where m; and M are
co-prime, so any perfect square dividing 1 + Mz + n; is co-prime with M.



In order to find a suitable x, take a large N and consider the values x = 1,2,..., N. If a value
1 < x < N is not suitable, this means that there is an index 1 < ¢ < k and some prime p such that
p?|1+ Mz +n;. For p < 2k this is impossible because p|M. Moreover, we also have p* < 1+ Mz +n; <
M(N +1),s0 2k <p</M(N+1).

For any fixed ¢ and p, the values for = for which p?|1 + Mz + n; form an arithmetic progression
with difference p?. Therefore, there are at most Ez + 1 such values. In total, the number of unsuitable

D
values z is less than

k
> > (ﬂ + 1) N Z —+ Y 1<
=1 ok<p</M(N+1) po2i p<y/M(N+1)

<kN Y (—1 -~ 5) +kyM(N +1) < %+k\/M(N+ 1).

pook NPT

If N is big enough then this is less than N, and there exist a suitable choice for z.

Problem 5. Consider a circular necklace with 2013 beads. Each bead can be painted either white or
green. A painting of the necklace is called good, if among any 21 successive beads there is at least one
green bead. Prove that the number of good paintings of the necklace is odd.

(Two paintings that differ on some beads, but can be obtained from each other by rotating or

flipping the necklace, are counted as different paintings.)
(Proposed by Vsevolod Bykov and Oleksandr Rybak, Kiev)

Solution 1. For k = 0,1,... denote by N, be the number of good open laces, consisting of k (white
and green) beads in a row, such that among any 21 successive beads there is at least one green bead.
For k < 21 all laces have this property, so N, = 2¥ for 0 < k < 20; in particular, Ny is odd, and
Ny, ..., Ny are even.

For k > 21, there must be a green bead among the last 21 ones. Suppose that the last green bead
is at the ¢th position; then ¢ > k — 20. The previous ¢ — 1 beads have N, ; good colorings, and every
such good coloring provides a good lace of length k. Hence,

Nk:Nk_1+Nk_2+...+Nk_21 for k 221 (1)
From (1) we can see that No; = Ny + ...+ Ny is odd, and Nog = Ny + ... + Ny is also odd.
Applying (1) again to the term Nj_q,

Nk = Nk—l + ...+ Nk_gl = (Nk_g + ...+ Nk_gg) + Nk_g + ...+ Nk—Ql = Nk_gg (HlOd 2)

so the sequence of parities in (Ny) is periodic with period 22. We conclude that
e N isoddif k=0 (mod 22) or k =21 (mod 22);
e N, is even otherwise.

Now consider the good circular necklaces of 2013 beads. At a fixed point between two beads cut
each. The resulting open lace may have some consecutive white beads at the two ends, altogether at
most 20. Suppose that there are x white beads at the beginning and y white beads at the end; then
we have x,y > and x + y < 20, and we have a good open lace in the middle, between the first and the
last green beads. That middle lace consist of 2011 — x — y beads. So, for any fixed values of x and y
the number of such cases is Nagi1—z—y-



«—> OO0 O0O0O0O0000

——— ——

T 200l —z—y g

It is easy to see that from such a good open lace we can reconstruct the original circular lace.
Therefore, the number of good circular necklaces is

Z Noo11—z—y = Nogr1+2N2010+3Naggg +. . . +21N1991 = Nag11 + Nagog + Nogor+. . .+ Niggr  (mod 2).
x+y<20

By 91-22 — 1 = 2001 the term Nygo; is odd, the other terms are all even, so the number of the good
circular necklaces is odd.

Solution 2 (by Yoav Krauz, Israel). There is just one good monochromatic necklace. Let us
count the parity of good necklaces having both colors.

For each necklace, we define an adjusted necklace, so that at position 0 we have a white bead and
at position 1 we have a green bead. If the necklace is satisfying the condition, it corresponds to itself;
if both beads 0 and 1 are white we rotate it (so that the bead 1 goes to place 0) until bead 1 becomes
green; if bead 1 is green, we rotate it in the opposite direction until the bead 0 will be white. This
procedure is called adjusting, and the place between the white and green bead which are rotated into
places 0 and 1 will be called distinguished place. The interval consisting of the subsequent green beads
after the distinguished place and subsequent white beads before it will be called distinguished interval.

For each adjusted necklace we have several necklaces corresponding to it, and the number of them
is equal to the length of distinguished interval (the total number of beads in it) minus 1. Since we
count only the parity, we can disregard the adjusted necklaces with even distinguished intervals and
count once each adjusted necklace with odd distinguished interval.

Now we shall prove that the number of necklaces with odd distinguished intervals is even by grouping
them in pairs. The pairing is the following. If the number of white beads with in the distinguished
interval is even, we turn the last white bead (at the distinguished place) into green. The white interval
remains, since a positive even number minus 1 is still positive. If the number of white beads in the
distinguished interval is odd, we turn the green bead next to the distinguished place into white. The
green interval remains since it was even; the white interval was odd and at most 19 so it will become
even and at most 20, so we still get a good necklace.

This pairing on good necklaces with distinguished intervals of odd length shows, that the number of
such necklaces is even; hence the total number of all good necklaces using both colors is even. Therefore,
together with monochromatic green necklace, the number of good necklaces is odd.



IMC 2014, Blagoevgrad, Bulgaria

Day 1, July 31, 2014

Problem 1. Determine all pairs (a,b) of real numbers for which there exists a unique
symmetric 2 X 2 matrix M with real entries satisfying trace(M) = a and det(M) = b.
(Proposed by Stephan Wagner, Stellenbosch University)

M = {x Z] .
)
The two conditions give us  +y = a and zy — 22 = b. Since this is symmetric in 2 and
y, the matrix can only be unique if x = y. Hence 2z = a and 2? — 22 = b. Moreover,
if (x,y, z) solves the system of equations, so does (z,y, —z). So M can only be unique if

z = 0. This means that 2z = a and 22 = b, so a® = 4b.
If this is the case, then M is indeed unique: if x +y = a and 2y — 2% = b, then

Solution 1. Let the matrix be

(r—y)? +42% = (v +y)* +42° —day =a® — 4b =0,

so we must have z = y and z = 0, meaning that

M= [aéQ a?Q]

is the only solution.

Solution 2. Note that trace(M) = a and det(M) = b if and only if the two eigenvalues
A1 and Xy of M are solutions of 22 — ax +b = 0. If A\; # Ay, then

A\ o} Ao 0}

Ml:{o Ay 0 A

and M2 = |:

are two distinct solutions, contradicting uniqueness. Thus A\; = Ay = A = a/2, which
implies a? = 4b once again. In this case, we use the fact that M has to be diagonalisable
as it is assumed to be symmetric. Thus there exists a matrix 7" such that

o [x 0]
M=T [OAT,

however this reduces to M = \(T~! - I -T) = M, which shows again that M is unique.



Problem 2. Consider the following sequence

(an), =1(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1, ...).

n
> ag

Find all pairs («, ) of positive real numbers such that lim =l B.
n—oo N«

(Proposed by Tomas Barta, Charles University, Prague)

Solution. Let N,, = ("}') (then ay, is the first appearance of number n in the sequence)

and consider limit of the subsequence

_Xaman Stttk X () () g+ 2/m)(+1/n)

an . oy o o o = e o = .
N G G GO e T (e,
We can see that lim by, is positive and finite if and only if & = 3/2. In this case the
n—oo
limit is equal to 8 = ? So, this pair («, ) = (%, ?) is the only candidate for solution.

We will show convergence of the original sequence for these values of a and .
Let N be a positive integer in [N,,+1, N, 41], i.e., N = N,,+m for some 1 <m < n+1.

Then we have _ _—
o ()50

() +m)”

which can be estimated by
(), )
() +m)™ =T ()

Since both bounds converge to ?, the sequence by has the same limit and we are done.

Problem 3. Let n be a positive integer. Show that there are positive real numbers
ag, a1, . . .,a, such that for each choice of signs the polynomial

+a,2" + ap 12" -+ az £ ag

has n distinct real roots.
(Proposed by Stephan Neupert, TUM, Miinchen)

Solution. We proceed by induction on n. The statement is trivial for n = 1. Thus
assume that we have some a,,...,ao which satisfy the conditions for some n. Consider
now the polynomials

P(z) = +a,2" £ ap_ 12"+ ... £ a2 + apx

By induction hypothesis and ag # 0, each of these polynomials has n + 1 distinct zeros,
including the n nonzero roots of £a,2" + a,_ 12" ! £ ...+ a;2 = ay and 0. In particular
none of the polynomials has a root which is a local extremum. Hence we can choose some
e > 0 such that for each such polynomial P(z) and each of its local extrema s we have
|P(s)| > e. We claim that then each of the polynomials

P(z) = ta,2"™ £ a, 12"+ ... £ar* £agxr +¢



has exactly n + 1 distinct zeros as well. As P(z) has n + 1 distinct zeros, it admits a
local extremum at n points. Call these local extrema —o0 = 59 < 1 < S9 < ... < 8§, <
Snp1 = 00. Then for each i € {0,1,...,n} the values P(s;) and P(s;.1) have opposite
signs (with the obvious convention at infinity). By choice of € the same holds true for
P(s;) and P(s;y1). Hence there is at least one real zero of P(z) in each interval (s;, $;11),
i.e. P(x) has at least (and therefore exactly) n+1 zeros. This shows that we have found a
set of positive reals a), .| = a,,a;, = an_1,...,a] = ag, ay = € with the desired properties.

Problem 4. Let n > 6 be a perfect number, and let n = pi'---pi* be its prime
factorisation with 1 < p; < ... < pg. Prove that e; is an even number.
A number n is perfect if s(n) = 2n, where s(n) is the sum of the divisors of n.
(Proposed by Javier Rodrigo, Universidad Pontificia Comillas)

Solution. Suppose that e; is odd, contrary to the statement.

We know that s(n) = i (1 +p; + 2 + -+ pf*) = 2n = 2p$ - pf*. Since e, is
an odd number, p; + 1 divides the first factor 1 + p; + p? + -+ - + p{*, so p; + 1 divides
2n. Due to p1 + 1 > 2, at least one of the primes pq, ..., px divides p; + 1. The primes
Ps3, ..., pr are greater than p; + 1 and p; cannot divide p; + 1, so ps must divide p; + 1.
Since p; + 1 < 2ps, this possible only if po = p; + 1, therefore p; = 2 and p, = 3. Hence,
6|n.

Now n, 3, %, & and 1 are distinct divisors of n, so

s(n)2n+g+%+%+1:2n+l>2n,

contradiction.

Remark. Tt is well-known that all even perfect numbers have the form n = 2P~! (27 — 1) such
that p and 2P — 1 are primes. So if e; is odd then £ =2, p1 =2, po =2P — 1, ¢; = p—1 and
eo = 1. If n > 6 then p > 2 so p is odd and e; = p — 1 should be even.

Problem 5. Let A;Ay... A3, be a closed broken line consisting of 3n line segments
in the Euclidean plane. Suppose that no three of its vertices are collinear, and for
each index i = 1,2,...,3n, the triangle A;A;,1A;,-> has counterclockwise orientation and
ZAiAi-l—lAH—Z = 600, llSiIlg the notation A3n+1 = Al and A3n+2 = AQ. Prove that the

3
number of self-intersections of the broken line is at most §n2 —2n+ 1.

(Proposed by Martin Langer)

Solution. Place the broken line inside an equilateral triangle T such that their sides are
parallel to the segments of the broken line. For every i = 1,2,...,3n, denote by z; the



distance between the segment A;A;,; and that side of T" which is parallel to A;A; ;1. We
will use indices modulo 3n everywhere.

It is easy to see that if i = j (mod 3) then the polylines A;A;11 A4, and A;A;11 A9
intersect at most once, and this is possible only if either z; < x;4; and z; > x;4; or
x; < T;41 and x; > xj1;. Moreover, such cases cover all self-intersections. So, the number
of self-intersections cannot exceed number of pairs (7, j) with the property

(¥) i=j (mod3), and (z; <4y and z; > x541) or (x; > x4 and x; < xj41).

i

il’i+3

Grouping the indices 1, 2,...,3n, by remainders modulo 3, we have n indices in each
residue class. Altogether there are 3(%) index pairs (4, j) with i = j (mod 3). We will
show that for every integer k£ with 1 < k < £, there is some index 4 such that the pair
(1,1 + 6k) does not satisfy («). This is already [25!] pair; this will prove that there are

at most . 5
n n—
— >-n —2n+1
3(2) {2 }_Qn "+

Without loss of generality we may assume that z3, = x( is the smallest among
x1,...,T3,. Suppose that all of the pairs

self-intersections.

(—6k,0), (—6k+1,1), (—6k+2,2), ..., (=L6k—1), (0,6k)  (sx)

satisfy (x). Since x( is minimal, we have z_g, > 7. The pair (—6k,0) satisfies (x), so
T_ g1 < x1. Then we can see that z_g1 o > 2o, and so on; finally we get zy > xg.
But this contradicts the minimality of zy. Therefore, there is a pair in (**) that does not
satisfy (x).

Remark. The bound 3(3) — ["T_l] = [%nQ — 2n + 1] is sharp.



IMC 2014, Blagoevgrad, Bulgaria

Day 2, August 1, 2014

Problem 1. For a positive integer z, denote its n'® decimal digit by d,(z), i.e. d,(z) €
{0,1,...,9} and z = > d,(z)10""!. Suppose that for some sequence (an)zo:l, there are
n=1

only finitely many zeros in the sequence (dn(an))zo:l. Prove that there are infinitely many
positive integers that do not occur in the sequence (a,)5 .

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. By the assumption there is some index ng such that d,,(a,) # 1 for n > ny.
We show that
(pg1,nyo, ... > 10" for n > ng. (1)

Notice that in the sum a,, = >_ di(a,)10*~! we have the term d,,(a,)10" ! with d,(a,) > 1.
k=1

Therefore, a,, > 10"~*. Then for m > n we have a,, > 10™ > 10™. This proves (1).

From (1) we know that only the first n elements, aq, as, ..., a, may lie in the interval
[1,10™]. Hence, at least 10™ — n integers in this interval do not occur in the sequence at
all. As lim(10™ — n) = oo, this shows that there are infinitely many numbers that do not
appear among ai, ds, . . ..

Solution 2. We will use Cantor’s diagonal method to construct infinitely many positive
integers that do not occur in the sequence (a,,)
Assume that d,(a,) # 0 for n > ny. Define the sequence of digits

)2 dy(w,) =1
PN do(an) £ 1.

Hence g, # d,(a,) for every positive integer n. Let

k
SUkIZgn-lO"_l for k=1,2,....

n=1

As 41 > 108 > a4, the sequence (z}) is increasing and so it contains infinitely many
distinct positive integers. We show that the numbers z,,,, Zpy 41, Zng42, - - - DO DOt Occur in
the sequence (a,); in other words, z; # a, for every pair n > 1 and k > ng of integers.

Indeed, if k£ > n then d,(zx) = g, # dn(an), S0 Tk # a,.

If n >k > ng then d,,(xx) = 0 # dp(an), S0 Tk # a,.

Problem 2. Let A = (a;;)7;_, be a symmetric n X n matrix with real entries, and let

A1, Ag, ..., A, denote its eigenvalues. Show that
Z a;iGj5 > Z Aidj
1<i<j<n 1<i<j<n

and determine all matrices for which equality holds.



(Proposed by Martin Niepel, Comenius University, Bratislava)

Solution. Eigenvalues of a real symmetric matrix are real, hence the inequality makes
sense. Similarly, for Hermitian matrices diagonal entries as well as eigenvalues have to be
real.

Since the trace of a matrix is the sum of its eigenvalues, for A we have

z": Qi = z": Ais
i=1 i=1
and consequently
Zau —i-QZa”a]J Z)\2+22)\ Aj.

1<j 1<j

Therefore our inequality is equivalent to

n n
2 2
E a; < E ;.
i=1 i=1

Matrix A%, which is equal to AT A (or A* A in Hermitian case), has eigenvalues A2, A3, ... \2.
On the other hand, the trace of AT A gives the square of the Frobenius norm of A, so we

have
Za” < Z |ai;|? = tr(ATA) = tr(A%) = Z)\2

i,j=1
The inequality follows, and it is clear that the equality holds for diagonal matrices
only.

Remark. Same statement is true for Hermitian matrices.

Problem 3. Let f(z) = MY

, for x > 0, and let n be a positive integer. Prove that

1
| f(2)] < T where £ denotes the n'® derivative of f.

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. Putting f(0) = 1 we can assume that the function is analytic in R. Let
g(z) = 2" (f"(x) — =55). Then g(0) = 0 and

g'(x) = (n+1)a" (f<"><:c> - %) + O () =

=" ((n+ D)+ 2f (@) = 1) =" ((@f (@) = 1) = 2" (sin"* D (2) - 1) < 0.

Hence g(z) < 0 for # > 0. Taking into account that g'(z) < 0 for 0 < x < § we obtain
the desired (strict) inequality for x > 0.



Solution 2.

: (n) norl L on 1
(smaz) I A cos(xt)dt = / 88 —~ (—cos(zt))dt = / t" g (xt)dt
0 0

x dz" J, x

where the function g,(u) can be £sinwu or £ cosu, depending on n. We only need that
|gn] < 1 and equality occurs at finitely many points. So,

: (n) 1 1 1
(SIM) S/ t"\gn(a:t)}dt</ tdt = :
T 0 0 n+1

Problem 4. We say that a subset of R" is k-almost contained by a hyperplane if there
are less than k points in that set which do not belong to the hyperplane. We call a finite
set of points k-generic if there is no hyperplane that k-almost contains the set. For each
pair of positive integers k& and n, find the minimal number d(k,n) such that every finite
k-generic set in R™ contains a k-generic subset with at most d(k,n) elements.

(Proposed by Shachar Carmeli, Weizmann Inst. and Lev Radzivilovsky, Tel Aviv Univ.)

Solution. The answer is: d(k,n) = ke kn> 1
k +n otherwise

Throughout the solution, we shall often say that a hyperplanes skips a point to signify
that the plane does not contain that point.

For n = 1 the claim is obvious.

For k = 1 we have an arbitrary finite set of points in R” such that neither hyperplane
contains it entirely. We can build a subset of n 4+ 1 points step by step: on each step we
add a point, not contained in the minimal plane spanned by the previous points. Thus
any l-generic set contains a non-degenerate simplex of n 4+ 1 points, and obviously a
non-degenerate simplex of n + 1 points cannot be reduced without loosing 1-generality.

In the case k,n > 1 we shall give an example of k- n points. On each of the Cartesian
axes choose k distinct points, different from the origin. Let’s show that this set is k-
generic. There are two types of planes: containing the origin and skipping it. If a plane
contains the origin, it either contains all the chose points of a axis or skips all of them.
Since no plane contains all axes, it skips the k£ chosen points on one of the axes. If a plane
skips the origin, it it contains at most one point of each axis. Therefore it skips at least
n(k — 1) points. It remains to verify a simple inequality n(k — 1) > k which is equivalent
to (n —1)(k — 1) > 1 which holds for n, k > 1.

The example we have shown is minimal by inclusion: if any point is removed, say a
point from axis ¢, then the hyperplane x; = 0 skips only k£ — 1 points, and our set stops
being k-generic. Hence d(k,n) > kn.

It remains to prove that Hence d(k,n) > kn for k,n > 1, meaning: for each k-generic
finite set of points, it is possible to choose a k-generic subset of at most kn points. Let
us call a subset of points minimal if by taking out any point, we loose k-generality.
It suffices to prove that any minimal k-generic subset in R™ has at most kn points. A
hyperplane will be called ample if it skips precisely k points. A point cannot be removed
from a k-generic set, if and only if it is skipped by an ample hyperplane. Thus, in a
minimal set each point is skipped by an ample hyperplane.



Organise the following process: on each step we choose an ample hyperplane, and paint
blue all the points which are skipped by it. Each time we choose an ample hyperplane,
which skips one of the unpainted points. The unpainted points at each step (after the
beginning) is the intersection of all chosen hyperplanes. The intersection set of chosen
hyperplanes is reduced with each step (since at least one point is being painted on each
step).

Notice, that on each step we paint at most k points. So if we start with a minimal
set of more then nk points, we can choose n planes and still have at least one unpainted
points. The intersection of the chosen planes is a point (since on each step the dimension
of the intersection plane was reduced), so there are at most nk + 1 points in the set. The
last unpainted point will be denoted by O. The last unpainted line (which was formed on
the step before the last) will be denoted by ¢;.

This line is an intersection of all the chosen hyperplanes except the last one. If we
have more than nk points, then ¢; contains exactly k+ 1 points from the set, one of which
is O.

We could have executed the same process with choosing the same hyperplanes, but in
different order. Anyway, at each step we would paint at most k points, and after n steps
only O would remain unpainted; so it was precisely k points on each step. On step before
the last, we might get a different line, which is intersection of all planes except the last
one. The lines obtained in this way will be denoted ¢4, s, ..., £,,, and each contains exactly
k points except O. Since we have O and k points on n lines, that is the entire set. Notice
that the vectors spanning these lines are linearly independent (since for each line we have
a hyperplane containing all the other lines except that line). So by removing O we obtain
the example that we’ve described already, which is k-generic.

Remark. From the proof we see, that the example is unique.

Problem 5. For every positive integer n, denote by D, the number of permutations
(w1,...,2y,) of (1,2,...,n) such that x; # j for every 1 < j <n. For 1 <k < %, denote
by A(n, k) the number of permutations (x1,...,z,) of (1,2,...,n) such that z; = k + i
for every 1 <1i < k and z; # j for every 1 < j < n. Prove that

K1
k =1\ Dingy—(e+i)
A(n, k) = E —_.

(Proposed by Combinatorics; Ferdowsi University of Mashhad, Iran; Mirzavaziri)

Solution. Let a, € {iy,... it} N{ai,...,ax}. Thus a, = i s for some s # r. Now there
are two cases:

Case 1. as € {iy,...,ix}. Let ag = i;. In this case a derangement = = (z1,...,7,)
satisfies the condition z;, = a; if and only if the derangement 2’ = (2',..., 2}, 1,7} ., 7))

of the set [n] \ {i;} satisfies the condition 27, = a] for all j # ¢, where aj = a; for j # s
and a, = a;. This provides a one to one correspondence between the derangements

r = (v1,...,7,) of [n] with z;, = a; for the given sets {i1,... 4} and {ay,...,a;} with
¢ elements in their intersections, and the derangements 2’ = (2,...,2;,_,, 2} ,, ) of

[n] \ {i;} with z;; = a} for the given sets {iy,... 4} \ {i;} and {a},...,a}} \ {a;} with
¢ — 1 elements in their intersections.

Case 2. as ¢ {i1,...,ix}. In this case a derangement x = (z1,...,x,) satisfies the

condition z;; = a; if and only if the derangement 2’ = (a1,..., 2, _;, 2, ,;, ;) of the

)y Yas—19



set [n] \ {as} satisfies the condition i = a; for all j # s. This provides a one to one

correspondence between the derangements x = (z1,...,2,) of [n] with z;, = a; for the
given sets {iy,...,ix} and {ay,...,a;} with £ elements in their intersections, and the
derangements =’ = (7, ..., 2, 1,7, 1, 2;,) of [n] \ {as} with 2;; = a; for the given sets

{i1,...,ig} \ {is} and {a1,...,ar} \ {as} with £ — 1 elements in their intersections.
These considerations show that A(n,k, () = A(n — 1,k — 1,£ — 1). Iterating this
argument we have

A(n,k,0) = A(n— £,k —¢,0).

We can therefore assume that ¢ = 0. We thus evaluate A(n, k,0), where 2k < n. For
k = 0, we obviously have A(n,0,0) = D,,. For k > 1, we claim that

An,k,0)=A(n—1,k—1,0)+A(n—2,k—1,0).

For a derangement x = (x1,...,m,) satisfying z;, = a; there are two cases: x,, = 4, or
Laq 7é il.

If the first case occurs then we have to evaluate the number of derangements of the
set [n] \ {i1, a1} for the given sets {is,... i} and {ag,...,ax} with O elements in their

intersections. The number is equal to A(n — 2,k —1,0).

If the second case occurs then we have to evaluate the number of derangements of
the set [n] \ {a;} for the given sets {is, ..., it} and {ag,...,ar} with 0 elements in their
intersections. The number is equal to A(n — 1,k — 1,0).

We now use induction on k£ to show that

k-1

kE— 1\ Dgng1)—(k+i)
Aln, k = — 2L 2k < n.
(n, k. 0) Z ( i )n—(k+i)’ "

For k = 1 we have
D,
n—1

A(n,1,0) = A(n—1,0,0) + A(n — 2,0,0) = Dy_y + Dy =



Now let the result be true for k — 1. We can write

A(n,k,0) = An—1,k—1,00+A(n—2,k—1,0

- 2 () e

~—

e

(]

= (k-2 D1y (k—1+4)
: i J(n—2)—(k—1+1)

)

~
[e=]

Il
o

E
[\

_ k =2\ Dans)—(e+i) kz -2 Dy (ki-1)
i ) n—(k+1) i—1)/(n—1)—(k+i—-1)

i=0 i=1

k2
_ Dy Y k =2\ Dy~ (k+i)
n—k : i n— (k+1)

=1
k2
+D(n+1)—(2k—1) N k—2\ Duy1)—(kti)
n—(2k-1) < \i-1)n—(k+i)

D@ty 2 k-2 kE =2\ Dums1)—+i)  Dns1)—2r—1)
 on—k +Z[ i )T ]n—(k+i) N n— (2k—1)

k—2
Dny1)—k N Z E—1\ Dunt1)—(k+i) N Dny1y—2k-1)
i Jn—(k+1i) n—(2k-1)

i=1

k—1
(k‘ — 1) D (r41) = (k+i)
— n— (k+1)

Remark. As a corollary of the above problem, we can solve the first problem. Let n = 2k,
ij = jand aj = k4 j for j = 1,...,l<:. Then a derangement x = (x1,...,x,) satisfies the

condition x;; = aj if and only if 2’ = (zp41,...,2,) is a permutation of [k]. The number of such
permutations 2’ is k!. Thus Y75 (*-1) D’;g“@ i— Kl
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Problem 1. For any integer n > 2 and two n X n matrices with real entries A, B that
satisfy the equation
A+ B'=(A+B)"!

prove that det(A) = det(B).
Does the same conclusion follow for matrices with complex entries?
(Proposed by Zbigniew Skoczylas, Wroctaw University of Technology)

Solution. Multiplying the equation by (A + B) we get

I=(A+B)A+B) '=(A+B) (A +B ) =
= AA '+ AB '+ BA '+ BB '=T+AB '+ BA' + 1
AB '+ BA '+ T =0.

Let X = AB7!';then A = XBand BA™! = X!, so we have X + X !4 = 0; multiplying
by (X —I)X,

O=(X-DX - X+X'"+D=(X-1)-(X*+X+1)=X>—1TL
Hence,
X3=1
(det X)? = det(X?) =det I =1

det X =1
det A = det(X B) = det X - det B = det B.

In case of complex matrices the statement is false. Let w = 2(—1 + iv/3). Obviously
wéRandw?=1,500=14w+w?=1+w+w.

Let A =1 and let B be a diagonal matrix with all entries along the diagonal equal to
either w or W = w? such a way that det(B) # 1 (if n is not divisible by 3 then one may
set B =wl). Then A~ = I, B! = B. Obviously I + B+ B = 0 and

(A+B)'=(-B)'=-B=I+B=A"1'4+B""

By the choice of A and B, det A =1 # det B.



Problem 2. For a positive integer n, let f(n) be the number obtained by writing n
in binary and replacing every 0 with 1 and vice versa. For example, n = 23 is 10111 in
binary, so f(n) is 1000 in binary, therefore f(23) = 8. Prove that

;f(k) <

When does equality hold?
(Proposed by Stephan Wagner, Stellenbosch University)

Solution. If r and k are positive integers with 2"~! < k < 2" then k has r binary digits,
sok+ fk)=11.. 1% =27 — 1.
—

Assume that 21 —1<n < 2°—1. Then

n

MO NS ) =S (k4 £(K) =

2
k=1
s—1
_ Yo+ f)+ D (k+ f(R) =
r=1 or-1<k<or 25-1<k<n
s—1

=y 22—+ n-2 1) (20— 1) =

r=1
s—1 s—1

— 227”—1 Z 27‘—1 + (n o 25—1 + 1)(28 o 1) —
r=1 r=1

=24 - -2 -+ (2 - -2 4327 — 1=
=(2°—1)n—34°+2° -2

and therefore

TL2 & _TL2 s 14s S 2 n<n+]‘> _
T f(k)—z—(@ —n— 34" +2 —§—T>—

=32 — (2 —3)n+i4° -2+ 2=

3 25+1_2 28+1_4
=—\n-—-— n——1».
4 3 3

Notice that the difference of the last two factors is less than 1, and one of them must

be an integer: ¥ is integer if s is even, and 2S+31’4 is integer if s is odd. Therefore,

either one of them is 0, resulting a zero product, or both factors have the same sign, so

the prOdli(ft is strictly positive. ThisJr folves the problem and shows that equality occurs
25T+ — 2 25T —

if n = —3 (s is even) or n = —3 (s is odd).




Problem 3. Let F(0) =0, F(1) =2, and F(n) =2F(n—1) — F(n —2) for n > 2.

oo
1
Determine whether or not Z m is a rational number.
n=0

(Proposed by Gerhard Woeginger, Eindhoven University of Technology)

Solution 1. The characteristic equation of our linear recurrence is z? — gx +1 =0, with
roots z1 = 2 and z3 = 3. So F(n) = a-2"+b- ()" with some constants a,b. By F(0) =0
and F(1) = %, these constants satisfy a + b = 0 and 2a + g = % Soa=1and b= —1,
and therefore
F(n)=2"-27".
Observe that

2 1 1 1 1

F(Qn) (2271)2 _ 1 = 22n _ 1 - (22n)2 _ 1 22n _ 1 - 22n+1 . 17

1 > 1 1 1
_ _ — =1.
> 5= (o wr) —w

n=0

n

SO

Hence the sum takes the value 1, which is rational.
Solution 2. As in the first solution we find that F'(n) = 2™ — 27", Then

=1 > 1 > (3
I I e D D

n=0

o= 1

I
WE
WE
G

I

||M8
G

(Here we used the fact that every positive integer m has a unique representation m =
2"(2k + 1) with non-negative integers n and k.)
This shows that the series converges to 1.

Problem 4. Determine whether or not there exist 15 integers my, ..., my5 such that
15
Z my, - arctan(k) = arctan(16). (1)
k=1

(Proposed by Gerhard Woeginger, Eindhoven University of Technology)

Solution. We show that such integers mq, ..., my5 do not exist.
Suppose that (1) is satisfied by some integers my, ..., my5. Then the argument of the
complex number z; = 1 + 16¢ coincides with the argument of the complex number

2o = (L44)™ (14 20)™ (L +30)™ - (1 + 15i)™.

Therefore the ratio R = z3/2; is real (and not zero). As Rez; = 1 and Re z; is an integer,
R is a nonzero integer.



By considering the squares of the absolute values of z; and 29, we get

15
(1+16")R* = [+

k=1

Notice that p = 1+ 16% = 257 is a prime (the fourth Fermat prime), which yields an
easy contradiction through p-adic valuations: all prime factors in the right hand side are
strictly below p (as k < 16 implies 1 + k% < p). On the other hand, in the left hand side
the prime p occurs with an odd exponent.

Problem 5. Let n > 2, let Ay, As,..., Ayyq1 be n + 1 points in the n-dimensional
Euclidean space, not lying on the same hyperplane, and let B be a point strictly inside
the convex hull of A, Ay, ..., Ayy1. Prove that ZA;BA; > 90° holds for at least n pairs
(1,7) with 1 <i<j<n+1.

(Proposed by Géza Kos, E6tvos University, Budapest)

T
Solution. Let v; = BA;. The condition ZA;BA; > 90° is equivalent with v; - v; < 0.

Since B is an interior point of the simplex, there are some weights wy, ..., w,+; > 0 with
n+1
Z W;V; = 0.
i=1
Let us build a graph on the vertices 1,...,n+ 1. Let the vertices ¢ and j be connected

by an edge if v; - v; < 0. We show that this graph is connected. Since every connected

graph on n + 1 vertices has at least n edges, this will prove the problem statement.
Suppose the contrary that the graph is not connected; then the vertices can be split

in two disjoint nonempty sets, say V and W such that VUW = {1,2,... ,n+ 1}. Since

there is no edge between the two vertex sets, we have v;-v; > 0forall: € V and j € W.
Consider

2 2 2
1EEVUW eV ieW 1€V ieWw

Notice that all terms are nonnegative on the right-hand side. Moreover, Y w;v; # 0 and
i€V

> w;v; # 0, so there are at least two strictly nonzero terms, contradiction.

iew

Remark 1. The number n in the statement is sharp; if v,41 = (1,1,...,1) and v; =
(0,...,0,—1,0,...,0) for i =1,...,n then v; - v; < 0 holds only when i =n+1or j =n+ 1.
SN—— SN——

i—1 n—i

Remark 2. The origin of the problem is here: http://math.stackexchange.com/questions/476640/n
-simplex-in-an-intersection-of-n-balls/789390
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Problem 6. Prove that

[e.9]

1
;m<z

(Proposed by Ivan Krijan, University of Zagreb)
Solution. We prove that
1 2 2
—_— < — = — (1)
Vn(n+1) n  /n+1
Multiplying by /n(n + 1), the inequality (1) is equivalent with
1<2(n+1)—2y/n(n+1)
2y/n(n+1)<n+(n+1)
which is true by the AM-GM inequality.
Applying (1) to the terms in the left-hand side
- 1 [ 2 2
B N —2.
; vn(n+1) ; (\/ﬁ \/n——H>
Problem 7. Compute
1 (A
lim — / Asdz.
A—+o0 A 1
(Proposed by Jan Sustek, University of Ostrava)
Solution 1. We prove that

For A > 1 the integrand is greater than 1, so

I I 1 1
— Azdr > — lde=—=(A-1)=1-— —.
A /1 S /1 r=gA-D A
In order to find a tight upper bound, fix two real numbers, 6 > 0 and K > 0, and split the interval

into three parts at the points 1+ ¢ and K log A. Notice that for sufficiently large A (i.e., for A > Ay(9, K)

with some Ay(d, K) > 1) we have 1 +J < Klog A < A.) For A > 1 the integrand is decreasing, so we can
estimate it by its value at the starting points of the intervals

1 /A ) 1 (/1 /KlogA / >
— Azdr = — <
A 1 A 1 Klog A

:Z(é-A+(KlogA—1—6)A F(A- KlogA)AKlogA) <
< (5A+KA1+6 log A+ A- Amw) 5+ KA T log A+ %
Hence, for A > Ay(0, K) we have

1—%<% Aidx<5+KA_l%ilogA+e%.



Taking the limit A — oo we obtain

1 . 1[4 \

1 <liminf — Azdz < limsu —/ Azde < § +ex
A A 1 A—>oopA 1

Now from 6 — +0 and K — oo we get

1
1 <liminf —
A

1 A
Azdr < limsup—/ Ardg <1
1 A—o0 A 1
so liminf & [" Avdz = limsup flA Azdz = 1 and therefore
A—o0

1 1
AEIEOOZ/I Arde =1.
Solution 2. We Wlll employ I’ Hospltal’s rule

Let f(A,z) = Az, g(A,z) = LAz
9

f1 f(A x)dz and G(A f1 (A, z)dz. Since
549 are continuous, the parametric 1ntegrals F(A) and G(A) are dlfferentlable Wlth respect to A, and
49
F'(A) = f(A,A) +
1
and

Af and
. 41
Af(A,x)dx:AA+/ —

1
Axldz = A% + —G(A
T x A—I—AG( ),
A 1 A
8 A4 1 1
"(A) =g(A, A —qg(A = — Az "My =
G =g A+ [ Froldoe =5+ [ At
A 1 1
:A%—i— -1 Azl :A_A_ Az + 1 )
log A 1 A AlogA logA
Since lim_,oo A4 = 1, we can see that lima_,., G'(A) = 0. Aplying 'Hospital’s rule to Ah—I};o% we
get
GA) . G4
AT T T
SO

G(A
lim F'(A) = lim (Afll —i—L) =14+0=1
A—o0 A—o0 A
Now applying I’Hospital’s rule to hm AA) we get
1

lim —

A /
A%dx: lim FA) _ lim LG 1.
A—4oo A A—oo A 1

A—o0

words is 37

Problem 8. Consider all 26%° words of length 26 in the Latin alphabet. Define the weight of a word as
1/(k+ 1), where k is the number of letters not used in this word. Prove that the sum of the weights of all

Solution. Let n = 26, then 3 = (n + 1)"~1. We use the following well-known
A" f () =30 (1) (") S i) =

(Proposed by Fedor Petrov, St. Petersburg State University)
Lemma. If f(z) is a polynomial of degree at most n, then its (n + 1)-st finite difference vanishes
0

In other words, f(z)
Tr =

Proof. If A is the operator which maps f(z) to f(z +1) —
of A and the claim follows from the observation that A decreases the power of a polynomial
= Y (1)

i=1\"
—1 and denoting i = 7 + 1 we get

(n+1)"

f(z), then A" is indeed (n + 1)-st power
(=) (") f(x +14). Applying this for f(z)

(n — )", substituting
B Z(_l) (n +1 &
j=0 J+l

)( —j)n:(nJrl)Z(n) ' <._1)j

=0




The j-th summand (’;) D (n — 7)™ may be interpreted as follows: choose j letters, consider all

J+1 )
(=1)’

(n — 7)™ words without those letters and sum up over all those words. Now we change the order of

Jj+1
summation, counting at ﬁrst by words. For any fixed word W with k absent letters we get Z?:o (’;) (J_Tlij =
%H-Z?:O(—l)j- (’;ﬁ) = 7> since the alternating sum of binomial coefficients 23—71( 1)7- (ljﬁ) vanishes.

That is, after changing order of summation we get exactly initial sum, and it equals (n + 1)"~1.

Problem 9. An n x n complex matrix A is called t-normal if AA* = A'A where A! is the transpose of
A. For each n, determine the maximum dimension of a linear space of complex n X n matrices consisting
of t-normal matrices.

(Proposed by Shachar Carmeli, Weizmann Institute of Science)

Solution.

Answer: The maximum dimension of such a space is
+1)

n(n+1)

5
can be achieved, for example the symmetric matrices are obviously t-normal and
n(n+1

The number 2

they form a linear space with dimension . We shall show that this is the maximal possible dimension.
Let M, denote the space of n x n complex matrices, let S, C M, be the subspace of all symmetric
matrices and let A, C M, be the subspace of all anti-symmetric matrices, i.e. matrices A for which
Al = — A,
Let V' C M, be a linear subspace consisting of t-normal matrices. We have to show that dim(V) <
dim(S,,). Let m: V — S,, denote the linear map w(A) = A+ A’. We have

dim (V) = dim(Ker (7)) 4+ dim(Im (7))

so we have to prove that dim(Ker (7)) + dim(Im (7)) < dim(S,). Notice that Ker (7) C A,.
We claim that for every A € Ker (7) and B € V, An(B) = 7(B)A. In other words, Ker () and Im (7)
commute. Indeed, if A, B € V and A = —A! then

(A+B)(A+B)!=(A+B)'(A+B) &
o AA'+ AB'+ BA'+ BB' = A'A+ A'B+ B'A+ B'B &
& AB'—BA=—-AB+ B'A< A(B+ B") = (B+ B)A &
& Ar(B) = 7(B)A.

Our bound on the dimension on V follows from the following lemma:

Lemma. Let X C S, and Y C A, be linear subspaces such that every element of X commutes with every
element of Y. Then
dim(X) + dim(Y) < dim(S,,)

Proof. Without loss of generality we may assume X = Zg (V) :={z € S, : zy = yxr Yy € Y}. Define the
bilinear map B : S,, x A,, — C by B(z,y) = tr(d[x,y]) where [x,y] = vy — yz and d = diag(1, ...,n) is the
matrix with diagonal elements 1,...,n and zeros off the diagonal. Clearly B(X,Y) = {0}. Furthermore, if
y € Y satisfies that B(x,y) = 0 for all x € S, then tr(d[x,y]) = —tr([d,x],y]) = 0 for every x € S,.

We claim that {[d,z] : 2 € S,} = A,. Let E/ denote the matrix with 1 in the entry (i,) and 0 in
all other entries. Then a direct computation shows that [d, E/] = (j — i)E! and therefore [d, E/ + Bl =
(j—4) (B — E?) and the collection {(j — i) (B! — E) b <icj<n span A, for i # j.

It follows that if B(z,y) = 0 for all z € S,, then tr(yz) = 0 for every z € A,. But then, taking z = ¢,
where ¢ is the entry-wise complex conjugate of y, we get 0 = tr(yy) = —tr(yy") which is the sum of squares
of all the entries of y. This means that y = 0.

It follows that if 4y, ...,y € Y are linearly independent then the equations

B(x,y1) =0, ..., B(z,yx)=0



are linearly independent as linear equations in x, otherwise there are ay, ..., a; such that B(z,a1y; + ... +
axyr) = 0 for every x € S, a contradiction to the observation above. Since the solution of k linearly
independent linear equations is of codimension k,

dim({x € S, : [x,y;] =0, fori=1,..,k}) <

<dim(x € S, : B(x,y;) =0fori=1,....k) = dim(S,) — k.
The lemma follows by taking v, ..., yx to be a basis of Y.

Since Ker (7) and Im (7) commute, by the lemma we deduce that

n(n—l—l)'

dim(V) = dim(Ker (7)) 4+ dim(Im (7)) < dim(S,,) = 5

Problem 10. Let n be a positive integer, and let p(x) be a polynomial of degree n with integer coefficients.

Prove that
max |p(z)| > i
0<z<1 en

(Proposed by Géza Kos, E6tvos University, Budapest)

Solution. Let

M = goa [p(e)]

For every positive integer k, let

Jp = /01 (p(:v))%dx.

2kn 2kn
Obviously 0 < Ji < M?* is a rational number. If (p(x))** = 3 ax 2’ then Jp = Y° 7. Taking the least
i=0 i=0
1
common denominator, we can see that J, > .
lem(1,2,...,2kn+1)
An equivalent form of the prime number theorem is that loglem(1,2,..., N) ~ N if N — oo. Therefore,

for every € > 0 and sufficiently large £ we have
1Cm(17 27 ceey 2kn -+ 1) < €(1+8)(2kn+1)

and therefore

1 1
M?* > J, > -
"= lem(L,2,...,2kn+ 1) ~ e(He)@kntD)’
1
M>—"
Z 0 )
Taking £ — oo and then ¢ — +0 we get
1
M>—.
en

Since e is transcendent, equality is impossible.

Remark. The constant % ~ 0.3679 is not sharp. It is known that the best constant is between 0.4213 and 0.4232.
(See 1. E. Pritsker, The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. 57 (2005),
1080-1101.)
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Problem 1. Let f: [a,b] — R be continuous on [a,b] and differentiable on (a,b). Suppose that f
has infinitely many zeros, but there is no x € (a,b) with f(z) = f'(z) =

(a) Prove that f(a)f(b) = 0.

(b) Give an example of such a function on [0, 1].
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. (a) Choose a convergent sequence z,, of zeros and let ¢ = lim z,, € [a, b]. By the continuity
of f we obtain f(c) = 0. We want to show that either ¢ = a or ¢ = b, so f(a) = 0 or f(b) = 0; then
the statement follows.

flen) = fle) . 0-0

If ¢ was an interior point then we would have f(¢) = 0 and f/(¢) = lim = lim =
2y —C Zn —C
0 simultaneously, contradicting the conditions. Hence, ¢ = a or ¢ = b.
(b) Let
1
rsin— if0<zx<l1
fz) = x
0 if x =0.
1
This function has zeros at the points o= for k =1,2,..., and it is continuous at 0 as well.
™
In (0,1) we have
1 1 1
f'(z) =sin — — — cos —.
r x

Since sin L and cos < cannot vanish at the same point, we have either f(x) # 0 or f/(z) # 0 everywhere

n (0,1).

Problem 2. Let k and n be positive integers. A sequence (Aj, ..., Ax) of n X n real matrices is
preferred by Ivan the Confessor if A? # 0 for 1 < i < k, but 4;4; =0 for 1 <i,j < k with ¢ # j.
Show that & < n in all preferred sequences, and give an example of a preferred sequence with k =n
for each n.

(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. For every i = 1,...,n, since A; - A; # 0, there is a column v; € R™ in A; such that
A;v; # 0. We will show that the vectors vy, ..., v, are linearly independent; this immediately proves
k <n.

Suppose that a linear combination of vy, ..., v, vanishes:

v+ ...+ =0, cp,...,cx €R.

For ¢ # j we have A;A; = 0; in particular, A;u; = 0. Now, for each i = 1,...,n, from

M;r

0=Ai(civr + ...+ cpvg) = ci(Avy) = ¢i(A;)

Jj=1

we can see that ¢; = 0. Hence, ¢, = ... = ¢, = 0.
The case k = n is possible: if A; has a single 1 in the main diagonal at the ith position and its
other entries are zero then A7 = A; and 4;A; = 0 for i # j.



Remark. The solution above can be re-formulated using block matrices in the following way. Consider

Ay A0 ... 0
A 0 A2 ... 0
(A1 Ay ... Ay) :2 =
Ay, 0 0 ... A2

It is easy to see that the rank of the left-hand side is at most n; the rank of the right-hand side is at least k.

Solution 2. Let U; and K; be the image and the kernel of the matrix A; (considered as a linear
operator on R™), respectively. For every pair 4, j of indices, we have U; C K if and only if i # j.

Let Xo=R"and let X; = KiNKyN---NK;fori=1,...,k,s0 Xog D X; D... D X Notice also
that U; C X;_1 because U; C K for every j < i, and U; ¢ X; because U; ¢ K;. Hence, X; # X;_1;
X, is a proper subspace of X;_;.

Now, from
n=dimXy>dimX; >...>dimX; >0
we get k > n.
Problem 3. Let n be a positive integer. Also let aq,as,...,a, and by,bs,...,b, be real numbers

such that a; + b; > 0 for i = 1,2,...,n. Prove that
n n n 2
n i) bi — b;
a;b; — b? z; ¢ 1:21 (zzl )
> (ai +b)
i=1

i1 a; + bZ

(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in TorAzn, Poland)

Solution. By applying the identity

XYy -v? 2y2
X+Y X+Y

(2

with X = a; and Y = b; to the terms in the LHS and X = > a; and Y =
=1

(2

b; to the RHS,
=1

= =1

Zai'zbi_ (sz) n <sz)
RHS: =1 =1 =1 :Zb_z =1 )

(ai + b;)

i=1 i=1 i=1
Therefore, the statement is equivalent with

B2 <§3b"'>2
v >

=1

Y

i=1 a/i +b’L - Z(U/Z +bl>
=1

which is the same as the well-known variant of the Cauchy-Schwarz inequality,

in - (X1 + ...+ X,)?

Vi Y,
Y. 2 v gy, M ¥a>0)

=1



Problem 4. Let n > k be positive integers, and let F be a family of finite sets with the following
properties:

i) F contains at least (') + 1 distinct sets containing exactly k elements;
k
ii) for any two sets A, B € F, their union A U B also belongs to F.
y g

Prove that F contains at least three sets with at least n elements.
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution 1. If n = k then we have at least two distinct sets in the family with exactly n elements
and their union, so the statement is true. From now on we assume that n > k.

Fix (Z) + 1 sets of size k in F, call them 'generators’. Let V € F be the union of the generators.
Since V has at least (}) + 1 subsets of size k, we have |V| > n.

Call an element v € V' ‘appropriate’ if v belongs to at most (Zj) generators. Then there exist

at least (Z) +1-— (Zj) = (";1) + 1 generators not containing v. Their union contains at least n
elements, and the union does not contain v.

Now we claim that among any n elements xy,...,z, of V. there exists an appropriate element.
Consider all pairs (G, z;) such that G is a generator and z; € G. Every generator has exactly k
elements, so the number of such pairs is at most ((Z) + 1) - k. If some x; is not appropriate then z;
is contained in at least (Zj) + 1 generators; if none of x4, ..., x, was appropriate then we wold have
at least n - ((Zj) + 1) pairs. But n- ((Zj) + 1) > ((Zj) + 1) - k, so this is not possible; at least one
of xy,...,x, must be appropriate.

Since |V| > n, the set V contains some appropriate element v;. Let U; € F be the union of all
generators not containing v. Then |U;| > n and v; ¢ U;. Now take an appropriate element vy from
Uy and let Uy € F be the union of all generators not containing ve. Then |Us| > n, so we have three
sets, V', Uy and U, in € F with at least n elements: V' # Uy because v; € V and vy € Uy, and Us is
different from V' and U; because vy € V,U; but vy & Us.

Solution 2. We proceed by induction on k, so we can assume that the statement of the problem is
known for smaller values of k. By contradiction, assume that F has less than 3 sets with at least n
elements, that is the number of such sets is 0, 1 or 2. We can assume without loss of generality that
F consists of exactly N := (Z) + 1 distinct sets of size k and all their possible unions. Denote the
sets of size k by S1,S5s,. ...

Consider a maximal set I C {1,..., N} such that A := (J,., S; has size less than n, |[A| < n. This
means that adding any S; for j ¢ I makes the size at least n, |S;UA| > n. First, let’s prove that such
7 exist. Otherwise, all the sets S; are contained in A. But there are only (lﬁ‘) < (";1) < N distinct
k-element subsets of A, this is a contradiction. So there is at least one j such that |S; U A| > n.
Consider all possible sets that can be obtained as S; U A for j ¢ I. Their size is at least n, so their
number can be 1 or 2. If there are two of them, say B and C' then B C C or C' C B, for otherwise
the union of B and C would be different from both B and C', so we would have three sets B, C' and
B U C of size at least n. We see that in any case there must exist x ¢ A such that = € 5; for all
j ¢ I. Consider sets S; = S; \ {x} for j ¢ I. Their sizes are equal to k& — 1. Their number is at least

()G

By the induction hypothesis, we can form 3 sets of size at least n — 1 by taking unions of the sets S’
for j ¢ I. Adding x back we see that the corresponding unions of the sets S; will have sizes at least
n, so we are done proving the induction step.

The above argument allows us to decrease k all the way to & = 0, so it remains to check the
statement for £ = 0. The assumption says that we have at least (g) + 1 = 2 sets of size 0. This is
impossible, because there is only one empty set. Thus the statement trivially holds for £ = 0.

Problem 5. Let S,, denote the set of permutations of the sequence (1,2,...,n). For every permu-
tation m = (my,...,m,) € Sy, let inv(7) be the number of pairs 1 <i < j < n with m; > 7;; i.e. the



number of inversions in m. Denote by f(n) the number of permutations 7 € S,, for which inv(w) is

divisible by n + 1.
—1)!
Prove that there exist infinitely many primes p such that f(p—1) > p -, and infinitely many

(p—l)!‘

primes p such that f(p — 1) <
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. We will use the well-known formula

Do a™m =1 (1ta) (Q+z+a®).  (Itz+-+a").
WESn

(This formula can be proved by induction on n. The cases n = 1,2 are obvious. From each permu-

tation of (1,2,...,n — 1), we can get a permutation of (1,2,...,n) such that we insert the element
n at one of the n possible positions before, between or after the numbers 1,2, ..., n — 1; the number
of inversions increases by n — 1,n —2,...,1 or 0, respectively.)
Now let
{L‘) _ Z xinv(w).
TESR

and let ¢ = en+1. The sum of coefficients of the powers divisible by n 4+ 1 may be expressed as a
trigonometric sum as

-1 n—1
1
G, ("
n—l—lkz:: 1+n+1; (e

Hence, we are interested in the sign of

n! -
_ = G, ("
) = = e
with n = p — 1 where p is a (large, odd) prime.
For every fixed 1 < k < p— 1 we have
p—1 p—1 ik k 2% ~1)k
- 1—¢&l (1—e®)(1—e?). . (1 — Dk
ky _ ko -2k G—Dky _ _
Gp_l(s)—H(l—i—e +e+. Fe¢ )—' o = et :
j=1 j=1
Notice that the factors in the numerator are (1 —¢), (1 —&?), ..., (1 —&P™!); only their order is

different. So, by the identity (z —g)(z —€?)...(z —eP™ ) =1+ 2+ -+ + 2771

p p
Gp—l(‘gk) = (1 _ gk;)p—l = (1 B 621;7@)17—1'

Hence, f(p—1) — @ has the same sign as

—1 -1 1—
2 CTETA L k- ok
(I—e» ) P=>» e » —2isin — =
p

p—1
2 1-p
=2.92! “P( p21 E cos (sin W—k)
p

For large primes p the term with £ = 1 increases exponentlally faster than all other terms, so this
term determines the sign of the whole sum. Notice that cos mp=1) converges to —1. So, the sum
is positive if p — 1 is odd and negative if p — 1 is even. Therefore, for sufficiently large primes,
flp—1)— @ is positive if p =3 (mod 4) and it is negative if p =1 (mod 4).
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=
" _ —1. Prove

2n —1

Problem 1. Let (z1,x9,...) be a sequence of positive real numbers satisfying Z
n=1

that .
Sy

—~

M8
M»
| &
I
]
S| &
I
NE
VR
$
[~
x|
N——

k=n
and get
ZZ%=Z<%Z@>< (mn.n__%)zgz%x_l:z
n=1 k=n n=1 n=1

Today, Ivan the Confessor prefers continuous functions f : [0,1] — R satisfying

Problem 2.
z)+ f(y) = |z —y| for all pairs z,y € |0, 1]. Find the minimum o over all preterred functions.
for all pai 0,1]. Find the mini £/ Il preferred functi
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. The minimum of fol fis 1.
Applying the condition with 0 <z < %, Y=+ % we get

fl@)+ flz+3) >3

By integrating,
1 1/2 1/2
[ rwac= [ se s pyarz [Tt
0 0 0
On the other hand, the function f(x) = ‘x — %‘ satisfies the conditions because
3|+ 15—yl = fl@) + fw),

o =yl=|@ =)+

and establishes



Problem 3. Let n be a positive integer, and denote by Z,, the ring of integers modulo n. Suppose
that there exists a function f : Z, — Z, satisfying the following three properties:

(i) f(x) # z,
(i) f(f(x)) = =,
(i) f(f(f(z+1)+1)+1) =z for all x € Z,.

Prove that n =2 (mod 4).
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)

Solution. From property (ii) we can see that f is surjective, so f is a permutation of the elements in
Z,, and its order is at most 2. Therefore, the permutation f is the product of disjoint transpositions
of the form (m, f(x)) Property (i) yields that this permutation has no fixed point, so n is be even,
and the number of transpositions is precisely n/2.

Consider the permutation g(z) = f(x + 1). If g was odd then g o g o g also would be odd. But
property (iii) constraints that g o g o ¢ is the identity which is even. So g cannot be odd; g must
be even. The cyclic permutation h(x) = x — 1 has order n, an even number, so h is odd. Then
f(z) = gohisodd. Since f is the product of n/2 transpositions, this shows that n/2 must be odd,
son =2 (mod 4).

Remark. There exists a function with properties (i-iii) for every n =2 (mod 4). For n = 2 take f(1) = 2,
f(2) = 1. Here we outline a possible construction for n > 6.

Let n = 4k+ 2, take a regular polygon with k42 sides, and divide it into k triangles with k—1 diagonals.
Draw a circle that intersects each side and each diagonal twice; altogether we have 4k + 2 intersections. Label
the intersection points clockwise around the circle. On every side and diagonal we have two intersections;
let f send them to each other.

This function f obviously satisfies properties (i) and (ii). For every = we either have f(x + 1) = z or
the effect of adding 1 and taking f three times is going around the three sides of a triangle, so this function
satisfies property (iii).

n % o
20 ~ 3,
19 @ 5
18 6
17] X 7
16\ / 8
15 9
14 *—e 10

B 1

Problem 4. Let k be a positive integer. For each nonnegative integer n, let f(n) be the number
of solutions (x1,...,z;) € Z* of the inequality |x;| + ... + |z] < n. Prove that for every n > 1, we
have f(n —1)f(n+1) < f(n)2

(Proposed by Esteban Arreaga, Renan Finder and José Madrid, IMPA, Rio de Janeiro)

Solution 1. We prove by induction on k. If k = 1 then we have f(n) = 2n + 1 and the statement
immediately follows from the AM-GM inequality.

Assume that £ > 2 and the statement is true for £ — 1. Let g(m) be the number of integer
solutions of |z1| + ... + |x5_1] < m; by the induction hypothesis g(m — 1)g(m + 1) < g(m)? holds;
this can be transformed to

9(1) _ g(2)

92 =93 =

< <



For any integer constant ¢, the inequality |21]+ ...+ |zx_1|+|c| < n has g(n—|c|) integer solutions.
Therefore, we have the recurrence relation

n

fn) =YY" g(n—lel) = g(n) +2g(n — 1) + ... + 29(0).

c=—n

It follows that
fln—=1)  g(n—1)+2g(n—2)+...+29(0)

fn) g(n) +29(n — 1) + ... +29(1) +29(0) ~
gn)+gn -1+ -1)+..+29(0)+2-0) _ f(n)
gn+1)+gn)+ (g(n) + ... + 2g(1) + 2¢(0)) f(n+1)

<

as required.
Solution 2. We first compute the generating function for f(n):

N n)qg" = N [z1[+|z2 |+ +|TE ]|+ _ |z| ' 1 _ (1+Q)k
;;f( ) > D a (Zq ) Tt

1 _
(x1,@2,...,x1)€LF =0 z€Z q

For each a = 0,1, ... denote by g,(n) (n =0,1,2,...) the coefficients in the following expansion:
(1+ q
1 _ q k+1 Z g“

So it is clear that g,+1(n) = ga(n) +g.(n—1) (n > 1), g,(0) = 1. Call a sequence of positive numbers
9(0), g(1), g(2), ...good if 9("n)1) (n = 1,2,...) is an increasing sequence. It is straightforward to

check that gq is good
(n) = kE+n go(n—1) n
Join) = k)’ gpn)  k+n

If g is a good sequence then a new sequence ¢’ defined by ¢'(0) = ¢(0), ¢'(n) = g(n) + g(n — 1)
(n > 1) is also good:

g(n—2)
gn—-1) gln-1)+gn-2) L+ ooy

gy~ gmtgn—1) 1+

where define g(—1) = 0. Thus we see that each of the sequences g1, go, ..., gr = f are good. So the
desired inequality holds.

Y

Problem 5. Let A be a n X n complex matrix whose eigenvalues have absolute value at most 1.
Prove that

|A™ [

H_l 2

n
(Here ||B|| = sup ||Bz|| for every n x n matrix B and ||z| = /> |#;|? for every complex vector
i=1

2l <1
reCm)
(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)

Solution 1. Let r = [|A]|. We have to prove [|A"[| < Z5r™ 1.

As is well-known, the matrix norm satisfies | XY < || X|| - ||Y|| for any matrices X,Y’, and as a
simple consequence, ||A¥|| < ||A]|* = r* for every positive integer k.

Let x(t) = (t = A)(t — Xa) ... (t = \y) ="+ 1t" ' + - -+ + ¢, be the characteristic polynomial
of A. From Vieta’s formulas we get

lck| = Z iy i | < Z \)\il...Aik|§(Z) (k=1,2,...,n)

1< <. <ipg<n 1< <. <ip<n



By the Cayley—Hamilton theorem we have x(A) = 0, so

A =l A 4t < STV AR < ST )k = (14 1) —
4 = e+l < 30 ()14 £ 32 ()t = 0 =

k=1

Combining this with the trivial estimate ||A™]| < 7™, we have
|A™|| < min (", (14 r)" — 7).

Let ro = ; it is easy to check that the two bounds are equal if r = g, moreover

_1
V2-1
1 n

0= Gnz/n S

For r < rg apply the trivial bound:

JA <7 <o r Tt < o

For r > ry we have
(I+r)"—rm

A7 < (= =t

Tn
Notice that the function f(r) = (l“ﬁ# is decreasing because the numerator has degree n — 1 and
all coefficients are positive, so

(I+r)" =1 (14r)"—rf
-1 7,6171 TO(( + /TO) ) To n2’

so [|A™| < 5

Solution 2. We will use the following facts which are easy to prove:
e For any square matrix A there exists a unitary matrix U such that UAU ! is upper-triangular.

e For any matrices A, B we have || Al < [|[(A|B)|| and ||B|| < ||(A|B)|| where (A|B) is the matrix
whose columns are the columns of A and the columns of B.

e For any matrices A, B we have [|A|| < || (4) ] and ||B|| < || (4) || where (4) is the matrix
whose rows are the rows of A and the rows of B.

e Adding a zero row or a zero column to a matrix does not change its norm.

We will prove a stronger inequality
1A™] < nfl A"

for any n x n matrix A whose eigenvalues have absolute value at most 1. We proceed by induction
on n. The case n = 1 is trivial. Without loss of generality we can assume that the matrix A is
upper-triangular. So we have

11 Qaiz2 -+ QAip
A 0 axp -+ az
0 0 - am

Note that the eigenvalues of A are precisely the diagonal entries. We split A as the sum of 3 matrices,
A=X+Y + 7 as follows:
ay 0 -+ 0 0 ap - au, 0 0O --- 0
X: 0 0 0 : Y: 0 0 0 : Z: 0 a9y * - QAon,

0 0O --- 0 0 0O --- 0 0 0 - ap,



Denote by A’ the matrix obtained from A by removing the first row and the first column:
Qg -+ d2n
A =
0 - ay
We have || X || <1 because |aj;| < 1. We also have
[A = 1Z] <Y + Z| < [|Al.
Now we decompose A™ as follows:
A" = XA (Y + 2)A"

We substitute A = X + Y + Z in the second term and expand the parentheses. Because of the
following identities:
Y?=0, YX=0, ZY=0, ZX=0

only the terms Y Z"~! and Z" survive. So we have
A" = XA (Y + 2) 72"

By the induction hypothesis we have ||[A"7 Y| < (n — 1)||A’||"72, hence ||[Z"7 Y]] < (n —1)||Z||"2 <
(n — 1)||A||""2. Therefore

IA™ [ < IXA™H + 1Y + 2)Z7 7 < A"+ (= DIY + Z| A" < nf] A"



IMC 2017, Blagoevgrad, Bulgaria

Day 1, August 2, 2017

Problem 1. Determine all complex numbers A for which there exist a positive integer n and
a real n X n matrix A such that A2 = AT and ) is an eigenvalue of A.
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution. By taking squares,
At = (A7) = (AT)? = (AT = (A1) = 4,

1)
A'— A=0;

it follows that all eigenvalues of A are roots of the polynomial X4 — X.
The roots of X* — X = X(X? —1) are 0, 1 and %‘/‘3" In order to verify that these values
are possible, consider the matrices

00 0 0
_% %ﬁ 01 0 0
A= (0), A=) A={_F ). A={;, 1
2 2
3%
00 5 -

The numbers 0 and 1 are the eigenvalues of the 1 x 1 matrices Ag and Ay, respectively. The
numbers %‘/5’1 are the eigenvalues of Ay; it is easy to check that

2 -1 _ﬁ T
2

2

The matrix A4 establishes all the four possible eigenvalues in a single matrix.

Remark. The matrix Ay represents a rotation by 27m/3.

Problem 2. Let f: R — (0,00) be a differentiable function, and suppose that there exists
a constant L > 0 such that

|f'(x) = f'(y)| < L]z —y]
for all x,y. Prove that
(F'(2)" < 2Lf(2)
holds for all x. 5
(Proposed by Jan Sustek, University of Ostrava)



Solution. Notice that f’ satisfies the Lipschitz-property, so f’ is continuous and therefore
locally integrable.

Consider an arbitrary « € R and let d = f'(x). We need to prove f(z) > %.

If d = 0 then the statement is trivial.

If d > 0 then the condition provides f'(x—t) > d— Lt; this estimate is positive for 0 < ¢ < %.
By integrating over that interval,

d d
Lo L @
f(x)>f(1f)—f($—%)Z/OLf(a:—t)dtz/OL(d—Lt)dt:ﬁ.
If d < 0 then apply f'(r +t) < d+ Lt = —|d| + Lt and repeat the same argument as
|d| |d|
ldl 1d| »
f(@) > (@) = fla+1T) = /OL (= f(z+1)dt > /OL (Id = Lt)dt = o

Problem 3. For any positive integer m, denote by P (m) the product of positive divisors of m
(e.g. P(6) = 36). For every positive integer n define the sequence

aj(n) =n, ag1(n) = Plag(n)) (k=1,2,...,2016).

Determine whether for every set S C {1,2,...,2017}, there exists a positive integer n such
that the following condition is satisfied:

For every k with 1 < k < 2017, the number ax(n) is a perfect square if and only if k € S.
(Proposed by Matko Ljulj , University of Zagreb)

Solution. We prove that the answer is yes; for every S C {1,2,...,2017} there exists a
suitable n. Specially, n can be a power of 2: n = 2“" with some nonnegative integer w;. Write
ag(n) = 2“k; then

w (w+1)

2 = apyq(n) = Plag(n)) = P(2"%) =1-2-4-..2" =272

SO

2
The proof will be completed if we prove that for each choice of S there exists an initial value
wy such that wy, is even if and only if & € S.

Wr+1 =

Lemma. Suppose that the sequences (by,bs,...) and (cy,co,...) satisfy by, = % and
Chy1 = M for k> 1, and ¢; = b; +2™. Then for each k = 1,...m we have ¢, = b, + 2" **!
(mod 2m~+2).

As an immediate corollary, we have by = ¢, (mod 2) for 1 < k < m and by, 11 = 1 + 1
(mod 2).
Proof. We prove the by induction. For £ = 1 we have ¢; = b; + 2™ so the statement holds.
Suppose the statement is true for some k£ < m, then for k£ + 1 we have

e (cp +1) (b + 2775 (b 4 2m7FH 4 1)
Crkt+1 = =

2 2
D2 2Ry g 92me 2k gy  gmektl
= 5 _
- % 4 oomek 4 gm—ktlp o 92m=2ktl — i ( k;2+ ) L9k (mod 2K+,

therefore cpyy = bpyq 4 2m~*FFDFL (mod 2m—(k+1)+2),

2



Going back to the solution of the problem, for every 1 < m < 2017 we construct inductively
a sequence (vi,vs,...) such that vy, = W, and for every 1 < k < m, vy is even if and
only if k € S.

For m = 1 we can choose v; = 0if 1 € Sorv; = 1if 1 ¢ S. If we already have such a
sequence (v, vq, . ..) for a positive integer m, we can choose either the same sequence or choose
vy = v; + 2™ and apply the same recurrence v, = M By the Lemma, we have v, = v},
(mod 2) for k < m, but v,,,1 and v, have opposite parities; hence, either the sequence (vy)
or the sequence (v}) satisfies the condition for m + 1.

Repeating this process for m = 1,2,...,2017, we obtain a suitable sequence (wy).

Problem 4. There are n people in a city, and each of them has exactly 1000 friends (friendship
is always symmetric). Prove that it is possible to select a group S of people such that at least
n/2017 persons in S have exactly two friends in S.

(Proposed by Rooholah Majdodin and Fedor Petrov, St. Petersburg State University)

Solution. Let d = 1000 and let 0 < p < 1. Choose the set S randomly such that each people
is selected with probability p, independently from the others.
The probability that a certain person is selected for S and knows exactly two members of

S is p
q= (2)293(1 -

Choose p = 3/(d + 1) (this is the value of p for which ¢ is maximal); then

- () (75) (7)) -

27d(d —1) 3\ P ordd-1) _, 1
S () i

d—2 e kA

Hence, E(]S]) = ng > 53t so there is a choice for S when [S| > .

Problem 5. Let k and n be positive integers with n > k* — 3k + 4, and let
f(z)=2"14 02" 24+ ...+

be a polynomial with complex coefficients such that
CoCp—g = C1Cp—3 = ... = Cp_oCy = 0.

Prove that f(z) and 2™ — 1 have at most n — k common roots.
(Proposed by Vsevolod Lev and Fedor Petrov, St. Petersburg State University)

Solution. Let M ={z:2" =1}, A={z€ M: f(z) #0} and A~ = {27! : 2 € A}. We have
to prove |A| > k.

Claim.
A- A= M.

That is, for any € M, there exist some elements a,b € A such that ab™! = 7.

Proof. As is well-known, for every integer m,

sz: {g if n|m

otherwise.



Define ¢,,_; = 1 and consider

n—1 n—1 n—1 n—1
Z 2f(2)f(nz) = Z 2N i Yy en2)t = cjem’ Z LT —
zeM €M j=0 (=0 j=0 ¢=0 zeM
n—1 n—1 . . n—2
' n ifnlj+04+2] n—2-j . _
Z R Z {0 otherwise [~ -1 Z €j6n=2-41 n=n#0.
=0 =0 zeM =0

Therefore there exists some b € M such that f(b) # 0 and f(nb) # 0, i.e. b € A, and
a =nb € A, satisfying ab™! = .

By double-counting the elements of M, from the Claim we conclude
Al(JA] =1) > |[M\ {1} =n—-1>k =3k+3> (k—1)(k—2)

which shows |A| > k — 1.



IMC 2017, Blagoevgrad, Bulgaria
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Problem 6. Let f : [0;4+00) — R be a continuous function such that 1ir+n f(x) = L exists
T—r+00

(it may be finite or infinite). Prove that
1
lim [ f(nx)dez = L.

n—r00
0

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution 1. Case I: L is finite. Take an arbitrary € > 0. We construct a number K > 0 such

1
that | [ f(nz)dx — L‘ <e.

0
Since lir_{l f(z) = L, there exists a K; > 0 such that ’f(x)
T—r+00
Hence, for n > K; we have

/lf(nfv)dfv— ' /f )dx — L ’: )
/If L= (/ |f—L|+/Kl|f—L|)<%(/O1|f_L|+/I:§):

1 n—K 1 [
o R R e T
0 n 2 nJ 2

n

— L‘ < § for every x > K.

()<

Ifn> K, = ngKl |f — L| then the first term is at most 5. Then for x > K := max(K, K3)

we have

1
f(na:)dx—L’<%+§:€

Case 2: L = +oco. Take an arbitrary real M; we need a K > 0 such that [ f(nz)dz > M
0

for every x > K.
Since lim f(z) = oo, there exists a K; > 0 such that f(z) > M + 1 for every x > K.

T—+00
Hence, for n > 2K, we have

/me e dm_(/f_ </mf+A;)
</K1f+ K1M+1) ( f- Kl(M+1)>+M+1_

Itn> Ky := | [ f— Ki((M+ 1)) then the first term is at least —1. For z > K := max(K7, K5)

we have [ f(nz)dz > M.
Case 3: L = —oo. We can repeat the steps in Case 2 for the function —f




Solution 2. Let F(z) = [ f. For t >0 we have

/ ftr)dx = @

Since lim ¢t = oo in the denominator and thm F'(t) = lim f(t) = L, L’Hospital’s rule proves
—

t—o0
PO _ 1 ) _ thm f® — I, Then it follows that hm F(”) = L.
H

lim
t—o0 t —00 1

Problem 7. Let p(x) be a nonconstant polynomial with real coefficients. For every positive
integer n, let
gn(x) = (x 4+ 1)"p(x) + 2"p(x + 1).
Prove that there are only finitely many numbers n such that all roots of g,(x) are real.
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution.
Lemma. If f(x) = apa™ + ...+ a1z + ag is a polynomial with a,, # 0, and all roots of f
are real, then

2
a1 — 20mQpy—2 > 0.

Proof. Let the roots of f be wy,...,w,. By the Viéte-formulas,

m
Am—1 Am—2
w; = — ) wzwj = )
- Am a
=1

m

m m 2 2
2 —1 Qm—2 o Q1 — 2amam 2
oS0t (Fu) -2 - (f) - gtecs - =
=1 = 1<J m

In view of the Lemma we focus on the asymptotic behavior of the three terms in ¢, (x) with
the highest degrees. Let p(z) = ax® + ba* ™1 + c2* 2 + ... and ¢,(z) = A2""* + B a1 4

Cpz"™ =2 + ., then
gn(x) = (x 4+ 1)"p(x) + 2"p(x + 1) =
n(n

-1
T)x”_2 +.. .)(axk + bt e L)

—1
+ 2" (a(mk+kmk_1 + %xkq —|—>

+b<azk‘1+(k—1)xk‘2+...>+c<xk‘2...>+...>

=2a- 2" + ((n+ k)a + 2b)2" !

—1)+k(k—1
—i—(n(n )—; ( >a—|—(n+k—1)b—|—2c)x”+k2+...,

= (x” +na™ 4

SO

-1+ kk—-1
A,=2a, B,=(n+k)a+2b= Cn:n(n )_2{_( )a+(n+k—1)b+20.

If n — oo then
2 2 n’a 2
B2 —2A4,C, = (na+0(1))" —2-2a 5 + O(n)) = —an” + O(n) — —oo,
so B2 —2A,,C, is eventually negative, indicating that g, cannot have only real roots.

2



Problem 8. Define the sequence Aq, As, ... of matrices by the following recurrence:

0 1 A, Ipn
Al = (1 O) y An+1 = <12n jn) (TL = 1,2, .. )

where [,,, is the m x m identity matrix.
Prove that A, has n + 1 distinct integer eigenvalues \g < \; < ... < A, with multiplicities

() (1), (%), respectively.
(Proposed by Snjezana Majstorovi¢, University of J. J. Strossmayer in Osijek, Croatia)

Solution. For each n € N, matrix A,, is symmetric 2" x 2" matrix with elements from the set
{0,1}, so that all elements on the main diagonal are equal to zero. We can write

An - Ignfl ® Al + An—l ® 12, (1)

where ® is binary operation over the space of matrices, defined for arbitrary B € R™*P and
C € R™** as

an blgc . blpC
BoC - bg%O b C' ... by, C
biC' b12C ... b, C S
Lemma 1. If B € R™" has eigenvalues \;, 7 = 1,...,n and C € R™*™ has eigenvalues p;,

j =1,...,m, then B ® C has eigenvalues A\;ju;, i = 1,...,n, j =1,...,m. If B and C are
diagonalizable, then A ® B has eigenvectors y; @ z;, with (\;, y;) and (p;, 2;) being eigenpairs
of B and C, respectively.

Proof 1. Let (X, y) be an eigenpair of B and (u, z) an eigenpar of C. Then

(BRCO)y®2)=By®Cz= Ay ® uz = \Mi(y ® 2).

If we take (), y) to be an eigenpair of A; and (u, z) to be an eigenpair of A,_1, then from (1)
and Lemma 1 we get

Azey) = (I @A+ A1 ®L)(20y)
= (Ip1 @A)z @y)+ (A1 ® L) (2@ y)
= A+pwiey).

So the entire spectrum of A,, can be obtained from eigenvalues of A,,_; and A;: just sum up each
eigenvalue of A,_; with each eigenvalue of A;. Since the spectrum of A; is o(A;) = {—1,1},
we get

o(Ay) = {1+ (=1),-1+1,14+(=1),14+1}={-2,0% 2}
o(As) = {-1+(- 2),—1+0—1+0—1+2 14(=2),14+0,14+0,1+2} ={-3,(-1)®,1® 3}
o(Ay) = {1+ (- ),—1+( G, 1 4+1® 143,14 (=3), 14+ (=19),1+1® 1+ 3}

= {—4,(=2)®,0®), 21 4},

Inductively, A, has n + 1 distinct integer eigenvalues —n,—n+2,-—n+4,...,n—4,n—2,n

with multiplicities (7)), (1), (5), ..., (7), respectively.

Problem 9. Define the sequence fi, f,...:[0,1) — R of continuously differentiable functions
by the following recurrence:

fl = 1; fn+1 fnfn-i—l on (07 1)’ and fn-l—l(o) =L

Show that lim f,(z) exists for every « € [0,1) and determine the limit function.
n—o0



(Proposed by Toméas Barta, Charles University, Prague)
Solution. First of all, the sequence f,, is well defined and it holds that
fusi(x) = elo 7O, 2)
The mapping ¢ : C([0,1)) — C(]0,1)) given by
B(g)(r) = el 20
is monotone, i.e. if f < g on (0,1) then
B(f)(r) = el T < oS50 g) )

on (0,1). Since fy(z) = elo tmathrmdt — co 1 — f(2) on (0,1), we have by induction
fot1(2z) > fo(z) for all z € (0,1), n € N. Moreover, function f(z) = 1= is the unique solution
to f/ = f2, f(0) =1, i.e. it is the unique fixed point of ® in {¢ € C([0,1)) : ¢(0) = 1}. Since
fi < fon (0,1), by induction we have f, 1 = ®(f,) < ®(f) = f for all n € N. Hence, for
every z € (0,1) the sequence f,(z) is increasing and bounded, so a finite limit exists.

Let us denote the limit g(z). We show that g(x) = f(z) = ~. Obviously, g(0) =
lim f,,(0) = 1. By f; =1 and (2), we have f, > 0 on [0,1) for each n € N, and therefore (by
(2) again) the function f,,; is increasing. Since f,, f,41 are positive and increasing also f;
is increasing (due to f; ., = fufut1), hence f,4q is convex. A pointwise limit of a sequence of
convex functions is convex, since we pass to a limit n — oo in

faz + (1= Ny) < Afu(z) + (1= A) fu(y)

and obtain
g(Az + (1= Ny) < Ag(z) + (1= N)g(y)

for any fixed z, y € [0,1) and A € (0,1). Hence, g is convex, and therefore continuous on
(0,1). Moreover, g is continuous in 0, since 1 = f; < ¢g < f and lim,_,oy f(z) = 1. By Dini’s
Theorem, convergence f, — ¢ is uniform on [0, 1 — €] for each € € (0,1) (a monotone sequence
converging to a continuous function on a compact interval). We show that ® is continuous and
therefore f,, have to converge to a fixed point of ®.

In fact, let us work on the space C(]0,1 — ¢]) with any fixed ¢ € (0,1), || - || being the
supremum norm on [0, 1 — ¢|. Then for a fixed function h and ||¢ — k|| < § we have

sup | ®(h)(x) — B(p)(x)| = sup elo MO _elo v®=hOd | < O — 1) < 206

z€[0,1—¢] z€[0,1—¢]

for § > 0 small enough. Hence, ® is continuous on C(]0, 1 —¢]). Let us assume for contradiction
that ®(g) # g. Hence, there exists 7 > 0 and z¢ € [0,1 — €] such that |®(g)(x¢) — g(x0)| > 7.
There exists § > 0 such that ||®(p) — ®(g)|| < 517 whenever ||¢ — g|| < d. Take ng so large that
£ — gll < min6, n} for all n > ny. Hence, ||fusr — ®(g)]| = [B(f.) — D(g)]] < Ln. On the
other hand, we have | fi.11(z0) —®(g)(z0)| > [®(g)(x0) —g(z0)|—19(z0) — fus1(z0)| > n—31 = 30,
contradiction. So, ®(g) = g.

Since f is the only fixed point of ® in {¢ € C([0,1 —¢€]) : ¢(0) = 1}, we have g = f on
[0,1 — ¢]. Since € € (0,1) was arbitrary, we have lim,,_,o, f,,(z) = — for all z € [0, 1).

1—x



Problem 10. Let K be an equilateral triangle in the plane. Prove that for every p > 0
there exists an € > 0 with the following property: If n is a positive integer, and T1,...,T,, are
non-overlapping triangles inside K such that each of them is homothetic to K with a negative
ratio, and

Zarea(Tg) > area(K) — ¢,
=1
then

Z perimeter(7}) > p.
=1

(Proposed by Fedor Malyshev, Steklov Math. Inst. and Ilya Bogdanov, MIPT, Moscow)

Solution. For an arbitrary ¢ > 0 we will establish a lower bound for the sum of perimeters
that would tend to 400 as ¢ — +0; this solves the problem.

Rotate and scale the picture so that one of the sides of K is the segment from (0,0) to
(0,1), and stretch the picture horizontally in such a way that the projection of K to the = axis
is [0, 1]. Evidently, we may work with the lengths of the projections to the x or y axis instead
of the perimeters and consider their sum, that is why we may make any affine transformation.

Let fi(a) be the length of intersection of the straight line {x = a} with 7; and put f(a) =
> fia). Then f is piece-wise increasing with possible downward gaps, f(a) < 1 —a, and

! 1
/0 f(x)dxza—a

Let dy,...,dxy be the values of the gaps of f. Every gap is a sum of side-lengths of some of T;
and every T; contributes to one of d;, we therefore estimate the sum of the gaps of f.

In the points of differentiability of f we have f’(a) > f(a)/a; this follows from f/(a) >
fi(a)/a after summation. Indeed, if f; is zero this inequality holds trivially, and if not then
fI' =1 and the inequality reads f;(a) < a, which is clear from the definition.

Choose an integer m = |1/(8¢)] (considering e sufficiently small). Then for all £ =

0,1,...,[(m — 1)/2] in the section of K by the strip k/m < z < (k + 1)/m the area, cov-
ered by the small triangles 7; is no smaller than 1/(2m) —e > 1/(4m). Thus
(k+1)/m (k+1)/m d (k+1)/m 1 1
/ f’(x)da:Z/ flade  _m f@)yde> - Lot
Hence,
1/2

, 1/1 1
o f(‘”)dmz‘(I+"‘+[<m—1>/21)'

The right hand side tends to infinity as ¢ — +0. On the other hand, the left hand side equals

f(1/2) + Z di;

z;<1/2

hence ). d; also tends to infinity.



IMC 2018, Blagoevgrad, Bulgaria
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Problem 1. Let (a,)y, and (b,)22, be two sequences of positive numbers. Show that the
following statements are equivalent:

(1) There is a sequence (c,)22; of positive numbers such that Z — and Z — both converge;

n=1 n
2) Z A /% converges.
n=1 n

Solution. Note that the sum of a series with positive terms can be either finite or +oo, so for
such a series, "converges" is equivalent to "is finite".

Proof for (1) = (2): By the AM-GM inequality,
— < = ,
iV n=ae)
> an, 1 <= a,
< o<
NED RS
Hence, Z A /— is finite and therefore convergent.

Proof for (2) = (1): Choose ¢, = v/a,b,. Then

(Proposed by Toméas Barta, Charles University, Prague)

SO

N R
¢, b, Vb,
By the condition Z A /— converges, therefore Z — and Z — converge, too.
n=1 TL

Problem 2. Does there exist a field such that its multiplicative group is isomorphic to its
additive group?
(Proposed by Alexandre Chapovalov, New York University, Abu Dhabi)

Solution. There exist no such field.

Suppose that F is such a field and ¢g: F* — F'* is a group isomorphism. Then g(1) = 0.

Let a = g(—1). Then 2a =2-g(—1) = g((—1)?) = g(1) = 0; so either a = 0 or char F = 2.
If a = 0 then —1 = g7'(a) = g7'(0) = 1; we have char F' =2 in any case.

For every z € I, we have g(2?) = 2¢g(z) = 0 = g(1), so 22 = 1. But this equation has only
one or two solutions. Hence F'is the 2-element field; but its additive and multiplicative groups
have different numbers of elements and are not isomorphic.



Problem 3. Determine all rational numbers a for which the matrix

a —a —1 0

is the square of a matrix with all rational entries.
(Proposed by Daniél Kroes, University of California, San Diego)

Solution. We will show that the only such number is a = 0.
a —a —1 0
a —a 0 -1 2 .
Let A= 1 0 a -a and suppose that A = B*. It is easy to compute the charac-
0 1 a -—a

teristic polynomial of A, which is
pa(z) = det(A —zl) = (2> + 1)°

By the Cayley-Hamilton theorem we have pa(B?) = pa(A4) = 0.

Let up(z) be the minimal polynomial of B. The minimal polynomial divides all polynomials
that vanish at B; in particular up(z) must be a divisor of the polynomial p4(z?) = (z* + 1)2.
The polynomial pp(x) has rational coefficients and degree at most 4. On the other hand, the
polynomial 2% + 1, being the 8th cyclotomic polynomial, is irreducible in Q[x]. Hence the only
possibility for up is pg(x) = z* + 1. Therefore,

A2+ 1 =pg(B)=0. (1)

Since we have
0 0 —2a 2a

0 0 —2a 2a

2 _
A+ 1= 20 —2a O 01’
2a —2a 0 0
the relation (1) forces a = 0.
In case ¢ = 0 we have
00 -1 0 000 —1\°
a_loo 0o =) _[rto0 0
11 0 0 0 101 0 O ’
01 0 0 001 0

hence a = 0 satisfies the condition.

Problem 4. Find all differentiable functions f : (0,00) — R such that
F(b) — fla) = (b—a)f’ (@) for all a,b> 0. 2)
(Proposed by Orif Tbrogimov, National University of Uzbekistan)

Solution. First we show that f is infinitely many times differentiable. By substituting a = %t
and b = 2t in (2),
f@2t) = f(3t)

3
5t

() = (3)



Inductively, if f is k times differentiable then the right-hand side of (3) is & times differentiable,
so the f’(t) on the left-hand-side is k& times differentiable as well; hence f is k + 1 times
differentiable.

Now substitute b = et and a = "¢ in (2), differentiate three times with respect to h then
take limits with » — 0:

F(e"t) = fe™"t) = ("t —eT"t) f(t) = 0
<%> (f(eht) — fle7"t) — ("t — e*ht)f(t)) =0

e3ht3f///(€ht)+3€2ht2f//(eht)+€htf/(eht)_'_efShtSf///(e—ht>+3672ht2f//(€—ht)_i_efhtf/(e—ht)_
—(e"t+e")f'(t) =0
2t3f”/(t) + 6t2f//(t> =0
tf”l(t) + 3f//(t) — 0
(tf()" =
Consequently, ¢tf(t) is an at most quadratic polynomlal of t, and therefore

fy =i+ v (1

with some constants C;, Cy and Cs.
It is easy to verify that all functions of the form (4) satisfy the equation (1).

Problem 5. Let p and ¢ be prime numbers with p < ¢q. Suppose that in a convex polygon
PP, ... P, all angles are equal and the side lengths are distinct positive integers. Prove that

E+k
PP+ PPy + -4 Py Pryy >

holds for every integer k£ with 1 < k < p.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Berlin)

Solution. Place the polygon in the complex plane counterclockwise, so that P, — P is a

positive real number. Let a; = |Piio — Piy1l, Wthh is an integer, and define the polynomial
f(z) = ap 12?7+ +a1x 4 ap. Let w=e e ; then Py — Py = a; 1w, so f(w) = 0.

The minimal polynomial of w over Q[z] is the cyclotomic polynomial ®,,(x) = %,
so @, (x) divides f(x). At the same time, ®,,(z) is the greatest common divisor of s(z) =

22 11 = ®,(27) and t(z) = L= = ®,(29), so by Bézout’s identity (for real polynomials), we
can write f(z) = s(x)u(z )+ t( Jo(z), with some polynomials u(x),v(z). These polynomials
can be replaced by u*(z) = u(z) + w(z) L=t *(z) = v(z) — w(z)Z=,

generality we may assume that degu < p — 1. Since dega = pg — 1, this forces degv < g — 1.

Let u(z) = up_12? ' + - +wyz + up and v(z) = v,_129 1 + - - + v12 + vg. Denote by (4, 7)
the unique integer n € {0,1,...,pg— 1} with n = (mod p) and n = j (mod ¢). By the choice
of s and t, we have a(; jy = u; + v;. Then

k-1 k—1 k—1
1
PPy + o 4 PpPry1 = E a(zz)—E UH—UZ—E (ui + vj)
i=0 j=0
k-1 k—1
1 () 1 S+ k
e 3.7 >— 1 2 . ]CZ ==
k,zojoa(v])—k( + + + ) 2

where () uses the fact that the numbers (7, j) are pairwise different.
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Problem 6. Let k£ be a positive integer. Find the smallest positive integer n for which there
exist k nonzero vectors vy, ..., v, in R™ such that for every pair ¢, j of indices with [i — j| > 1
the vectors v; and v; are orthogonal.

(Proposed by Alexey Balitskiy, Moscow Institute of Physics and Technology and M.I.T.)

Solution. First we prove that if 2n + 1 < k then no sequence vy, ..., v, of vectors can satisfy
the condition. Suppose to the contrary that vy, ..., v, are vectors with the required property
and consider the vectors

U1,V3,VUs5,...,U2n+1-

By the condition these n 4+ 1 vectors should be pairwise orthogonal, but this is not possible
in R”.

Next we show a possible construction for every pair k,n of positive integers with 2n > k.
Take an orthogonal basis (ey,...,e,) of R" and consider the vectors

V1 = Uy = €7, Vs = Uyg4 = €9, ceey Vopn—1 = Vap = €p.

For every pair (4, j) of indices with 1 <¢,j < 2n and |i—j| > 1 the vectors v; and v; are distinct
basis vectors, so they are orthogonal. Evidently the subsequence vy, vy, ..., v, also satisfies the
same property.

Hence, such a sequence of vectors exists if and only if 2n > k; that is, for a fixed k, the
k
smallest suitable n is [gw
Problem 7. Let (a,)22, be a sequence of real numbers such that ap = 0 and
al =al—8 for n=012,..

Prove that the following series is convergent:

> s — agl. (1)
n=0

(Proposed by Orif Ibrogimov, National University of Uzbekistan)

Solution. We will estimate the ratio between the terms |a, 12 — a,1| and |a, 11 — ay|.

Before doing that, we localize the numbers a,,; we prove that
—2<a,<—v4 forn>1. (2)

The lower bound simply follows from the recurrence: a, = /a2 ; —8 > /-8 = —2. The
proof of the upper bound can be done by induction: we have a; = —2 < —+/4, and whenever

-2 <a, <0, it follows that a,,; = ¢/a2 —8 < Vv/22 —8 = — /4.



Now compare |a,42 — @,y 1| With |a,41 — a,|. By applying rd -yt = (z — ?/)(xQ Ty + y2),
1? —y?> = (r — y)(z + y) and the recurrence,

(ai+2 + An420n4+1 + a721+1) ) |an+2 - an-i-ll =
= |a§z+2 - ai+1| = }(ai—&-l —8) — (ai - 8)| =

= |ant1 + anl - |ani1 — anl.
On the left-hand side we have
GEH_Q + Ap4-20n41 + aiﬂ Z 3- 42/3;

on the right-hand side
|an+1 + an| S 4.

Hence,
4 V4
|@nya = @nya] < m’anﬂ — an| = = |an1 — an|.

3
By a trivial induction it follows that

3
Hence the series Y~ |a,11 —ay,| can be majorized by a geometric series with quotient ry <1

that proves that the series converges.

Problem 8. Tet Q = {(z,y,2) €Z>:y+ 1>z >y >2z>0}. A frog moves along the points
of Q by jumps of length 1. For every positive integer n, determine the number of paths the frog
can take to reach (n,n,n) starting from (0,0,0) in exactly 3n jumps.

(Proposed by Fedor Petrov and Anatoly Vershik, St. Petersburg State University)

Solution. Let ¥ = {(u,v) € Z*> : v > 0,u > 2v}. Notice that the map = : Q — U,
m(x,y,2) = (z +y, 2) is a bijection between the two sets; moreover 7 projects all allowed paths
of the frogs to paths inside the set W, using only unit jump vectors. Hence, we are interested
in the number of paths from 7(0,0,0) = (0,0) to m(n,n,n) = (2n,n) in the set ¥, using only
jumps (1,0) and (0, 1).

For every lattice point (u,v) € W, let f(u,v) be the number of paths from (0,0) to (u,v)
in U with «w+ v jumps. Evidently we have f(0,0) = 1. Extend this definition to the points
with v = —1 and 2v = u + 1 by setting

flu,—1)=0, f(2v—1,v)=0. (3)

To any point (u,v) of U other than the origin, the path can come either from (u — 1, v) or from
(u,v — 1), so

flu,v) = f(u—1,v) + f(u,v—1) for (u,v) € ¥\ {(0,0)}. (4)

If we ignore the boundary condition (3), there is a wide family of functions that satisfy (4);
namely, for every integer ¢, (u,v) — (ch)) is such a function, with defining this binomial
coefficient to be 0 if v + ¢ is negative or greater than u + v.

Along the line 20 = u + 1 we have (“;”’) = (3“*1) = 2(3”71) = 2(“*”). Hence, the function

v v—1 v—1

(1) ()



satisfies (3), (4) and f(0,0) = 1. These properties uniquely define the function f, so f = f*.
In particular, the number of paths of the frog from (0,0,0) to (n,n,n) is

3n
F(r(n,n,n)) = f(2n,n) = (3") _2( 3n ) Q

n n—1 :2n—|—1'

Remark. There exist direct proofs for the formula (*")/(2n + 1). For instance, we can
replicate the well-known proof of the formula for the Catalan numbers using the Cycle Lemma
of Dvoretzky and Motzkin (related to the petrol station replenishment problem). See https:
//en.wikipedia.org/wiki/Catalan_number#Sixth_proof

Problem 9. Determine all pairs P(x), Q(z) of complex polynomials with leading coefficient 1
such that P(z) divides Q(x)? + 1 and Q(z) divides P(z)* + 1.
(Proposed by Rodrigo Angelo, Princeton University and Matheus Secco, PUC, Rio de Janeiro)

Solution. The answer is all pairs (1,1) and (P, P + 1), (P, P — i), where P is a non-constant
monic polynomial in C[z] and 7 is the imaginary unit.

Notice that if P|Q? + 1 and Q|P? + 1 then P and @ are coprime and the condition is
equivalent with PQ|P? + Q* + 1.

Lemma. If P,QQ € C[z] are monic polynomials such that P? + Q? + 1 is divisible by PQ,
then deg P = deg ().

Proof. Assume for the sake of contradiction that there is a pair (P, Q) with deg P # deg Q.
Among all these pairs, take the one with smallest sum deg P + deg @ and let (P, Q) be such
pair. Without loss of generality, suppose that deg P > deg (). Let S be the polynomial such
that

P+@+1_
PQ -
Notice that P a solution of the polynomial equation X2 — QSX + Q? + 1 = 0, in variable X.
2
1
By Vieta’s formulas, the other solution is R = QS — P = @+ . By R=QS — P, the R is
Q+1

indeed a polynomial, and because P, () are monic, R = is also monic. Therefore the pair

(R, Q) satisfies the conditions of the Lemma. Notice that deg R = 2deg @ — deg P < deg P,
which contradicts the minimality of deg P + deg (). This contradiction establishes the Lemma.
P? 211
By the Lemma, we have that deg(PQ) = deg(P? + Q* + 1) and therefore % is
a constant polynomial. If P and () are constant polynomials, we have P = () = 1. Assuming
that deg P = deg @ > 1, as P and Q are monic, the leading coefficient of P? + Q? + 1 is 2
PP+ Q% +1
PQ
P? 4+ Q%+ 1 = 2PQ and therefore (P —Q)* = —1,ie Q = P+ior Q = P —i. It’s easy to
check that these pairs are indeed solutions of the problem.

and the leading coefficient of PQ is 1, which give us = 2. Finally we have that



Problem 10. For R > 1 let Dr = {(a,b) € Z*: 0 < a® + b* < R}. Compute
) (_1)a+b
fmo D

(Proposed by Rodrigo Angelo, Princeton University and Matheus Secco, PUC, Rio de Janeiro)

Solution. Define £ = {(a,b) € Z*\ {(0,0)} : a®> +b* < R and a + b is even}. Then

(—1)e+ 1 1
2 il mE X AR 5)

(a,b)eDr (a,b)e€R (a,b)€DRr

But a+b is even if and only if one can write (a,b) = (m —n, m+n), and such m, n are unique.
Notice also that a® + b* = (m — n)? + (m + n)? = 2m? + 2n?, hence a® + bv*> < R if and only if
m? + n? < R/2. With that we get:

1 1
2 Z 2+b2: Z (m_n)2+<m+n>2: Z m (6)

(a,b)EER (m,n)€DR /o (m,n)€Dg/2

Replacing (6) in (5), we obtain

(_1)a+b B 1
Z a? b2 Z a? + b?’

(a,b)€DRr R/2<a?+b2<R

where the second sum is evaluated for a and b integers.

Denote by N(r) the number of lattice points in the open disk 22 +y? < r%. Along the circle
with radius 7" with \/R/2 < r < V'R, there are N(r +0) — N(r — 0) lattice points; each of them
contrlbute in the sum (7). So we can re-write the sum as a Stieltjes integral:

1 VR
Z a2 + b2 - 2 dN(r).
R/2<a?+b2<R VE/2

It is well-known that N(r) = 7r? + O(r). (Putting a unit square around each lattice point,
these squares cover the disk with radius r — 1 and lie inside the disk with radius r + 1, so there
their total area is between m(r — 1) and 7(r + 1)?). By integrating by parts,

/j NG = [%NW}:;+/§ ZNG)dr
ZQW/\F %+0<1/\/_)_7r10g2+o(1/\/—>

R/2

R/2
Therefore,
. (—1>a+b . 1 ) /\/E 1
lim = — lim Z —— = — lim —dN(r) = —mlog2.
00 2 2 00 2 2 0 2
e (a,b)EDR > +b = R/2<a?+b2<R a*+b R= Rr/2T
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Problem 1. Evaluate the product

ﬁ (n® 4 3n)?
S onf—64

Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and
Karen Keryan, Yerevan State University and American University of Armenia, Yerevan

Hint: Telescoping product.

Solution. Let

(0’ +3n)?
" onS—64
Notice that
(P +3n)2 n?(n? + 3)?
DB 8B+ 8)  (n—2)m2+2n+4)-(n+2)(n2—2n+4)
n n n*+3 n*+3

n—2 n+2 n—124+3 (n+12+3

Hence, for N > 3 we have

[T~ (I1,%)

Yoo Non243 N on243
N

_ N(N-1) 3-4 N%+3 3?+3
T 1.2 (N+D(N+2) 2243 (N+1)2+3
T2 N(N —1)(N2+3)

T (N+D)(N+2)((N+1)2+3)

T2 (1-5H)1+-%)

T 0RO RO R )

SO

Problem 2. A four-digit number Y EAR is called very good if the system

Yr+FEy+Az+Rw=Y
Rr+Yy+ FEz+Aw=F
Ar+ Ry+Yz+ Fw=A
Ex+Ay+ Rz+Yw=R

of linear equations in the variables z,y, z and w has at least two solutions. Find all very good
YEARSs in the 21st century.

(The 21st century starts in 2001 and ends in 2100.)
Proposed by Tomas Barta, Charles University, Prague

1



Hint: If the solution of the system is not unique then det

oo
SN=VEAES
<o
N e

Solution. Let us apply row transformations to the augmented matrix of the system to find its
rank. First we add the second, third and fourth row to the first one and divide by Y+ F+ A+ R
to get

1 1 1 1 1 11 1 1 1
RY E A E 0 Y-R E-R A-R E—R
ARY E Al 0o R-AY-A E-A 0
E A RY R 0 A~-E R—-E Y-E R-E
1 1 1 1 1
0 Y - R E—-R A-R E—R
o R—A Y — A E—A 0

0 A-E+Y-R 0 Y-FE+A-R 0

Let us first omit the last column and look at the remaining 4 x 4 matrix. If £ # R, the first
and second rows are linearly independent, so the rank of the matrix is at least 2 and rank of
the augmented 4 x 5 matrix cannot be bigger than rank of the 4 x 4 matrix due to the zeros in
the last column.

IF E' = R, then we have three zeros in the last column, so rank of the 4 x 5 matrix cannot be
bigger than rank of the 4 x 4 matrix. So, the original system has always at least one solution.

It follows that the system has more than one solution if and only if the 4 x 4 matrix (with
the last column omitted) is singular. Let us first assume that E # R. We apply one more
transform to get

1 1 1 1
0 Y- R E-R A-R

“lo R-AE-R - -R(Y -4 0 (E—A(E-R)—(A-R)Y — A)
0 A-E+Y - R 0 Y-E+A-R

Obviously, this matrix is singular if and only if A — E4+Y — R = 0 or the two expressions in
the third row are equal, i.e.

RE—-R>~-~AE+AR—-Y?+RY +AY —AR=E?>— AE —ER+ AR — AY + RY + A> — AR

0= (E—R7+(A-Y),
but this is impossible if £ # R. If E = R, we have

1 1 1 1 11 1 1
0 Y-R 0 A-R 0 Y-R 0 A-R
“lo R-4A4 Y-A R-A “lo R—A4 Y-A R-A
0 A+Y—-2R 0 Y+A-2R 0 A-.R 0 Y-R

If A=Y, this matrix is singular. If A # Y, the matrix is regular if and only if (Y — R)? #
(A — R)? and since Y # A, it means that Y — R # —(A — R), i.e. Y + A # 2R. We conclude
that YEAR is very good if and only if

l.FE#Rand A+Y =FE+R, or

2. E=RandY = A, or

3. E=R A4Y and Y + A = 2R.



We can see that if Y = 2, £ = 0, then the very good years satisfying 1 are A+2 = R # 0, i.e.
2002, 2013, 2024, 2035, 2046, 2057, 2068, 2079, condition 2 is satisfied for 2020 and condition 3
never satisfied.

Problem 3. Let f: (—1,1) — R be a twice differentiable function such that

2f'(z) + xf"(x) > 1 forz € (—1,1).

[ ety

Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and
Karim Rakhimov, Scuola Normale Superiore and National University of Uzbekistan

Prove that

Hint: 2f'(x) + xf"(z) is the second derivative of a certain function.

Solution. Let

Notice that
g"(x) =2f"(x) + zf"(x) =1 =0,
so g is convex. Estimate g by its tangent at 0: let ¢’(0) = a, then

(
9(x) = 9(0) +¢'(0)x

and therefore

2

/lle(x)dx:/ll<g(x)+%2>dxz/11<ax+%>dx:

Problem 4. Define the sequence ag, aq, ... of numbers by the following recurrence:

Wl =

a=1, a =2, (n+3)ap2=(6n+9a,1 —na, forn>0.

Prove that all terms of this sequence are integers.
Proposed by Khakimboy Egamberganov, ICTP, Italy

Hint: Determine the generating function > a,z"

Solution. Take the generating function of this sequence

o0
= E anx".
n=0

It is easy to see that the sequence is increasing and

ant1 (60 +3)a, — (n —1)ay_y - 6n + 3 ~ limsup (i1

= < 6.
an, (n+2)a, n+ 2 nooo  Qp

So the generating function converges in some neighbourhood of 0. Then, we have

6n + 9 = n
=142+ Y a, 2" = 1+22+ ) apy02"™" = 14+22+ Apogx 2= a,z" 2.
fl) = s2es3. 3 YT



Let fi(z) = ; 6:j39an+1x”+2 and fo(z) = go - Z 7 0n® "2, Then
(@fi(x)) =) (6n+9)anp 12" = 62 Z (n+1)ap 1 +3x2an+1x = 622 f'(2)+3z(f(x)—1)
n=0 n=0 n=0
and
(xfo(z)) = Z na,x™t? = z? Z(n + Dayz™ — 2 Z ant" = 2% (xf(2)) — 22 f(x) = 2° f'(2).
n=0 n=0 n=0

Using this relations, we arrive at the following differential equation for f:

(xf(x)) =1+42 + (vfi(2)) — (xfo(z)) =1+ 2+ (627 — 2%) f'(z) + 32 f(z)
or, equivalently,
(2 —62° + ) f'(x) + (1 = 32)f(z) =1 — 2 =0.
So, we need solve this differential equation in some sufficiently smaller neighbourhood of 0. We
know that f(0) = 1 and we need a neighbourhood of 0 such that ? — 6z + 1 > 0. Then

y 1 -3z B 1+
Jw) + x(z? — 62 + 1)f(:c) C x(22 -6z +1)
T
for z # 0. So the integral multiplier is u(zr) = —— and
# g p () e
, T+ 22
z)u(x)) = ,
F@HE) = s

SO

1—=x 1\ Va2 —6x+1 1—x—\/$2—6a:—|—1
22 —6xr+1 2 x 2x

We found the generating function of (a,) in some neighbourhood of 0, which z? — 6z + 1 > 0.

l—2z—+Va2—-6zx+1 .

So our series uniformly converges to f(x) = in |z| <3 —2V2.

Instead of computing the coefficients of the Taylor series of f(x) directly, we will find
another recurrence relation for (a,). It is easy to see that f(z) satisfies the quadratic equation
xt*> — (1 —x)t+1=0. So

vf(x)? — (1 —2)f(z)+1=0.

Then
o 2 o (e.0) [o.¢] n (e.)

x (Z anx”) +1= Zanx”—z apz™t = Z (Z akan_k> " = Z(an+1—an)m”+1
n=0 n=0 n=0 n=0 k=0 n=0

and from here, we get

(p41 = Qp + Z kO —f-
k=0
If ap,ay, ..., a, be integers, then a,; is also integer. We know that ag = 1,a; = 2 are integer
numbers, so all terms of the sequence (a,) are integers by induction.

Problem 5. Determine whether there exist an odd positive integer n and n X n matrices A
and B with integer entries, that satisfy the following conditions:
(1) det(B) = 1;
(2) AB = BA;
(3) A*+4A?B? + 16B* = 20191.
(Here I denotes the n x n identity matrix.)
Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan

4



Hint: Consider the determinants modulo 4.

Remark. The proposed solution was more complicated and involved; during the contest it
turned out that a signficantly simplified solution exists — which we now provide below.

Solution 1. We show that there are no such matrices.
Notice that A* + 442B? + 16B* can factorized as

A+ 4A’B? 1 16B* = (A* 4+ 2AB + 4B*)(A? — 2AB + 4B?).
Let C = A? +2AB +4B? and D = A2 — 2AB + 4B? be the two factors above. Then
det C - det D = det(C'D) = det(A* + 4A?B? + 16 B*) = det(20191) = 2019".

The matrices C, D have integer entries, so their determinants are integers. Moreover, from
C'= D (mod 4) we can see that

det C'=det D (mod 4).

This implies that det C-det D = (det C')? (mod 4), but this is a contradiction because 2019 = 3
(mod 4) is a quadratic nonresidue modulo 4.

Solution 2. Notice that
At = A* + 4A%B% + 16B* = 20191 mod 4

SO
(det A)* = det A* = det(21097) = 2019 (mod 4).

But 2019 = 3 is a quadratic nonresidue modulo 4, contradiction.



IMC 2019, Blagoevgrad, Bulgaria

Day 2, July 31, 2019

Problem 6. Let f,g: R — R be continuous functions such that g is differentiable. Assume
that (f(0) — ¢'(0))(¢’(1) — f(1)) > 0. Show that there exists a point ¢ € (0,1) such that
fle) =4g'(c).

Proposed by Fereshteh Malek, K. N. Toosi University of Technology

Solution. Define F(z) = [; f(t)dt and let h(z) = F(z) — g(x). By the continuouity of f we
have I = f,so h' = f — ¢’

The assumption can be re-written as A'(0)( — #'(1)) > 0, so #'(0) and k’(1) have opposite
signs. Then, by the Mean Value Theorem For Derivatives (Darboux property of derivatives) it
follows that there is a point ¢ between 0 and 1 where h'(c) =0, so f(c) = ¢'(¢).

Problem 7.
Let C' = {4,6,8,9,10,...} be the set of composite positive integers. For each n € C' let
a, be the smallest positive integer k£ such that k! is divisible by n. Determine whether the

following series converges:
an\™
) 1
> (%) 2

neC
Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan

Solution. The series (1) converges. We will show that 4= < % for n > 4; then the geometric
series > (2)" majorizes (1).

Case 1: n has at least two distinct prime divisors. Then n can be factored as n = gr with
some co-prime positive integers ¢, r > 2; without loss of generality we can assume ¢ > r. Notice
that ¢ ‘ q' and r | 7! | ql, son=qr ‘ q!; this shows a,, < g and therefore

=-<

g _1_1
n n r

3 I
DN | —

Case 2: n is the square of a prime, n = p? with some prime p > 3. From p? ’p - 2p } (2p)! we
obtain a,, = 2p, so
anp  2p
n p
Case 3: n is a prime power, n = p* with some prime p and k& > 3. Notice that n =
p*|p-p? - pF7t, s0 a, < p*' and therefore

<

N
Wl N

k—1
<l _ -

n pk

an
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Problem 8. Let z1,...,x, be real numbers. For any set I C {1,2,...,n} let s(I) = > x;.

il
Assume that the function I — s(I) takes on at least 1.8" values where I runs over all 2" subsets
of {1,2,...,n}. Prove that the number of sets I C {1,2,...,n} for which s(I) = 2019 does not
exceed 1.7".

Proposed by Fedor Part and Fedor Petrov, St. Petersburg State University

Solution. Choose disctint sets I1,...,14 C {1,2,...,n} where A > 1.8" and let Jy,...,Jg C
{1,2,...,n} be all sets so that S(J;) = 2019; for the sake of contradiction, assume that
B>1.71"

Every set I C {1,2,...,n} can be identified with a 0 — 1 vector of length n: the kth
coordinate in the vector is 1 if k£ € I. Then s(I) = (I, X), where X = (xy,...,2,) and (-,-)
stands for the usual scalar product.

For all ordered pairs (a,b) € {1,..., A} x{1,..., B} consider the vector I,—J, € {—1,0,1}".
By the pigeonhole principle, since AB > (1.8 - 1.7)" > 3", there are two pairs (a,b) and (¢, d)
such that I, — J, = I. — J;. Multiplying this by X we get s(I,) — 2019 = s(I.) — 2019; that
implies a = ¢. But then J, = J,, that is, b = d, and our pairs coincide. Contradiction.

Problem 9. Determine all positive integers n for which there exist n xn real invertible matrices
A and B that satisfy AB — BA = B?A.,
Proposed by Karen Keryan, Yerevan State University & American University of Armenia, Yerevan

Solution. We prove that there exist such matrices A and B inf and only if n is even.

I. Assume that n is odd and some invertible n x n matrices A, B satisfy AB — BA = B?A.
Hence B = A™!'(B* + B)A, so the matrices B and B? + B are similar and therefore have the
same eigenvalues. Since n is odd, the matrix B has a real eigenvalue, denote it by A\;. Therefore
A2 := A? + \; is an eigenvalue of B? + B, hence an eigenvalue of B. Similarly, A3 := A2 + )\,
is an eigenvalue of B? + B, hence an eigenvalue of B. Repeating this process and taking into
account that the number of eigenvalues of B is finite we will get there exist numbers k <[ so
that \;;1 = A\x. Hence

Mer1 = AL+ A

N2 = Aiyr + At
=M+ N
M= AT+ A

Adding this equations we get A} + A7, +...+ A7 = 0. Taking into account that all \;’s are real
(as \p is real), we have A\, = ... = A\; = 0, which implies that B is not invertible, contradiction.

II. Now we construct such matrices A, B for even n. Let Ay = [(1] (1)] and By = {:1 _11} )

It is easy to check that the matrices Ay, By are invertible and satisfy the condition. For n = 2k
the n x n block matrices

A2 0 0 BQ 0 0
0 A, 0 0 B, 0

A= , B=|.
0 O AQ 0 O B2

are also invertible and satisfy the condition.



Problem 10. 2019 points are chosen at random, independently, and distributed uniformly in
the unit disc {(z,y) € R?: 22+ y* < 1}. Let C be the convex hull of the chosen points. Which
probability is larger: that C' is a polygon with three vertices, or a polygon with four vertices?

Proposed by Fedor Petrov, St. Petersburg State University

Solution. We will show that the quadrilateral has larger probability.
Let D = {(z,y) € R?: 2° + y* < 1}. Denote the random points by X1, ..., Xa919 and let
p= P(C is a triangle with vertices X, Xo, X3),
q= P(C is a convex quadrilateral with vertices X, Xo, X3, X4).

By symmetry we have P(Cis a triangle) = (2019)]9, (C is a quadrilateral) = (2019)q and we

need to prove that (2019)q > (2019)10, or equivalently p < 2016(] = 504q.
Note that p is the average over X, X5, X3 of the following expression:

u( Xy, Xo, X3) = P(X4 € AX1X2X3) ~P(X5,X6, .o, Xop19 € AX1X2X3),
and ¢ is not less than the average over X, Xy, X3 of
U(Xl, X27X3> = P(Xl, Xz, Xg, X4 form a convex quad.) : P(X5, Xﬁ, e ,Xgolg < AX1X2X3))

Thus it suffices to prove that u(Xi, X2, X3) < 5000(X7, Xs, X3) for all X7, X5, X3. Tt reads as
area( AX;X2X3) < 500area((2), where Q = {Y : X7, X5, X3,Y form a convex quadrilateral}.
Assume the contrary, i.e., area(AX; X5X3) > 500area(2).
Let the lines X1X5, X1X3, X5X3 meet the boundary of D at Ay, Ay, A3, By, Bo, Bs; these
lines divide D into 7 regions as shown in the picture; 2 = D, U D5 U D.

By our indirect assumption,

1 1
area(D,) + area(Ds) + area(Ds) = area(§2) < %area(l?o) < 200 rea(D) = 57(;—0

From AX1X3B3 C Q we get X3Bg/X3X2 = area(AXngBg)/area(AXngXg) < 1/500, SO

X3B3 < 51 X X3 < ﬁ. Similarly, the lengths segments A; X7, B1 X1, As Xy, Bo Xy, A3 X5 are
less than glo

The regions Dy, Dy, D3 can be covered by disks with radius 5=, so

250’

D D D
area(D;) + area(D,) + area(Ds) < 3 - TR

Finally, it is well-known that the area of any triangle inside the unit disk is at most 2 ‘[ , SO

3x/_



But then
6 3\/§ T

Zarea(Di) < +3- e + ;m < area(D),

contradiction.
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Problem 1. Let n be a positive integer. Compute the number of words w (finite sequences of
letters) that satisfy all the following three properties:

(1) w consists of n letters, all of them are from the alphabet {a,b,c,d};
(2) w contains an even number of letters a;
(3) w contains an even number of letters b.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)
Armend Sh. Shabani, University of Prishtina

Solution 1. Let N = {1,2,...,n}. Consider a word w that satisfies the conditions and let
A, B,C,D C N be the sets of positions of letters a, b, ¢ and d in w, respectively. By the
definition of the words we have ALUB UL CUD = N. The sets A and B are constrained to have
even sizes.

In order to construct all suitable words w, choose the set S = AU B first; by the conditions,
|S| = |A] + |B| must be even. It is well-known that an n-element set (with n > 1) has 27!
even subsets, so there are 27! possibilities for S.

If S = () then we can choose C C N arbitrarily, and then the set D = S\ C is determined
D uniquely. Since N has 2" subsets, we have 2" options for set C' and therefore 2" suitable
words w with S = ().

Otherwise, if & = |S| > 0, we have to choose an arbitrary subset C' of N\ S and an even
subset A of S; then D = (N \ S)\ C and B = S\ A are determined and |B| = |S| — |A| will
automatically be even. We have 2" choices for C' and 2*~! independent choices for A; so for
each nonempty even S we have 2% . 2k=1 — 9n~1 gyitable words.

The number of nonempty even sets S is 2" 7! — 1, so in total, the number of words satisfying
the conditions is

-2 4 (2" = 1) 2m =4t onh

Solution 2. Let a, denote the number of words of length n over A = {a,b,c,d} such
that a and b appear even number of times. Further, we define the following sequences for the
number of words of length n, all over A.

e b, - the number of words with an odd number of a’s and even number of b’s
e ¢, - the number of words with even number of a’s and an odd number of b’s
e d, - the number of words with an odd number of a’s and an odd number of b’s

We will call them A-words, B-words, C-words and D-words, respectively.
It is clear that a; = 2 and that

an +b, +c, +d, =4"

First, we find a recurrence relation for a,. If an A-word of length n begins with c or 4, it can
be followed by any A-word of length n — 1, contributing with 2a,_;. If an A-word of length
n begins with a, it can be followed by any word of length n — 1 that contains an odd number



of a’s and even number of b’s, thus contributing with b, ;. If an A-word of length n begins
with b, it can be followed by any word of length n — 1 that contains even number of a’s and
an odd number of b’s, thus contributing with ¢,,_;. Therefore we have the following recurrence
relation:

p, = 20p_1 + bp_1 + Cp_q. (1)

Next, we find a recurrence relation for b,.

If a B-word of length n begins with ¢ or d, it can be followed by any B-word of length n — 1,
contributing with 2b,,_;. If a B-word of length n begins with a, it can be followed by any word of
length n—1 that contains even number of a’s and even number of b’s, contributing with a,,_;. Ifa
B-word of length n begins with b, it can be followed by any word of length n—1 that contains an
odd number of a’s and an odd number of b’s, contributing with d,,_; = 4" g, 1 —b, 1 —cp .
Therefore we have the following recurrence relation:

bn = bn—l + 4n—1 — Cp—1- (2)

Now observe that b, = ¢, for all k, since simultaneously replacing a’s to b’s and vice versa
we get a C-word from a B-word. Therefore (2) yields b, = 4""!. Now (1) yields

p, =2 ay,_1+2-4"2

Solving the last recurrence relation (for example, diving by 2" we get z, = a,2™" satisfies
T, — Tp_1 = 2"73 and it remains to sum up consecutive powers of 2) we get

a, = anl + 4n71.

Solution 3. Consider the sum

(a+b+c+d)"+(-a—b+c+d)"+(—a+b+c+d)"+(a—b+c+d)"

- ()

Expanding the parentheses as
(a+b+c+d)"=(a+b+c+d)(a+b+c+d)...(a+b+c+d),

we get a sum of products ...z, z; € {a,b,c,d}, naturally corresponding to the words of
length n over the alphabet {a,b, c,d}. Consider the other terms in the numerator similarly.

If a word z; ...z, contains A, B,C, D letters a,b,c and d respectively, we get a*b"cd”
with the coefficient

4 4

1+ (DB (DA + (=D A+ (DY +(-1)B) 1, if Aand B are even
0, otherwise.

Hence, by substituting a = b= c=d = 1 in (*) we get the answer (4" +2""1)/4 = 4n~1  on—1,



Problem 2. Let A and B be n X n real matrices such that
rtk(AB—BA+1)=1

where [ is the n X n identity matrix.
Prove that

trace(ABAB) — trace(A?B?) = %n(n —1).

(rk(M) denotes the rank of matrix M, i.e., the maximum number of linearly independent
columns in M. trace(M) denotes the trace of M, that is the sum of diagonal elements in M.)
Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics

Solution. Let X = AB — BA. The first important observation is that

trace(X?) = trace(ABAB — ABBA — BAAB + BABA) = 2trace(ABAB) — 2trace(A?B?)

using that the trace is cyclic. So we need to prove that trace(X?) = n(n — 1).
By assumption, X + I has rank one, so we can write X + I = v'w for two vectors v, w. So

X2 = (vtw — 1)? = I — 2v'w + v'wv'w = T + (wo' — 2)v'w.

Now by definition of X we have trace(X) = 0 and hence wv' = trace(wv') = trace(viw) = n so
that indeed
trace(X*) =n+ (n — 2)n =n(n — 1).

An alternative way to use the rank one condition is via eigenvalues: Since X + I has rank
one, it has eigenvalue 0 with multiplicity n —1. So X has eigenvalue —1 with multiplicity n — 1.
Since trace(X) = 0 the remaining eigenvalue of X must be n — 1. Hence

trace(X*) = (n — 1)+ (n—1)- 1> =n(n — 1).



Problem 3. Let d > 2 be an integer. Prove that there exists a constant C(d) such that the
following holds: For any convex polytope K C R? which is symmetric about the origin, and
any € € (0,1), there exists a convex polytope L C R? with at most C(d)e!~? vertices such that

(1—e)K C LCK.

(For areal i, aset T C R? with nonempty interior is a conver polytope with at most o vertices, if
T is a convex hull of a set X C R? of at most a points, i.e., T = {> cytot | ts >0,y te =
1}. For a real A\, put A\K = {\z | x € K}. A set T C R? is symmetric about the origin if
(-)T =T.)

Fedor Petrov, St. Petersburg State University

Solution [in elementary terms] Let {py, ..., p,,} be an inclusion-maximal collection of points
on the boundary K of K such that the homothetic copies K; := p;+ 5K have disjoint interiors.
We claim that the convex hull L := conv{py,...,p,} satisfies all the conditions.

First, note that by convexity of K we have aKK +bK = (a+b)K for a,b > 0. Tt follows that
K; C (1+5)K. On the other hand, if ¥ € K, a > 0 and and ak € Kj, then

Di Cak—SK=ak+ <K C (a—I—E)K,
2 2 2
and since p; is a boundary point of K, we get a + 5 > 1, a > 1 — 5. Tt means that all K lie
between (1 — 5)K and (1 + 5)K. Since their interiors are disjoint, by the volume counting we

obtain ; . ;
£ € £
) <(+2) - (1-3) <62
m(z) <(1+3 3) S B/
(since Fi(e) = (14 5)?— (1 —£)% is a polynomial in & without constant term with non-negative
coefficients which sum up to (3/2)% — (1/2)9), therefore m < 3%!'~4.

It is clear that L C K, so it remains to prove that (1 —¢)K C L. Assume the contrary:
there exists a point p € (1 —¢)K \ L. Separate p from L by a hyperplane: Choose a linear
functional ¢ such that ¢(p) > max,er {(z) = max; £(p;). Choose x € K such that {(z) =: a is
maximal possible. Note that by our construction z + $K has a common point with some Kj:
there exists a point z € (z + 5K) N (p; + 5K). We have

Upo) + 50 > ((2) > (x) - Sa.

and therefore ¢(p;) > a(1 —¢). Since p € (1 —¢)K, we obtain ¢(p) < a(l —¢). A contradiction.

Solution [in the language of Banach spaces| Equip R¢ with the norm || - ||, whose unit
ball is K, call this Banach space V. Choose an inclusion maximal set X C K whose pairwise
distances are > . Put L = conv.X.

The inclusion L C K follows from the convexity of K. If the inclusion (1—¢) K C L fails then
the Hahn-Banach theorem provides a unit linear functional A € V* such that max{\(L)} =
max{\X} < 1—e¢. Then the point x € K, where the maximum max{\(K)} = 1 is attained
(thanks to the finite dimension and compactness) is in 0K and, as A witnesses, at distance > ¢
from all other points of L and X, contradicting the inclusion-maximality of X.

The upper bound for the cardinality |X| is obtained by noting that the /2 balls centered
at the points of X are pairwise disjoint and lie in the difference of balls (1+¢/2) K\ (1 —¢/2) K,
whose volume is ((1+¢/2)? — (1 —¢/2)%) volK, the volume of each of the small balls being
e?/24vol K. Hence
(2+¢e)—(2—¢)

x| < S

= 0(e'™%).




Problem 4. A polynomial p with real coefficients satisfies the equation p(z + 1) — p(z) = 2%

for all z € R. Prove that p(1 —t) > p(¢) for 0 <t < 1/2.
Daniil Klyuev, St. Petersburg State University

Solution 1. Denote h(z) = p(1 — z) — p(z) for complex z. For t € R we have h(it) =
p(1+it) — p(it) = 1% h(1/2 +it) = 0.
If p(2) = 2" + ... + co, ¢y, # 0, we have

h(a+it) = p((1 — a) + it) — p(a + it) = (1 — 2a) (nc, " 't" " 4+ Q(t, a))

for some polynomial () having degree at most n — 2 with respect to the variable t. Substituting
a=0 we get n =101, ¢, = 1/101.

Next, for large |t| we see that R(h(a +it)) > 0 for 0 < a < 1/2.

Therefore by Maximum Principle for the harmonic function A and the rectangle [0,1/2] x
[—N, N] for large enough N we conclude that $h is non-negative in this rectangle, in particular
on [0,1/2], as we need.

Solution 2. Let p(r) = >_7"a;z’. Then

p(x+1)—p(x) = Zaj (z+1) —27) = a+as(2z4+1)+- - +an, (masm_1 + <ZL) "Rt 1) :
=0

This implies that m = 101, ma,, = 1 o ajg1 = ﬁ, (m—1Dam_1 + an, (g”) =050 ajgg = —%

etc. For j > 1 a; is uniquely defined, ap may be chosen arbitrarily.

The equality po,(3) = 0 holds because 0 = pan(3) + pon(l — 3) = 2p2,(3). Let n > 1 be an
integer and let p, be a polynomial such that p,(z + 1) — p,(x) = 2™ for all x and p,(0) =0 =
pn(1). The above considerations prove the uniqueness of p,. We have p;(z) = 122 — Jz. Also
p(r+1)—p(x) =nz" ' =n(p,_1(x+1) — p,_i1(x)). Therefore p/,(x) = np,_1(x) + ¢, for
a properly chosen constant ¢,,_;. We shall prove that

(1) pon_1(z) —pon_1(1—2) =0, pon(x)+pa(1—2) =0, o, =0, py. () = 2n(2n—1)pa,_o(7)

for n =1,2,... and for all . Simple computation shows that p;(x) — p1(1 — ) = 0. We have
(12(2) + po(1 — 2)) = 21(2) + 1 — (2p1(1 — 2) + 1) = 0 50 the map 7 — pa(x) + pa(1 — ) i
constant thus pa(x) +p2(1 —x) = p2(0) + p2(1 —0) = 0. If the first two equalities hold for some
n then (pans1(2) — pongi(l —2)) = (2n 4+ D)pon(x) + con + (p2n(1 — ) + c2n) = 2¢9, 50 there
exists b € R such that pa,11(x) — pon1(1 —2x) = 2¢9,2+ b for all z. pa,1(0) — popy1(1—0) =0
and pop11(1) —pons1(1—1) = 080 2¢9, = 0 = b. This proves that pg,1(z) —pani1(1—2) = 0 for
all z. In a similar way we shall prove the second equality: (po,i2(2) + pania(l — 1)) = (2n +
2)Phni1 () + Cant1 — (2n+2) (p2nt+1(1 — ) + cant1) = 050 the map @ > papia(2) +p2pr2(l — )
is constant hence po,io(2) + pons2(l — ) = pans2(0) + ponia(l — 0) = 0 for all z. Now
Pinra(®) = (210 + 2)p2ns1(¥) + Cangr)” = (20 + 2)Phy (@) = (20 +2)((20 + Dpan(2) + c2n) =
(2n+2)(2n+1)pa, (). Since ph(x) = 2p1(z) +c; = 2? —x+¢; we obtain py(z) = 2z —1 < 0 for
x < 1.The function p, is strictly concave on [0, 1] and ps(0) = 0 = po(3). Therefore po(z) > 0
for z € (0, 3). This together with the equality ps(z) = 12ps(z) implies that p, is strictly convex
on [0, 1] so in view of ps(0) = 0 = p4(3) we conclude that ps(z) < 0 for z € (0,1). Easy
induction shows that for « € (0, 1) one has pa,(2) > 0 for an odd n and ps,(x) < 0 for an even
n. If t € (0,1) then by (1) we get pioo(1 —t) — p1oo(t) = —2p100(t) > 0 as required.
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Problem 5. Find all twice continuously differentiable functions f : R — (0, +00) satisfying

f'(@)f () = 2(f'(x))”

for all x € R.
Karen Keryan, Yerevan State University & American University of Armenia, Yerevan

Solution. We shall show that only positive constant functions satisfy the condition.

1
Let g(z) = ——. Notice that

f(x)
o () - () - (A2

so the positive function g(z) is concave. We show that g must be constant.
Take two arbitrary real numbers a < b. By the concavity of ¢, for all u < a and v > b we

have
g9(a) = g(u) _ g(b) —g(a) _ g(v) —g(b)
a—u —  b—a T wv—=0b

Combining this with g(u), g(v) > 0 we get

e

Now by taking limits u — —oo and v — co we obtain

0> 90 —9(@ _

- b—a 7

so g(a) = g(b). This holds for any pair (a,b), so g(x) is constant and f(x) = 1/g(z) also is
constant.

If f is constant then f' = f” =0, so the condition is satisfied.

Remark. Instead of the function 1/f(z), the same idea works with arctan f(x):

_ ST ) =20 SO ) 2O ) S =200

(arctan f(z))"” (1+ f2)2 (1+ f2)2 Y

As can be seen, arctan f(z) is a bounded convex function, therefore it must be constant.

Problem 6. Find all prime numbers p for which there exists a unique a € {1,2,...,p} such
that a® — 3a + 1 is divisible by p.
Géza Kos, Lorand Eotvos University, Budapest

Solution 1. We show that p = 3 the only prime that satsfies the condition.



Let f(x) = 2® — 3z + 1. As preparation, let’s compute the roots of f(z). By Cardano’s
formula, it can be seen that the roots are

.| —1 —1\? —3\? 2 2 2 4
YRer 74_\/(7) _(?3) :2Re§/cos§+isin§:{QCOS?W,QCOSEW,QCOS%}

where all three values of the complex cubic root were taken.

Notice that, by the trigonometric identity 2 cos2t = (2cost)? — 2, the map p(z) = 22 — 2
cyclically permutes the three roots. We will use this map to find another root of f, when it is
considered over [F,,.

Suppose that f(a) = 0 for some a € F, and consider

o) = J8) _ @) = fla)

= = = 2%+ az + (a* - 3).
r—a r—a

We claim that b = a® — 2 is a root of g(z). Indeed,
g(b) = (a* = 2)* +a(a® —2) + (a®* = 3) = (a+1) - f(a) = 0.

By Vieta’s formulas, the other root of g(z)is c= —a — b= —a* —a + 2.
If f has a single root then the three roots must coincide, so

a=a’>—2=—-a*>—a+2.

Here the quadratic equation a = a® — 2, or equivalently (a + 1)(a — 2) = 0, has two solutions,
a=—1and a =2. By f(—1) = f(2) = 3, in both cases we have 0 = f(a) = 3, so the only
choice is p = 3.

Finally, for p = 3 we have f(1) = —1, f(2) = 3 and f(3) = 19, from these values only f(2)
is divisible by 3, so p = 3 satisfies the condition.

Solution 2 (outline) Define f(x) and g(x) like in Solution 1. The discriminant of g(z) is
A, =a® —4(a* - 3) = 12 — 3a*.

We show that A, has a square root in F,,.
Take two integers k, m (to be determinated later) and consider

A, = A, + (ka+m)f(a) = ka* + ma® — (3k + 1)a® + (k — 3m)a + (m + 12).

Our goal is to choose k, m in such a way that the last expression is a complete square. Either
by direct calculations or guessing, we can find that £k = m = 4 works:

A, = A, + (4a+4)f(a) = 4a* + 4a® — 15a® — 8a + 16 = (2a* + a — 4)*.

If p # 2 then we can conclude that f(x) has either no or three roots, therefore p is suitable
if and only is f(z) is a complete cube: z° — 3z + 1 = (z — a)3. From Vieta’s formulas a® = 1,
so a # 0 and 3a = 0, which is possible if p = 3.

For p = 3 we have f(x) = (z + 1), so p = 3 is suitable.

The case p = 2 must be checked separately because the quadratic formula contains a division
by 2. f(1) = —1 and f(2) = 3, so p = 2 is not suitable.

Solution 3 (outline) Assume p > 3; the cases p = 2 and p = 3 will be checked separately.
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Let f(z) = 2® — 3z + 1 and suppose that a € F, is a root of f(z), and let b,c € Fj2 be the
other two roots. The discriminant Ay of f(z) can be expressed by the elementary symmetric
polynomials of a, b, ¢; it can be calculated that

Ap=(b—c)*(a—0b)*(a—c)*=81=9%

" (b—c)(a—b)(a—c)=29 €F,.

Notice that Ay # 0, so the three roots are distinct.

Either b,c € F, or b, c are conjugate elements in F,2 \ [F,, we have (a —b)(a — ¢) € F), so

L (b—c)(a—b)(a—c)
b—c= (a—b)(a—0)

follows that b, c € F,. Now f(x) has three distinct roots in F,, so p cannot be suitable.

p = 2 does not satisfies the condition because both f(1) = —1 and f(2) = 3 are odd. p =3
is suitable, because f(2) = 3 is divisible by 3 while f(1) = —1 and f(3) = 19 are not.

€ IF,. From Vieta’s formulas we have b + ¢ € F,, as well; since p # 2, it

Problem 7. Let G be a group and n > 2 be an integer. Let H; and Hy be two subgroups of
G that satisty

[G:H|=|G:Hy)=n and [G:(H,NHy)]=n(n-1).

Prove that H,; and H, are conjugate in G.

(Here [G : H] denotes the indez of the subgroup H, i.e. the number of distinct left cosets
xH of H in G. The subgroups H; and H, are conjugate if there exists an element g € G such
that g_lng = HQ)

Ilya Bogdanov and Alexander Matushkin, Moscow Institute of Physics and Technology

Solution 1. Denote K = H; N Hy. Since
n(n—1)=[G: K|=|[G: Hi][H, : K] =n[H; : K],

we obtain that [H; : K] =n — 1. Thus, the subgroup H; is partitioned into n — 1 left cosets of
K, say Hy = |_|;:11 h; K. Therefore, the set H;Hy = {ab: a € Hy, b € Hy} is partitioned as

n—1 n—1 n—1
H,Hy = <|_| hiK> H, = |_| hK Hy = |_| h; H,.
=1

i=1 =1

The last equality holds because K C Hy, so KHy = Hy. The last expression is a disjoint
union since

hiHyNh;Hy # @ <= h;'h; € Hy < h;'h; € K < h; =h,.

Thus, HyH> is a disjoint union of n — 1 left cosets with respect to Ho; hence L = G\ (H1 H»)
is the remaining such left coset. Similarly, L is a right coset with respect to H;. Therefore, for
each g € L we have L = gH, = H,g, which yields Hy = g~ 'Hg.

Solution 2. Put G/H; = X and G/H,; =Y, those are n-element sets acted on by G from the
left. Let G act on X x Y from the left coordinate-wise, consider this product as a table, with
rows being copies of X and columns being copies of Y.

The stabilizer of a point (z,y) in X x Y is H; N Hy. By the orbit-stabilizer theorem, we
obtain that the orbit Z of (z,y) has size [G : Hy N Hy] = n(n —1).

If Z contains a whole column then there is a subgroup G; of G that stabilizes x and acts
transitively on Y. If we conjugate G; to a group G, then its action remains transitive on Y,

3



so by conjugation we obtain columns of the table. Since G acts transitively on X, we cover all
the columns. It follows that Z = X x Y, so

nin—1)=|Z] =|X x Y| =n?

which is a contradiction.

Hence every column of X x Y has an element not from Z. The same holds for the rows of
X x Y. There are n elements not from Z in total and they induce a bijection between X and
Y which allows us to identify X =Y.

After this identification, every element (z,z) from the diagonal of X x X (i.e. from (X x
X)\ Z) is moved to a diagonal element by any g € G, because gx = gz. In this formula the
action of ¢ in the left hand side and the action of ¢ in the right hand side are the actions of g
on X and Y respectively.

Therefore our bijection between X and Y is an isomorphism of sets with a left action of G.
Since H; and H, are stabilizers of the points in the same transitive action of GG, we conclude
that they are conjugate.

Remark. The situation in the problem is possible for every n > 2: let G = S,, and let H;
an Hy be the stabilizer subgroups of two elements.



Problem 8. Compute

n

1 n
lim ——— —1)F log k.
00 loglognz( ) (k:) ogk

k=1

(Here log denotes the natural logarithm.)
Fedor Petrov, St. Petersburg State University

Solution 1. Answer: 1.
The idea is that if f(k) = [ ¢*, then

St ) s = [a-ar

To relate this to logarithm, we may use the Frullani integrals

x© —x —kx x —x oo —kx © —x x —x
et —e _ e e ) e e
/ ——dr = lim dr — / dr = lim —dx — / dr =
0 c k

T c—+0 /.. x x c—+0 /. X c X
ke —=x ke —x 1
lim dr = logk + lim dz = log k.
c—+0 c €T c—+0 c T

This gives the integral representation of our sum:

- n ® _e 4]l —(1l—eF)n
A= Z<_1)k(k) log k _/0 1:( " i,
k=1

Now the problem is reduced to a rather standard integral asymptotics.
We have (1—e™*)" > 1—ne~" by Bernoulli inequality, thus 0 < —e " +1—(1—e™*)" < ne™ 7,
and we get

oo, —x 1_ 1_ —x\n oo —x oo
OS/ ¢t ( ) dxén/ ¢ denM_l/ e Cdr =nM te™M,
M

M x M T

So choosing M such that MeM = n (such M exists and goes to oo with n) we get

M -z 1— (1 — %)
A:O(1)+/ c = x( ) e,
0

Note that for 0 < # < M we have e > e™™ = M/n, and (1 — e™®)" 1 L e7¢ "1
e~Mm=1/n tends to 0 uniformly in 2. Therefore

/M (=== o /M 1—er

x 0 x

Finally

M 1 _ 1 1 Lz M T M
/ I / C da +/ C dx +/ dx =
0 xr 0 x 1 z 1T
log M + O(1) = log(M +log M) + O(1) = loglogn + O(1),
and we get A = (1+ o(1))loglogn.

Solution 2. We start with a known identity (a finite difference of 1/z).



Expand the rational function

m!
(x4+1)...(x+m)

fla) = -

as the linear combination of simple fractions f(z) = > 7" ¢;/(x + j). To find ¢; we use

s = (o + DN Ly = 1 ()

So we get

- mY 1 m!
Z(_l)k(k>x+k’::1:(:1:+1)...(:1:+m)' S

k=0
Another known identity we use is

s -z ()G - () e

k=j+1 k=j+1
. . _ rkde k-1 _ [l dz
Finally we write loghk = [ 2 = 23:1 I, where I; = |, ol

Now we have

n

S = Z(—nk(Z) log k = g;(—nk(;‘) PIED

k=1
1ot n—1\ dzx A n—1\ dzx
[ e (TN [ (e (") e
0 = jJe+i o \e = jiJe+i) T m

J]=

/01 G Tt 1)@.?@«11 (n 1))) do = /01 d?x (1 T T2 122 .1. (4z/n— 1))) '

So S is again expressed as an integral, for which it is not hard to get an asymptotics.
Since €' > 1+t for all real t (by convexity or any other reason), we have vy > 1 -y =

Ll > 1 and -2 > L = ¢e7¥ for y > 0. Therefore

1+y = 1+y 1+y ey
¥y 1 ~y
€ 2 m 2 e 7,y > 0.
Using this double inequality we get
€x2<1+2%+...+7(nj1)2)—x(1+%+...+ﬁ) 1 S p-a(lti+tity)

T (1+2)(+2/2)...(1+z/(n—-1)) "

Since x%(1 4+ 1/2% +...) < 222 < 22, we conclude that

1 = e " where —
(1+2)(1+x/2)...(1+2/(n—-1)) ,wh 2+

ie., C, =logn+ O(1). Thus

Udx Cn dt Cn dt 1 dt Cndt
S: _1_ —Chx — _1_ —t :/ - / 1_ —t\ "~ / -t
/M,<e >/Ot<€> B T

=log C,, + O(1) = loglogn + O(1).
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Problem 1. Let A be a real n x n matrix such that A3 =0.
(a) Prove that there is a unique real n x n matrix X that satisfies the equation

X+AX +XA?= A

(b) Express X in terms of A.
(proposed by Bekhzod Kurbonboev, Institute of Mathematics, Tashkent)

Hint: (a) Multiply the equation by some power of A from left and another power of A from right.
(b) Substitute repeatedly X = A - AX — X A2,

Solution 1. First suppose that some matrix X satisfies the equation. We can obtain new equations
if we multiply the given equation by some power of A from left and another power of A from right.
For example,

A (X +AX + XA A2 = A2X A2+ A3 X A%+ A2X A A% = A2X A2,
The right-hand side is A?- A- A2 = A3- A2=0, so

AZX A% = A2(X + AX + XA%)A2 = A5 = 0. Similarly,
AX = A2(X +AX + XA%) = A3 =0
AXA=AX +AX + XA?)A=A3=0
XA = (X +AX + XA)A? = A3 =0
AX = A(X + AX + X A%)A = A% Finally
X=A-AX-XA%=A- A%
Hence, no matrix other than A — A? can satisfy the equation.

Note that the argument above does not prove that the matrix X = A — A? satisfies the equation,
because the steps cannot be done in reverse order. That must be verified separately. Indeed,

X+AX + XA? = (A-A%)+ A(A- A%) + (A - A%)A? =A-A*= A
Hence, X = A — A2 is the unique solution of the equation.
Remark. By multiplying the equation by A™ from left and by A* from right we can get 9 different equations:

X+AX +XA%2=A XA+AXA=A%2 XA?2+AXA%2=0
AX + A2X + AXA?2=A%2 AXA+A2XA=0 AXA%2+A%2XA%2=0
A2X + A2X A2=0 A2XA=0 A2XA%2=0

These formulas provide a system of linear equations for the nine matrices X, AX, A2X, XA, AXA, A2XA,
X A% AX A% and A2X A2



Solution 2. We use a different approach to express X in terms of A. If some matrix X satisfies

the equation then
X=A-AX - XA%

Let us substitute this identity in the right-hand side repeatedly until X cancels out everywhere.
Notice that by the condition A3 =0 we have A3 = A= A5=A3X = X A4 = AXA4=A3XA%2=0, so

X=A-AX - XA?
S A-A(A-AX - XA?) = (A - AX - X A?) A2
S A (A2- A2X - AXA?) - (AP — AX A’ - X AY)
=A- A%+ A2X + 2AX A?
S A A% 4 A2(A- AX - XA?) +2A(A - AX - X A?)A?
S A A2 4 (AP - APX - A2XA2) 4 2(A* - APX A% - AX AY)
=A-A?-3A%2X A?
S A- A2 C3A%(A- AX - X A?)A?
S A A% 3(A° - APX AT - A2X AY)
=A- A%

To complete the solution, we have to verify that X = A - A? is indeed a solution. This step is the
same as in Solution 1.

Solution 3. Let B=1- A+ A? so that B is the inverse of I + A. Multiplying by B from the left,
the equation is equivalent to
X + BXA? = BA. (1)

Now assume X satisfies the equation. Multiplying by A? from the right and using A% = 0 we get
X A? =0. Hence the equation simplifies to X = BA=A - A2
On the other hand, X = BA obviously satisfies ().

Problem 2. Let n and k be fixed positive integers, and let a be an arbitrary non-negative integer.

Choose a random k-element subset X of {1,2,...,k + a} uniformly (i.e., all k-element subsets are
chosen with the same probability) and, independently of X, choose a random n-element subset Y of
{1,...,k+n+a} uniformly.

Prove that the probability
P( min(Y) > maX(X))

does not depend on a.

(proposed by Fedor Petrov, St. Petersburg State University)
Hint: The sets X and Y with min(Y") > max(X) are uniquely determined by X uY.

Solution 1. The number of choices for (X,Y) is (kza) . ("+k+“).

n

The number of such choices with min(Y") > max(X) is equal to (”;fza) since this is the number of

choices for the n+ k-element set X UY and this union together with the condition min(Y") > max(X)
determines X and Y uniquely (note in particular that no elements of X will be larger than k + a).
Hence the probability is
n+k+a
( n+k ) _ 1
k+a n+k+a\ ~ [(n+k
(%) - () (%)
where the identity can be seen by expanding the binomial coefficients on both sides into factorials
and canceling.




Since the right hand side is independent of a, the claim follows.

Solution 2. Let f be the increasing bijection from {1,2,..., k+a} to {1,...,k+a+n} Y. Note
that min(Y") > max(X) if and only if min(Y") > max(f(X)).
Note that
{Z,=Y,Z, = f(X),Zs:=f({1,2,... . k+a} ~ X)}

is a random partition of
{1,....n+k+a} =2, 02 uZ,

into an n-subset, k-subset, and a-subset.
If an a-subset Z, is fixed, the conditional probability that min(Z;) > max(Z,) always equals
1/("*). Therefore the total probability also equals 1/("*).

Problem 3. We say that a positive real number d is good if there exists an infinite sequence
ai,as,az, ... € (0,d) such that for each n, the points ai,...,a, partition the interval [0,d] into
segments of length at most 1/n each. Find

sup {d | d is good}.

(proposed by Josef Tkadlec)

Hint: To get an upper bound, use that some of the gaps after n steps are still intact some steps
later.

Solution. Let d* = sup{d | d is good}. We will show that d* =1n(2) = 0.693.

1. d*<In2:
Assume that some d is good and let aq,as, ... be the witness sequence.
Fix an integer n. By assumption, the prefix ay,...,a, of the sequence splits the interval [0, d]

into n + 1 parts, each of length at most 1/n.

Let 0< ¥y <fly <--- < /.1 be the lengths of these parts. Now for each k =1,...,n after placing
the next k terms a,,1,..., 0,4, at least n+ 1 -k of these initial parts remain intact. Hence

lpiiop < ﬁ Hence
d=0;+-+/lh £l+ L +~~-+i.
n n+l 2n
As n — oo, the RHS tends to In(2) showing that d < In(2).

Hence d* <In2 as desired.

(2)

2. d*>In2:
Observe that

In2=In2n-Inn=> In(n+i)-In(n+i-1) = Zln(1+
i=1

i=1

n+i—1)'

Interpreting the summands as lengths, we think of the sum as the lengths of a partition of the
segment [0,In2] in n parts. Moreover, the maximal length of the parts is In(1 + 1/n) < 1/n.

Changing n to n+1 in the sum keeps the values of the sum, removes the summand In(1+1/n),

and adds two summands
1n(1+i)+ln(1+ ! ):ln(1+l).
2n 2n +1 n
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This transformation may be realized by adding one partition point in the segment of length
In(1+1/n).

In total, we obtain a scheme to add partition points one by one, all the time keeping the
assumption that once we have n -1 partition points and n partition segments, all the partition
segments are smaller than 1/n.

The first terms of the constructed sequence will be a; =In3,as=In2,a3=In%,a,=In2,....

Remark. This remark describes in fact the same solution from a different view and some ideas behind it.
It could be erased after marking is finished. Estimate is quite natural. To prove that RHS tends to In2
we use some integral estimates by

2n+1 1
/ —dr=In(2n+1) -Inn.
n T

2n 1
[ —dx =1n2
n X

is independent of n. This can help us with the construction since the above equality means

n+l 1 2n+1 1 2n+2 1
Ilzf —dm:/ —d;c+f Sdo=TIr+ I,
n X 2n X 2n+l X

so, interval of length I can be splitted into two intervals of lengths I» and I3. In fact, after placing the point
an in the construction for d = In 2, the lengths of the n + 1 intervals are

n+2 1 n+3 1 2n+2 ]
[L+l x’[n+2 $7"',f2n+1 T

Here we can observe that

with total length

n+1 x

Problem 4. Let f: R - R be a function. Suppose that for every € > 0, there exists a function
g:R - (0,00) such that for every pair (z,y) of real numbers,

if |o-yl<min{g(z),g(y)}, then |f(x)-f(y)|<e.

Prove that f is the pointwise limit of a sequence of continuous R — R functions, i.e., there is a
sequence hy, ho, ... of continuous R - R functions such that lim h,(z) = f(z) for every z € R.
n—oo

(proposed by Camille Mau, Nanyang Technological University, Singapore)

Hint: Start from a segment in place of R and use its compactness. Or recall the cool things called
“the Lebesgue characterization theorem” and “the Baire characterization theorem”.

Solution 1. Since g depends also on ¢, let us use the notation g(x,¢). Considering only e = 1/n for
positive integer n will suffice to reach our conclusions, hence we may use min{g(z,1/m) | m <n} in
place of g(x,1/n) and thus assume g(z,¢) decreasing in e.

For any x € R, choose 6, (z) = min{1/n,g(x,1/n)}. Of the 0,(z)-neighborhoods of all x select
(using local compactness of the reals) an inclusion-minimal locally finite covering {U;}. From its
inclusion-minimality it follows that we may enumerate U; with i € Z so that U; nU; # @ only when
li — j| < 1 and the enumeration goes from left to right on the real line. For an assumed n, let x; be
the center of U; and ¢; = d,(z;), so that U; = (x; — 0;,x; + 0;) and §; < 1/n for all i.

Now define a continuous f, : R — R so that it equals f(z;) in U; ~ (U;-1 U Uyy1), and so that f,
changes continuously between f(z;_1) and f(z;) in the intersection U;_1 n Uj;.

Now we show that f,, - f pointwise. Fix a point z and € = 1/m > 0, and choose

n>max{1/g(x,e),m}.

Examine the construction of f,, for any such n. Observe that g(x,¢) > 1/n > §; and 1/n < 1/m. There
are two cases:



e x belongs to the unique U;. Then using the monotonicity of g(x,¢) in £ we have

|z; — x| < §; < min {g ([Ei, %) ,g(:v,e)} <min{g(z;,¢),9(x,€)}.

Hence

[f (@) = ful) =1 f (2) = fzi)] <&

e 1 belongs to U;_; N U;. Similar to the previous case,

[f (@) = f(@ia), [ F(2) = f(2)] <.

Since f,(x) is between f,(z;_1) = f(x;-1) and f,(z;) = f(z;) by construction, we have
f (@) - ful@)] <e.

We have that |f(z) - f.(x)| < € holds for sufficiently large n, which proves the pointwise convergence.

Solution 2. This solution uses the Baire characterization theorem: A function f: R - R is a
pointwise limit of continuous functions if and only if its restriction to every non-empty closed subset
of R has a point of continuity.

Assume the contrary in view of the above theorem: A € R is a non-empty closed set and f has
no point of continuity in A. Let’s think that f is defined only on A.

Then for all x € A there exist rationals p < ¢ for which limsup, f > ¢, liminf, f < p. Apply the
Baire category theorem: If a complete metric space A is a countable union of sets then some of the
sets is dense in a positive radius metric ball of A. It follows that there exist p and ¢, which serve for
a subset B c A which is dense on a certain ball (in the induced metric of the real line) A; c A. It
yields that both sets @ = f~!(q,0) and P = f~1(-o0,p) are dense in A;.

Choose € = (¢ —p)/10 and find k for which the set S = {z: g(x) > 1/k} is also dense on a certain
ball Ay c A;. Partition S into subsets where f(z) > (p+¢)/2 and f(z) < (p+ q)/2, one of them is
again dense somewhere in Az, say the latter.

Now take any point y € A3 n @ and a very close (within distance min(1/k,g(y))) to y point x
with g(x) > 1/k but f(z) < (p+¢)/2. This pair z,y contradicts the property of f from the problem
statement.

Solution 3. This solution uses the Lebesgue characterization theorem: If f:R — R is a function
and, for all real ¢, the sublevel and superlevel sets {x | f(x) > ¢}, {x | f(x) < ¢} are countable
intersections of open sets then f is a pointwise limit of continuous functions.

Now the solution follows from the formula with a countable intersection of the unions of intervals:

wli@>a= 1 U (r-min{po (o)} oemin{zo(s 1)) (+)
e

and the similar formula for {z: f(z) < c¢}. It remains to prove (*).

The left hand side is obviously contained in the right hand side, just put y = z.

To prove the opposite inclusion assume the contrary, that f(x) < ¢, but z is contained in the
right hand side. Choose a positive integer n such that f(x) < c—1/n and k such that g(z,1/n) > 1/k.
Then, since x belongs to the right hand side, we see that there exists y such that f(y) > ¢ and

. 1} 1 ) 1 1
|.T—y| < mln{g (y7 _)7_} < mln{g (y7 _) ,g(l‘,—)},
n) k n n

which yields f(z) > f(y) - 1/n > ¢-1/n, a contradiction.
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Problem 5. Let A be a real n xn matrix and suppose that for every positive integer m there exists
a real symmetric matrix B such that

2021B = A™ + B2

Prove that |det A| < 1.
(proposed by Rafael Filipe dos Santos, Instituto Militar de Engenharia, Rio de Janeiro)

Hint: The determinant is the product of the eigenvalues.
Solution. Let B,, be the corresponding matrix B depending on m:
2021B,, = A™ + B2,

For m = 1, we obtain A = 2021B; - B}. Since B; is real and symmetric, so is A. Thus A is
diagonalizable and all eigenvalues of A are real.

Now fix a positive integer m and let X be any real eigenvalue of A. Considering the diagonal form
of both A and B,,, we know that there exists a real eigenvalue i of B,, such that

2021 = ™ + 12 = 12 — 2021+ A" = 0.

The last equation is a second degree equation with a real root. Therefore, the discriminant is

non-negative:

2
20212 —4\m >0 = \" < 2021 .

If |A\| > 1, letting m even sufficiently large we reach a contradiction. Thus |A| < 1.
Finally, since det A is the product of the eigenvalues of A and each of them has absolute value
less then or equal to 1, we get |det A| <1 as desired.

Solution. Different solution can be found in paper s2002

Problem 6. For a prime number p, let GLy(Z/pZ) be the group of invertible 2 x 2 matrices of
residues modulo p, and let S, be the symmetric group (the group of all permutations) on p elements.
Show that there is no injective group homomorphism ¢ : GLy(Z/pZ) - S,.

(proposed by Thiago Landim, Sorbonne University, Paris)
Hint: First find what the monomorphism must do with elements of order p.

Solution. For p = 2, just note that GLy(Z/27Z) has more than 2 = |5| elements.
From now on, let p be an odd prime and suppose that there exists such a homomorphism.

The matrix
1 1
1[0 3)



has order p and commutes with the matrix

(0 )

of order 2, hence AB has order 2p. But there is no permutation in S, of order 2p since only p-cycles
have order divisible by p, and their order is exactly p.

Problem 7. Let D ¢ C be an open set containing the closed unit disk {z : |z|<1}. Let f: D - C
be a holomorphic function, and let p(z) be a monic polynomial. Prove that

7(0)] < rlglgf\f(Z)p(Z)L

(proposed by Lars Hérmander)
Hint: Apply the maximum principle or the Cauchy formula to a suitable function f(z)q(z).

Solution.
Let q(z) = 2" -p(1/Z), or more explicitly, if

p(2) = 2"+ a,_12" "+ + a,

let
q(z) =1+a, 92+ +apz".

Note that for |z| = 1 we have 1/Z = z and hence |¢(2)| = [p(z)|. Hence by the maximum principle or
the Cauchy formula for the product of f and g, it follows that

£(0)] = 1£(0)a(0)] < max|f (:)a(2)| = max | F(2)p(=)]

Problem 8. Let n be a positive integer. At most how many distinct unit vectors can be selected in

R™ such that from any three of them, at least two are orthogonal?
(proposed by Alexander Polyanskii, Moscow Institute of Physics and Technology;

based on results of Paul Erdés and Moshe Rosenfeld)

Hint: Play with the Gram matrix of these vectors.

Solution 1. 2n is the maximal number.

An example of 2n vectors in the set is given by a basis and its opposite vectors. In the rest of
the text we prove that it is impossible to have 2n + 1 vectors in the set.

Consider the Gram matrix A with entries a;; = ¢; - ¢;. Its rank is at most n, its eigenvalues are
real and non-negative. Put B = A — I5,,1, this is the same matrix, but with zeros on the diagonal.
The eigenvalues of B are real, greater or equal to —1, and the multiplicity of -1 is at least n + 1.

The matrix C' = B? has the following diagonal entries

Ci; = Z Qi Qg A -
it jEki
The problem statement implies that in every summand of this expression at least one factor is zero.
Hence trC' = 0. Let zq,...,x, be the positive eigenvalues of B, their number is m < n as noted

above. From tr B = trC' we deduce (taking into account that the eigenvalues between —1 and 0

satisfy A3 > \):
3

Ty + ot Ty 2T+ T,

2



Applying tr C = 0 once again and noting that C' has eigenvalue —1 of multiplicity at least n + 1, we
obtain

i+l >n+l

It also follows that
(@1 +-+a)° > (2} +-+23) (n+ 1)~
By Hoélder’s inequality, we obtain

3

3
(3 +-+ad)m? > (a1 4+ + )",

which is a contradiction with m < n.

Solution 2. Let P; denote the projection onto i-th vector, 7 =1,..., N. Then our relation reads as
tr (P,P; ;) = 0 for distinct 4, j, k. Consider the operator @) = YN, P, it is non-negative definite, let
t1,...,t, be its eigenvalues, Y t; =trQ = N. We get

S # Q= N+6 Y tr PP = N+3(rQ* - N) =3 £ - 2N

i<j

(we used the obvious identities like tr P, P; P; = tr P?P; = tr P;P;). But (¢;-2)%(t;+1) =2 -3t2+4 > 0,
thus —2N = Y 3 - 3t? > —4n and N < 2n.
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Problem 1. Let f : [0,1] — (0,00) be an integrable function such that f(x)- f(1 —z) = 1 for
all z € [0, 1]. Prove that

1
/ f(z) dz > 1.
0
(proposed by Mike Daas, Universiteit Leiden)
Hint: Apply the AM-GM inequality.
Solution 1. By the AM—GM inequlity we have
F@)+ 10— ) > 2T @0 — o) =2

By integrating in the interval [0, 3] we get

/Olf(x)dxz/O%f(a:)dx—ir/oéf(l—x)dx:/o% (f(ac)—l—f(l—x))dxz/%zdx:l,

0

Solution 2. From the condition, we have

/Olf(x)dx - /Olf(l e = /01 ﬁdm

and hence, using the positivity of f, the claim follows since

(/Olf(l’)dx>2Z/Olf(x)dx-/olﬁdmz (/Olldx)221

by the Cauchy-Schwarz inequality.



Problem 2. Let n be a positive integer. Find all n x n real matrices A with only real eigenvalues
satisfying
A+ AF = AT

for some integer k > n.
(AT denotes the transpose of A.)
(proposed by Camille Mau, Nanyang Technological University)

Hint: Consider the eigenvalues of A.

Solution 1. Taking the transpose of the matrix equation and substituting we have
AT+ (A=A — A+ A+ (A+ AN = A — A1+ (1 + AFDHF) =o.

Hence p(x) = (1 + (1 4+ 2*71)*) is an annihilating polynomial for A. It follows that all eigenvalues
of A must occur as roots of p (possibly with different multiplicities). Note that for all z € R (this
can be seen by considering even/odd cases on k),

(1+ 2Nk >0,

and we conclude that the only eigenvalue of A is 0 with multiplicity n.

Thus A is nilpotent, and since A is n x n, A" = 0. It follows A* = 0, and A = AT. Hence A
can only be the zero matrix: A is real symmetric and so is orthogonally diagonalizable, and all its
eigenvalues are (.

Remark. It’s fairly easy to prove that eigenvalues must occur as roots of any annihilating polynomial. If A

is an eigenvalue and v an associated eigenvector, then f(A)v = f(\)v. If f annihilates A, then f(\)v =0,
and since v # 0, f(A) = 0.

Solution 2. If X is an eigenvalue of A, then A\ + A is an eigenvalue of AT = A + A* thus of A
too. Now, if k is odd, then taking A with maximal absolute value we get a contradiction unless all
eigenvalues are 0. If k is even, the same contradiction is obtained by comparing the traces of AT and
A+ Ak,

Hence all eigenvalues are zero and A is nilpotent. The hypothesis that & > n ensures A = AT. A
nilpotent self-adjoint operator is diagonalizable and is necessarily zero.



Problem 3. Let p be a prime number. A flea is staying at point 0 of the real line. At each minute,
the flea has three possibilities: to stay at its position, or to move by 1 to the left or to the right.
After p— 1 minutes, it wants to be at 0 again. Denote by f(p) the number of its strategies to do this
(for example, f(3) = 3: it may either stay at 0 for the entire time, or go to the left and then to the
right, or go to the right and then to the left). Find f(p) modulo p.

(proposed by Fedor Petrov, St. Petersburg)
Hint: Find a recurrence for f(p) or use generating functions.

Solution 1. The answer is f(p) = 0 mod 3 for p = 3, f(p) = 1 mod 3 for p = 3k + 1, and
f(p) = —1 mod 3 for p =3k — 1.

The case p = 3 is already considered, let further p # 3. For a residue ¢ modulo p denote by
a;(k) the number of Flea strategies for which she is at position ¢ modulo p after k£ minutes. Then
f(p) = ap(p—1). The natural recurrence is a;(k+1) = a;_1(k) +a;(k) +a;+1(k), where the indices are
taken modulo p. The idea is that modulo p we have ao(p) = 3 and a;(p) = 0. Indeed, for all strategies
for p minutes for which not all p actions are the same, we may cyclically shift the actions, and so
we partition such strategies onto groups by p strategies which result with the same 7. Remaining
three strategies correspond to ¢ = 0. Thus, if we denote x; = a;(p — 1), we get a system of equations
r_q+xo+x1 =3, 2 1+x;+x,4 =0foralli=1,...,p—1. It is not hard to solve this system (using
the 3-periodicity, for example). For p = 3k + 1 we get (xo, 21, ...,2p-1) = (1,1,-2,1,1,-2,...,1),
and (zo, z1,...,2p-1) = (—1,2,—1,-1,2,...,2) for p =3k + 2.

Solution 2. Note that f(p) is the constant term of the Laurent polynomial (x + 1+ 1/z)P~! (the
moves to right, to left and staying are in natural correspondence with z, 1/x and 1.) Thus, working
with power series over FF,, we get (using the notation [z*]P(x) for the coefficient of z* in P)

) = [ (1 a 422t = [ (1= 2P (1) P = [P (12 (1—2) P(1-2?) (1—a)
= (1 a®)(1 - 2?) (1 - 2?) (1 - 2) = [P - ) (L - ),

and expanding (1 — z3)7! = Y 3% we get the answer.



Problem 4. Let n > 3 be an integer. Let ) be the set of all triples of distinct elements of
{1,2,...,n}. Let m denote the minimal number of colours which suffice to colour €2 so that whenever
1 <a<b<c<d<n, the triples {a,b,c} and {b,c,d} have different colours. Prove that

1
100 loglogn < m < 100log logn.

(proposed by Danila Cherkashin, St. Petersburg)
Hint: Define two graphs, one on 2 and another graph on pairs (2-element sets).

Solution. For k = 1,2,...,n denote by € the set of all (}) k-subsets of [n]. For each k =

1,2,...,n—1 define a directed graph G, whose vertices are elements of (), and edges correspond to
elements of ;.1 as follows: if 1 < a; < as < ... < agy; < n, then the edge of G}, corresponding to
(a1, ...,a541) goes from (aq,...,ax) to (ag,...,axs1).

For a directed graph G = (V, E) we call a subset E; C E admissible, if F; does not contain a
directed path a —b— ¢ of length 2. Define b-index b(G) of the G as the minimal number of admissible
sets which cover E. As usual, a subset V; C V is called independent, if there are no edges with both
endpoints in Vj; a chromatic number of G is defined as the minimal number of independent sets
which cover V.

A straightforward but crucial observation is the following

Lemma. For all k = 2,3,...,n asubset A, C ) is independent in G}, if and only if it is admissible
as a set of edges of G_1.

Corollary. x(Gy) = b(Gk_1) for all k =2,3,... n.

Now the bounds for numbers y(Gy) follow by induction using the following general
Lemma. For a directed graph G = (V| E') we have

logy, X(G) < b(G) < 2[log, x(G)].

Proof. 1) Denote b(G) = m and prove that log, x(G) < m. For this we take a covering of E by m
admissible subsets F, ..., E, and define a color ¢(v) of a vertex v € V' as the following subset of
[m]: ¢e(v) :={i € [m] : Jvw € E;}. Note that for any edge vw € E there exists i such that vw € F;
which yields i € ¢(v) and i ¢ c¢(w), therefore c(v) # c¢(w). So, each color class is an independent set
and we get x(G) < 2™ as needed.

2) Denote x(G) = k and prove that b(G) < 2[log, k|. Take a proper coloring 7: V- — {0,1,... k—
1} (that means that 7(u) # 7(v) for all edges vu € E). For an integer x € {0,1,...,k — 1} take a
binary representation = = 31— ;(2)2", &i(x) € {0,1}, where 7 = [log, k]. Consider the following
2r subsets of E, two subsets E; ; and E; _ for each i € {0,1,...,k—1}:

Eir ={vu € E: g(7(v)) = 0,&i(7(u)) = 1},
E,_ ={vue€ E: ¢(1(v)) =1,e;(r(u)) = 0}.
Each of them is admissible, and they cover E, thus b(G) < 2r.

Note that x(G;) = n, thus b(G;) > logyn. Actually we have b(G;) = [log, n]: indeed, if we
define 7(v) = v — 1 for all v € [n] = Oy, then the above sets E; ; cover all edges of G;.

The Lemma above now yields for our number m = x(G3) = b(G3) the following bounds, which
are better than required:

b(Ga) = logy X(Ga) = log, b(G1) = log,[log, 1
b(G2) < 2[log, X(G2)] = 2[log, b(G1)] = 2[log, [log, n]].

Remark. Actually the upper bound in the Lemma may be improved to (1 + o(1))log, x(G) that yields
m = (14 o(1)) logy logy n.
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Problem 5. We colour all the sides and diagonals of a regular polygon P with 43 vertices either
red or blue in such a way that every vertex is an endpoint of 20 red segments and 22 blue segments.
A triangle formed by vertices of P is called monochromatic if all of its sides have the same colour.
Suppose that there are 2022 blue monochromatic triangles. How many red monochromatic triangles
are there?

(proposed by Mike Daas, Universiteit Leiden)
Hint: Call two connecting edges a cherry. Double-count cherries.

Solution. 1 Define a cherry to be a set of two distinct edges from Kj3 that have a vertex in common.
We observe that a monochromatic triangle always contains three monochromatic cherries, and that
a polychromatic triangle always contains one monochromatic cherry and two polychromatic cherries.
Therefore we study the quantity 2M — P, where M is the number of monochromatic cherries and P
is the number of polychromatic cherries. By observing that every cherry is part of a unique triangle,
we can split this quantity up into all the distinct triangles in K,3. By construction the contribution
of a polychromatic triangle will vanish, whereas a monochromatic triangle will contribute 6. We
conclude that
2M — P = 6 - {number of monochromatic triangles}.

Consider any vertex v. Let M, be the number of monochromatic cherries with central vertex v and
P, the number such polychromatic cherries. It then follows that

20-19  22-21
= -

M,
2 2

=421 and P, =20-22 = 440.

In other words, for any vertex v it holds that 2M, — P, = 402. Adding up all these contributions,
we find that
2M — P =43 -402.

We conclude that there are 43 - 402/6 = 43 - 67 = 2881 monochromatic triangles in total. Since 2022
of these were blue, 859 must be red.



Problem 6. Let p > 2 be a prime number. Prove that there is a permutation (z1,xs,...,z,_1) of
the numbers (1,2, ...,p — 1) such that
T1To + ToXg + ... + TpoZp—1 = 2 (mod p).

(proposed by Giorgi Arabidze, Thilisi Free University, Georgia)
Hint:

Solution 1. We show such a permutation.
Let z; =i~ ! (mod p) fori =1,2,--- ,p—1. Then

p—2
. 1 1 . 1 p-2
ZICEZ+1 Z— = (2_¢+1>:1_—:—:2 (mod p)

Solution 2. We begin by noting that the identity permutation yields the value

1-2+2-3+-~-+(p—2)(p—1):2-(g) =0 (mod p)

as soon as p > 3. The idea now is to perturb that permutation to obtain the desired value 2.

One thing we can do is to replace (i,i+ 1,4+ 2,7+ 3) by (4,4 + 2,7+ 1,7+ 3). Indeed, this will
decrease the sum by 3. Soif p =2 (mod 3), we can just take the permutation (1,3,2,4,6,5,7,...,p—
4,p—2,p—3,p—1) i.e. exchanging 3k—1 and 3k whenever k =1,2,..., ’%2. This means we decrease
the sum 222 times by 3, leading to a remaining sum of —(p —2) =2 (mod p).

If p=1 (mod 3), this strategy does not work immediately. Instead, we can change (1,2,3,4,5)
to (1,4,3,2,5) resulting in a decrement of the sum by 8. If we then exchange 3k and 3k + 1 for
k=23 ...,¢ 37 as before, we get another 2= times a decrement by 3, leading to a remaining sum
of =8 — 212.3 =2 (mod p).

Of course this only works if p > 13. It thus remains to consider the cases p = 3 and p = 7 by
hand. For p = 3, we just take (1,2) and for p = 7 we can take (1,4,5,2,3,6).



Problem 7. Let Ay, As, ..., A, be n X n idempotent complex matrices such that
AjA; =—A;A; foralli # 7.

Prove that at least one of the given matrices has rank < 7.
(A matrix A is called idempotent if A? = A.)
(proposed by Danila Belousov, Novosibirsk)

Hint: Consider the trace and the rank of A.

Solution 1.

Lemma. For any idempotent matrix B
tr(B) = rank(B)

Proof. Observe that an idempotent matrix satisfies the equation A(1 — A) = 0. Hence the minimal
polynomial is a product of linear factors and the matrix is diagonalizable. Therefore, the rank of
the matrix equals the number of non-zero eigenvalues. Since the matrix has eigenvalues 0 or 1, this

provides that the trace is equal to the number of unity eigenvalues, or non-zero eigenvalues.

k

It can be shown that > A; is also an idempotent. Indeed,
i=1

k

k 2 k
=1 =1

i#] i=1

Applying the lemma one can obtain

gmnk(/li) - itr(Ai) = tr (i Ai) = rank (i Ai) <n

i=1
The required inequality follows.

Solution 2. We first prove that for idempotents A, B with AB = —BA we already must have
AB = BA = 0. Indeed, it is clear that ABx = BAxz = 0 for z € ker(A) so it suffices to prove
the same for x € im(A), i.e. when Ar = z. But then writing Bx = y we have Ay = —y i.e.
y=—Ay = —A%y = Ay = —y and hence y = 0 so that again ABxr = BAz = 0.

Henceforth, we can assume the stronger condition A;A; = 0 for all ¢+ # j. We next claim that
all the image spaces V; of A; are linearly independent. This will imply the claim, since then the
sum of their dimensions can be at most n, and so one of them has to be < . Now, for the sake of
contradiction, suppose that ) . v; = 0 with v; € V; and w.l.o.g. v; # 0. But then

O:Al(vl—f—"’—i‘vk):U1+A1’U2+"'+Alvk:U1+A1A202+"'+A1Akvkzvl

since A1 A; = 0 for all 1.

Remark. Here is a different argument for AB = BA = 0, without eigenvectors: multiplying by A and using
its idempotence and the super-commutativity , we have

—-BA=AB=A’B=AAB = —-ABA = BAA = BA®> = BA

thus BA = 0.



Problem 8. Let n,k > 3 be integers, and let S be a circle. Let n blue points and k red points be
chosen uniformly and independently at random on the circle S. Denote by F' the intersection of the
convex hull of the red points and the convex hull of the blue points. Let m be the number of vertices
of the convex polygon F' (in particular, m = 0 when F' is empty). Find the expected value of m.

(proposed by Fedor Petrov, St. Petersburg)
Hint:

Solution 1. We prove that

2kn k!n!
-2 .
n+k—1 (k+n—1)!

E(m) =

Let Ay, ..., A, be blue points. Fix i € {1,...,n}. Enumerate our n + k points starting from a
blue point A; counterclockwise as A;, X1 ;, Xa;, ..., X(ntr-1),;- Denote the minimal index j for which
the point X; is blue as m(i). So, A; X, is a side of the convex hull of blue points. Denote by b;
the following random variable:

_J 1, if the chord A; X,,(;,; contains a side of I’
o 0, otherwise.

Define analogously k£ random variables rq, ...,y for the red points. Clearly,
m=b+...+b,+r1+ ...+ (@)

We proceed with computing the expectation of each b; and ;. Note that b; = 0 if and only if all
red points lie on the side of the line A; X,,;);. This happens either if m(i) = 1, i.e., the point X;; is
blue (which happens with probability kf:il), orifi=Fk+1, points X1,,..., Xy, are red, and points

k+z_1), since all subsets of size k
of {1,2,...,n+ k — 1} have equal probabilities to correspond to the indices of red points between
Xi4y-+y Xpgx-14). Thus the expectation of b; equals 1 — 2L — 1/(“271) = _k Rn—1)!

k4n—1 — ntk—1  (ktn—1)"
e (Z!J(r’;__ll))!!. It remains to use (V) and linearity of

Analogously, the expectation of r; equals
expectation.

Solution 2. Let C,...,C, ., be the colours of the points, scanned counterclockwise from a fixed
point on the circle. We consider the sequence as cyclic (so C,4 is also adjacent to C7). There are
two cases: Either (i) all red points appear contiguously, followed by all blue points contiguously, or
(i) the red and blue points alternate at least twice. It can be seen that in the second case, m is
exactly equal to the number of colour changes in the C; sequence: For example, if C; is red and C; 4
is blue, then the intersection of the red chord from C; to the next red point with the blue chord
from Cjy; to the previous blue point is a vertex of F', and every vertex is of this form. Case (i) is
exceptional, as we have two colour changes, but m = 0, so it is 2 less than the number of changes in
that case.

Now observe that the distribution of C; is purely combinatorial: Each of the (T;Jrkk) distributions
of colours is equally likely (for example, because we can generate the distribution by first choosing all
n + k points on the circle, and then assigning colours uniformly). In particular the probability that

C;C;11 is a colour change is exactly %, and by lineraity of expectation, the total expected
2nk

number of color changes (including i = n + k) is n + k times this, i.e. 237
To get the expected value of m, we must subtract from the above 2 times the probability of case

(i). Exactly n+k of the (Tkk) distributions belong to case (i), so we must subtract 2(n+k) (T:“kk)_l =

2 nlk!

m , as claimed.



Solution 3. Let Ay, ..., A, be the blue points and By, ..., By be the red points. For every pair of
blue points A4;, A;, 1 <1i < j < n, we evaluate the probablhty p that A;A; contains a side of F' (it
obviously does not depend on the choice of i and j). By ¢ denote the analogous probability for the
red points. Then by linearity of expectation we have Em = (g) D+ (g)q

We proceed with finding p. Without loss of generality i = 1, j = 2. Let the length of the circle be
1, and the length of arc A; Ay (counterclockwise from A; to Ay) be x. Then z is uniformly distributed
on [0,1]. Then A; A contains a side of F if

(i) all blue points are on the same side of A; Ay, but

(ii) the red points are not on the same side of A; As.

The probability of (i) is 2”72 + (1 — z)"~2. The probability of (ii) is 1 — (2% + (1 — x2)"7F).

Thus, using Beta function value B(a, b) fo 2771 (1 —x)"tdr = B(a,b) = % for positive
integers a, b

! 2 2
p:/o(x" 2+ (1 —2)" A — (2" + (1 —2)" k))dx:n_l—n+k_1—23(n—1,k+1)
2 2 (n — 2)IK!
“n—1 n+k—1 “(n+k—-1)
Next,
n\ n(n —1) nlk! _nk nlk!
(2>p_n_n+k—1_(n+k—1)!_n+k—1_(n—|—k—1)!’

and by symmetry (g)q takes the same value (that is in agreement with the observation that red and
blue sides of F' alternate).
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Problem 1. Find all functions f : R — R that have a continuous second derivative and for which
the equality f(7z + 1) = 49f(z) holds for all z € R.

(proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)
Hint:
e The fixed point of 7x + 1 is —1/6.

e Differentiating twice cancels out the coefficient 49.

Solution. Differentiating the equation twice, we get

-1
Fe+1) = @) or f'@)=f" (x - ) . 1)
Take an arbitrary x € R, and construct a sequence by the recurrence
T — 1
To =T, Tg41 = -

By (1), the values of f” at all points of this sequence are equal. The limit of this sequence is —
since ‘:C]g+1 + %| = % |ﬁck + %‘

Due to the continuity of f”, the values of f” at all points of this sequence are equal to f” (—%),
which means that f”(x) is a constant.

Then f is an at most quadratic polynomial, f(x) = azx? + bx + c. Substituting this expression
into the original equation, we get a system of equations, from which we find a = 36¢, b = 12¢, and
hence

1
6

f(@) = c(6x +1)*.



Problem 2. Let A, B and C be n X n matrices with complex entries satisfying
A*=B*=C? and B’=ABC+2I

Prove that A% = I.
(proposed by Mike Daas, Universiteit Leiden)

Hint: Factorize B3 — ABC.
Solution. Note that B® = A%B, from which it follows that

A’B — ABC =2 = A(AB - BC) =2I.
Similarly, using that B3 = BC?, we find that

BC? - ABC =2I = (BC — AB)C =2I.

It follows that A is a left-inverse of (AB — B(C')/2, whereas —C' is a right inverse. Hence A = —C'
and as such, it must hold that ABA = 21 — B3. It follows that ABA must commute with B, and so
it follows that (AB)? = (BA)?. Now we compute that

(AB — BA)(AB + BA) = (AB)*> + AB*A — BA?B — (BA)? = (AB)* + A* — B* — (AB)? = 0.

However, we noted before that the matrix AB — BC' = AB + BA must be invertible. As such, it
must follow that AB = BA. We conclude that ABA = A?2B = B? and so it readily follows that
B3 =I. Finally, A = B% = (B?)? = I? = I, completing the proof.



Problem 3. Find all polynomials P in two variables with real coefficients satisfying the identity

P(z,y)P(z,t) = P(xz — yt, ot + yz).

(proposed by Giorgi Arabidze, Free University of Thilisi, Georgia)

Hint: The polynomials (x+iy)™ and (x —iy)™ are trivial complex solutions. Suppose that P(z,y) =
(x+1iy)"(z —iy)"Q(x,y), where Q(z,y) is divisible neither by =+ iy nor x = iy and consider Q(z,y).

Solution. First we find all polynomials P(x,y) with complex coefficients which satisfies the condition
of the problem statement. The identically zero polynomial clearly satisfies the condition. Let consider
other polynomials.

Let i = —1 and P(z,y) = (x + iy)"(z — iy)™Q(z,y), where n and m are non-negative integers
and Q(zx,y) is a polynomial with complex coefficients such that it is not divisible neither by = + iy
nor by x — iy. By the problem statement we have Q(z,y)Q(z,t) = Q(xz — yt, xt + yz). Note that
z =1t =0 gives Q(z,y)Q(0,0) = Q(0,0). If Q(0,0) # 0, then Q(z,y) = 1 for all  and y. Thus
P(x,y) = (z + iy)"(z — iy)™. Now consider the case when Q(0,0) = 0.

Let x = iy and z = —it. We have Q(iy,y)Q(—it,t) = Q(0,0) = 0 for all y and ¢. Since Q(z,y)
is not divisible by = — 1y, Q(iy,y) is not identically zero and since Q(z,y) is not divisible by z + iy,
Q(—it, t) is not identically zero. Thus there exist y and t such that Q(iy,y) # 0 and Q(—it,t) # 0
which is impossible because Q(iy,y)Q(—it,t) = 0 for all y and t.

Finally, P(z,y) polynomials with complex coefficients which satisfies the condition of the problem
statement are P(z,y) = 0 and P(z,y) = (z + iy)"(z —iy)™. It is clear that if n # m, then
P(z,y) = (z + iy)"(x — iy)™ cannot be polynomial with real coefficients. So we need to require
n = m, and for this case P(z,y) = (z + iy)"(x — iy)" = (2 + y*)™.

So, the answer of the problem is P(z,y) = 0 and P(x,y) = (2*+y*)" where n is any non-negative
integer.



Problem 4. Let p be a prime number and let k£ be a positive integer. Suppose that the numbers
a; =" +ifori=0,1,...,p—1 form a complete residue system modulo p. What is the set of possible
remainders of ay upon division by p?

(proposed by Tigran Hakobyan, Yerevan State University, Armenia)
p—1

Hint: Consider H(zk +1).

=0

Solution. First observe that p = 2 does not satisfy the condtion, so p must be an odd prime.

Lemma. If p > 2 is a prime and I, is the field containing p elements, then for any integer 1 <n <p
one has the following equality in the field I,

-1
0, if S is even
H(1+a”) = ged(p —1,n)
acFy 2", otherwise

Proof. We may safely assume that n|p — 1 since it can be easily proved that the set of n-th powers
of the elements of Iy coincides with the set of ged(p — 1,n)-th powers of the same elements. Assume
that ¢y, s, ..., t,, are the roots of the polynomial " + 1 € [F,[z] in some extension of the field F,. It
follows that

T o) =TTITe-t) =TI Tt =T[ [t - Ilym

ae]F* ae]F* =1 =1 aeIF;; =1 aeIF*

where we define ®(t) = [[,cp: (t — @) = t*~! — 1. Therefore

Huﬂmzﬂw%wzﬂwwﬁqw{mawhnzg;ﬁ%?”m

o€l i=1 i=1 i1 otherwise

Let us now get back to our problem. Suppose the numbers ¥ +4,0 < i < p — 1 form a complete
residue system modulo p. It follows that

H(x—l—a Ha

aE]F* aEIF*

so that [],p(af"' 4+ 1) =1 in F,. According to the Lemma, this means that 2*~* = 1 in F,, or
P

equivalently, that 2~1 = 1(mod p). Therefore ay = 2¥ + 2 = 4(mod p) so that the remainder of a,
upon division by p is either 4 when p > 3 or is 1, when p = 3.



Problem 5. Fix positive integers n and k& such that 2 < k < n and a set M consisting of n fruits.
A permutation is a sequence x = (21, xg,. .., x,) such that {xy,...,z,} = M. Ivan prefers some (at
least one) of these permutations. He realized that for every preferred permutation x, there exist k
indices 1; < iy < ... < iy with the following property: for every 1 < j < k, if he swaps x;; and z;,,,,
he obtains another preferred permutation.

Prove that he prefers at least k! permutations.

(proposed by Ivan Mitrofanov, Ecole Normale Superieur Paris)

Hint: For every permutation z of M, choose a preferred permutation x such that Y. z7'(m)z~1(m)
meM
is maximal.

Solution. Let S be the set of all n! permutations of M, and let P be the set of preferred permutations.
For every permutation z € S and m € M, let z7'(m) denote the unique number i € {1,2,...,n}
with z; = m.

For every x € P, define

Az) = {Z €S :VyePrP Z xt(m)z " (m) > Z y_l(m)z_l(m)}.

meM meM

For every permutation z € S, we can choose a permutation z € P for which Y z7'(m)z"'(m) is
meM
maximal, and then we have z € A(z); hence, all z € S is contained in at least one set A(z).

n!
So, it suffices to prove that ‘A(x){ < - for every preferred permutation z. Fix z € P, and

consider an arbitrary z € A(z). Let the indices iy < ... < i be as in the statement of the problem,
and let m; = x;; for j =1,2,... k.

For s = 1,2,...,k — 1 consider the permutation y obtained from x by swapping m, and m, .
Since y € P, the definition of A(x) provides

isz_l(ms) + i5+1z_1(m5+1) Z Z's-l—lz_l(ms) + isz_l(m5+1),

2 Y mgpr) > 27 (my).
Therefore, the elements my,ms, ..., my appear in z in this order. There are exactly n!/k! permuta-

|
tions with this property, so |A(:C)| < %
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Problem 6. Ivan writes the matrix (; i) on the board. Then he performs the following operation

on the matrix several times:
e he chooses a row or a column of the matrix, and

e he multiplies or divides the chosen row or column entry-wise by the other row or column,
respectively.

Can Ivan end up with the matrix (g g) after finitely many steps?

(proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)

Hint: Construct an invariant quantity that does not change during Ivan’s prcedure.

2 4 2 3
Notice first that the allowed operations preserve the positivity of entries; all matrices Ivan can
reach have only positive entries.
For every matrix X = (:1711 $12> with positive entries, let L(X) = (10g2 T log, xu) By
To1 T log, 21 log, 229
taking logarithms of the entries, the steps in Ivan game will be replaced by adding or subtracting a
row or column to the other row. Such standard row and column operations preserve the determinant.
Hence, if the matrices in the game are A = X, X;, Xo, ..., then we have det L(A) = det L(X;) =
det L(X5) = ..., and it suffices to verify that det L(A) # det L(B).
Indeed,

Solution. We show that starting from A = (2 3), Ivan cannot reach the matrix B = (2 4).

det L(A) = log, 2 - log, 4 — log, 4 - log, 3 = log,(4/3) > 0
and similarly det L(B) < 0, so det L(A) # det L(B).



Problem 7. Let V be the set of all continuous functions f: [0,1] — R, differentiable on (0, 1), with
the property that f(0) = 0 and f(1) = 1. Determine all & € R such that for every f € V, there exists
some ¢ € (0,1) such that

(proposed by Mike Daas, Leiden University)

Hint: Find a function h € V such that A’ — h is constant, then apply Rolle’s theorem to f — h.
Alternatively, you can apply Cauchys’s mean value theorem with some auxiliary functions.

Solution 1. First consider the function
T _ ] T
h(z) = ¢ T which has the property that h'(x) = ¢ T
e — e —

Note that h € V and that h'(z) — h(z) = 1/(e — 1) is constant. As such, « = 1/(e — 1) is the only
possible value that could possibly satisfy the condition from the problem. For f € V arbitrary, let

6*1—1_

p— 0.

g(x) = f(x)e 4+ h(—x), with ¢(0)=0 andalso g(1)=e '+
We compute that

g'(z) = fx)e™™ = f(z)e™ — h'(—x).
Now apply Rolle’s Theorem to g on the interval [0, 1]; it yields some & € (0,1) with the property that

e ¢ _ 0 . 1
=0 = (O =FO+ -7,

g€ =0 = [(e ™t~ f(§)e* -
showing that o = 1/(e — 1) indeed satisfies the condition from the problem.

Solution 2. Notice that the expression f'(z) — f(x) appears in the derivative of the function
Fla) = f(z) - e F'(x) = (f'a) — f(2))e ™.

Apply Cauchy’s mean value theorem to F'(x) and the function G(z) = —e ®. By the theorem,
there is some & € (0,1) such that

Fg) _ FQ1)—FO)
G'¢)  G(1)—G(0)
et —0 1
/ — — —
1
This proves the required property for a = Py
e p—
F/
Now we show that no other « is possible. Choose f and F' in such a way that G’Em; = f'(z)—f(z) =
x
- is constant. That means
G'(z) e
F/ = =
(z) e—1 e—1
1—e®
F(z) =
(0=,
flo) = Fla) e = ==
x)=F(z =1

With this choice we have f(0) =0 and f(1) =1,s0 f € V,and f'(z) — f(x) = for all z, so for

this function the only possible value for « is
e _—



Problem 8. Let T be a tree with n vertices; that is, a connected simple graph on n vertices that
contains no cycle. For every pair u, v of vertices, let d(u,v) denote the distance between u and v, that
is, the number of edges in the shortest path in T that connects u with v.

Consider the sums

W(T) = Z d(u,v) and H(T)= Z 0 0)
{U,v};%V(T) {uﬂ)};%V(T) ’

Prove that
(n—1)3(n+2)

W(T)- H(T) > ;

(proposed by Slobodan Filipovski, University of Primorska, Koper)
Hint: There are n — 1 pairs u,v with d(u,v) = 1; in all other cases d(u,v) > 2.

Solution. Let £ = (Z) and let 1 < x5 < ... < x;, be the distances between the pairs of vertices in
the tree T". Thus

W(T)-H(T):(:c1+x2+...+xk)-(i+i+...+i).

X T2 Tk

Since the tree has exactly n — 1 edges, there are exactly n — 1 pairs of vertices at distance one, that
is, 11 =x9=...=x,_1 = 1. Thus

1 1 1
W(T)-H(T):(n—1+xn+xn+1+...+xk)-(n—1+—+ +...+—):

Tn Tn+1 Tk
1 1
:(n—1)2+(n—1)((xn—|——)—|—...+(xk—|——))+
Tn T
1 1
T+ .otz | —+. .+ — ).
I Tl

From Cauchy inequality we have

,_ (n=1n—2

(Xn + ...+ ) (i+...+i> >(1+1+...+1)=(k—-n+1)

L, Tk 4
The equality holds if and only if z,, =z, 11 = ... = x%.
Now we minimize the expression (xn + %) +...+ (mk + i), where x; € [2,n — 1].
It is clear that the minimal value is achieved for x,, = x,,.1 = ... = 2y = 2. Therefore we get

W(T)-H(T)Z(n—1)2+(n—1)<(2+%> (k—n+1)) +(”_1)4(”_2) = (”_1>4(”+2).

The equality holds for z; = ... =x,_1 =1 and z, = z,41 = ... = z; = 2, that is, the smallest value

is achieved for the tree where n— 1 pairs are at distance one, and the remaining k— (n—1) = (”_léﬂ

pairs are at distance two. The unique tree which satisfies these conditions is the star graph 5,,. In
this case it holds

, (n=1)(n+2)  (n—1)P*n+2)

W(Sa) - H(S:) = (n— 1) - :




Problem 9. We say that a real number V' is good if there exist two closed convex subsets X, Y of
the unit cube in R3, with volume V each, such that for each of the three coordinate planes (that is,
the planes spanned by any two of the three coordinate axes), the projections of X and Y onto that

plane are disjoint.
Find sup{V | V is good}.

(proposed by Josef Tkadlec and Arseniy Akopyan)
Hint: The two bodies can be replaced by a pair symmetric to the midpoint of the cube.

Solution. We prove that sup{V | V' is good} = 1/4.

We will use the unit cube U = [—1/2,1/2]3.

For ¢ — 0, the axis-parallel boxes X = [-1/2, —¢] X [-1/2, —¢] x [-1/2,1/2] and Y = [¢,1/2] X
[e,1/2] x [—1/2,1/2] show that sup{V} > 1/4.

To prove the other bound, consider two admissible convex bodies X, Y. For any point P =
[z,y,2] € U with xyz # 0, let P = {[£x, £y, +2]} be the set consisting of 8 points (the original P
and its 7 “symmetric” points). If for each such P we have |P N (X UY)| < 4, then the conclusion
follows by integrating. Suppose otherwise and let P be a point with [P N (X UY)| > 5. Below we
will complete the proof by arguing that:

(1) we can replace one of the two bodies (the “thick” one) with the reflection of the other body
about the origin, and

(2) for such symmetric pairs of bodies we in fact have [P N (X UY)| < 4, for all P.

To prove Claim (1), we say that a convex body is thick if each of its three projections contains
the origin. We claim that one of the two bodies X, Y is thick. This is a short casework on the 8
points of P. Since [P N (X UY)| > 5, by pigeonhole principle, we find a pair of points in PN (X UY)
symmetric about the origin. If both points belong to one body (say to X), then by convexity of X the
origin belongs to X, thus X is thick. Otherwise, label P as ABCDA'B'C'D’'. Wlog A€ X, C' €Y
is the pair of points in P symmetric about the origin. Wlog at least 3 points of P belong to X. Since
X, Y have disjoint projections, we have C, B', D" ¢ X, so wlog B, D € X. Then Y can contain no
other point of P (apart from C”), so X must contain at least 4 points of P and thus A’ € X. But
then each projection of X contains the origin, so X is indeed thick.

Note that if X is thick then none of the three projections of Y contains the origin. Consider the
reflection Y/ = —Y of Y about the origin. Then (Y,Y”) is an admissible pair with the same volume
as (X,Y): the two bodies Y and Y’ clearly have equal volumes V' and they have disjoint projections
(by convexity, since the projections of Y miss the origin). This proves Claim (1).

Claim (2) follows from a similar small casework on the 8-tuple P: For contradiction, suppose
IPNY'| =|PNY|>3. Wlog AcY' Then C' €Y, s0C,B',D' €Y’ sowlog B,D € Y'. Then
B, D" €Y, a contradiction with (Y,Y”) being admissible.

Remark. There are more examples with V' — 1/4, e.g. X a union of two triangular pyramids with base
ACD' — one with apex D, one with apex at the origin (and Y symmetric with X about the origin).
Remark. The word “convex” matters. E.g., in a 3 X 3 x 3 cube, one can set X to be a 2 x 2 x 2 sub-cube,

and Y to be the (non-convex) 3D L-shape consisting of 7 unit cubes. This shows that without convexity we
have V > 7/27 > 1/4.



Problem 10. For every positive integer n, let f(n), g(n) be the minimal positive integers such that

11 1 f(n)
I+ =t —t. . +—=1"
+ 1! * 2! ot n!  g(n)

Determine whether there exists a positive integer n for which g(n) > n%997,

(proposed by Fedor Petrov, St. Petersburg State University)

Solution. We show that there does exist such a number n.

Let ¢ = 10719, Call a prime p special, if for certain k € {1,2,...,p — 1} there exist at least ¢ - k
positive integers j < k for which p divides f(j).
Lemma. There exist only finitely many special primes.

Proof. Let p be a special prime number, and p divides f(j) for at least € - k values of j € {1,2,... k}.
Note that if p divides f(j) and f(j + ), then p divides
140 DY oy . .

: == =1+ +r)+U+r)y+r—-1)+...+(G+r)...(J +2
) U+r)+ G+ ) G+r)...(1+2)
that is a polynomial of degree r — 1 with respect to 7. Thus, for fixed j it equals to 0 modulo p for at
most  — 1 values of j. Look at our > ¢ - k values of j € {1,2,...,k} and consider the gaps between
consecutive j’s. The number of such gaps which are greater than 2/¢ does not exceed ¢ - k/2 (since
the total sum of gaps is less than k). Therefore, at least ¢ - k/2 — 1 gaps are at most 2/¢. But the
number of such small gaps is bounded from above by a constant (not depending on k) by the above
observation. Therefore, k is bounded, and, since p divides f(1)f(2)... f(k), p is bounded too.

Now we want to bound the product g(1)g(2)...g(n) (for a large integer n) from below. Let p < n
be a non-special prime. Our nearest goal is to prove that

(j+r)!(

vp(9(1)g(2) ... g(n)) = (1 —e)p(11-2!- .. - nl) (1)
Partition the numbers p,p + 1,...,n onto the intervals of length p (except possibly the last interval
which may be shorter): {p,p+1,...,2p — 1}, ..., {p|n/p],...,n}. Note that in every interval

A = [a-p,a-p+k], all factorials x! with x € A have the same p-adic valuation, denote it 7" = z/p((ap)!).
We claim that at least (1 —¢)(k + 1) valuations of g(z), x € A, are equal to the same number 7.
Indeed, if j =0 or 1 < j <k and f(j) is not divisible by p, then

1 1 1 1 A

+ TR — = =
(ap)! ~ (ap+ 1)! (ap+j)!  (ap)! B
where A = f(j) (mod p), B = g¢g(j) (mod p), so, this sum has the same p-adic valuation as 1/(ap)!,
which is strictly less than that of the sum Zfﬁal 1/i!, that yields v,(g(ap + j)) = v,((ap)!). Using
this for every segment A, we get (1).
Now, using (1) for all non-special primes, we get

A-g(D)g(2)...g(n) > (A1-20- ... nl)=s

where A =[], p@*) "y runs over non-special primes, k from 1 to n. Since v,(g(k)) < v,(k!) =
S, L/ ] < F. we get
A< (Hp)l-i-?—i-...-i-n < o’
P
for some constant C'. But if we had g(n) < n%9%" < e"n!%9% for all n, then

log(A-g(1)g(2)...9(n)) < O(n*) 4+ 0.9991og(1!-2!-...-nl) < (1 —¢e)log(1!-2!-... nl)

for large n, a contradiction.
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Problem 1. Determine all pairs (a,b) € C x C satisfying

la|] =|b| =1 and a+b+abeR.

(proposed by Mike Daas, Universiteit Leiden)
Hint: Write a = ¢ and b = €%, and transform the RHS to a product.
Solution 1. Write a = €™ and b = €% for some z,y € [0,27). Using Euler’s formula, and the

well-known identities

T T — x x
sinz +siny = 2sin ;ycos 2y and sinszsinacosi,

we get a product form of the left-hand side as

Im <a+b+al_)> = (sinz + siny) + sin(z — y)
Tty r—y T — r—y

= 2sin Cos + 2sin 4 CoSs
2 2 2 2

:2(sinx;y+sinm_y> cosx_y

2

dsin y T—y
= 481N — *- COS — -+ COS .
2 2 2

Hence, a + b+ ab is real if and only if either sin g = 0, cos & = 0 or cos “5¥ = 0, which respectivelly
correspond to x = 2kw, y = (2k + 1)m and x = y + (2k + 1)7.
Therefore, the solutions are

(1,b), (a,—1) and (a,—a) with |a|=1, |b] =1

Solution 2. Notice that
a+b+abeR < 1+a+b+abeR.
Let ¢ € C be such that a = ¢®. Now observe that

¢(1+a+b+ab) =c+ec® +cb+ac’h
—C+c+cb+chbeR,

where we used that cc = 1 and z + %z € R for any z € C. W e conclude that either ¢ € R, or
1+a+b+ab=0. In the first case, c = =1 and so a = 1. In the second case, we factor the equation
as

(a+b)(1+b)=1+a+1b+ab=0, andassuch, a=-b or b= —1.

We find precisely three families of pairs (a, b): the pairs (1,b) for b on the unit circle; the pairs (a, —1)
for a on the unit circle; and the pairs (a, —a) for a on the unit circle.



Problem 2. Forn =1,2,... let

Sn:10g<n\2/11-22-...-n"> — log(+v/n),

where log denotes the natural logarithm. Find lim S,,.
n—oo

(proposed by Sergey Chernov, Belarusian State University, Minsk)
Hint: S, is (close to) a Riemann sum of a certain integral.

Solution. Transform .S, as

1< 1
S, = ﬁZklogk— élogn

k=1

1
:_Z< <log —|—logn>) —§logn
ko logn < 1
=— —log — E—=1
nznlogn—i- " Zl 5 logm

:—Z—logﬁ logn

n

n

converges to 0. The sum — > —log — is a Riemann sum for the integrable
ni=in n

1
Here the last term osn

1 2 —1
function f(z) = xlogx on the segment [0, 1] with the uniform grid {— — ey t : 1}. Therefore
n'n’ n

B R Y S Ny ! 2 2101
hmﬁ;ﬁl()gﬁ:hmﬁ;f(ﬁ):/o xlogwdwz{glogx—z] =-7

0

1
Hence, lim §,, exists, and lim S,, = —-.



Problem 3. For which positive integers n does there exist an n x n matrix A whose entries are all in
{0, 1}, such that A? is the matrix of all ones?

(proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)
Hint: Let J be the n x n matrix with all ones. Consider A% = AJ = JA.

Solution. Answer: Such a matrix A exists if and only if n is a complete square.

Let J, be the n x n matrix with all ones, so A? = J,,. Consider the equality
A3 = AJ, = J,A.

In the matrix A.J,, all columns are equal to the sum of colums in A, that is, the (¢, 7)th entry in AJ,
is the number of ones in the ith row of A. Similarly, the (i, j)th entry in J, A is the number of ones
in the jth column of A. These numbers must be equal, so A contains the same number of ones in
every row and every column. Let this common number be k; then AJ, = J,A = kJ,.

Now from

nJ, = J2 = (A*)? = A(AJ,) = A(kJ,) = k(AJ,) = k*J,
we can read n = k2, so n must be a complete square.

It remains to show an example for a matrix A of order n = k2. For [ = 0,1,...,k — 1, let B,
be the k x k matrix whose (7, j)th entry is 1 if j — ¢ = [ (mod k) and 0 otherwise, i.e., B; can be
obtained from the identity matrix by cyclically shifting the colums [ times, and let

By By By ... By
po [,
By Bi By ... Bi
The (4, j)th block in A? is
B,
(Bo By ... Bj1) : =(Bo+Bi+...4+ By_1)Bj_1 = Ly Bj—1 = J,
B,

so this matrix indeed satisfies A% = Jj2.



Problem 4. Let g and h be two distinct elements of a group G, and let n be a positive integer.
Consider a sequence w = (wy, ws, . ..) which is not eventually periodic and where each w; is either g
or h. Denote by H the subgroup of GG generated by all elements of the form wpwgy1 ... wgyn_1 With
k > 1. Prove that H does not depend on the choice of the sequence w (but may depend on n).

(proposed by Ivan Mitrofanov, Saarland University)

Solution. Let X, denote the subset of G of products of the form g; ... g,,, where each g; is either g
or h.

Lemma. For all j =1,2,...,n and for all a,b € X; the ratio a~'b is contained in H.

Proof. Induction in j.
We start with the base case j = 1. By the pigeonhole principle, there exist k < ¢ for which the

sequences (Wyi1, -, Wgin—1) and (Weyq, ..., Wern_1) coincide. If wyi,, = wyyy, for all positive integer
m, then the sequence w is eventually periodic with period ¢ — k. Thus, there exists m > 0 for which
Whtm F Worm. We have m > n, 80 Wgim—i = Werm—; for © = 1,2,...,n — 1. Therefore, since the

products © = Wkrm—ni1 - Weim a0d Y = Werm_ni1 - - - Wery both are elements of H, the subgroup
H contains their ratios 7'y and y~'z. These ratios are equal to g~'h and h~'g (in some order), that
finishes the proof for j = 1.

Induction step from j — 1 to j, 2 < j < n. We say that an element a € X; is a g-element,
correspondingly an h-element, if it can be represented as a = gay, correspondingly a = ha;, where
a; € X;_;. The ratio of two g-elements, or of two h-elements, is a ratio of two elements of X;_;, thus,
it is in H by the induction hypothesis. Since the property a='b € H is an equivalence relation on
pairs (a,b), it suffices to find a g-element and h-element whose ratio is in H.

Define k, ¢, m, as in the base case. The subgroup H contains the products

U = Wk+m—-n+j - - - Wk4mWk4+m+1 « - - Wk4m+45—1,

U = Wetm—ntj - - - WeprmWerm+1 - - - Wegm4j—1-

Their ratio u™'v is a ratio of g-element and an h-element in X;, since {Wgqm, Werm}t = {g,h} and
Wim—i = Weym—; for all i =1,2,... n—j.

The Lemma for j = n yields that H is the subgroup of G generated by X,,, and this description
does not depend on w.



Problem 5. Let n > d be positive integers. Choose n independent, uniformly distributed random
points 1, ..., x, in the unit ball B C R? centered at the origin. For a point p € B denote by f(p)
the probability that the convex hull of z1, ..., z, contains p. Prove that if p,q € B and the distance
of p from the origin is smaller than the distance of ¢ from the origin, then f(p) > f(q).

(proposed by Fedor Petrov, St Petersburg State University)

Solution. By radial symmetry of the distribution, f(p) depends only on |op| (the distance between
o and p), so, we may assume that p lies on the segment between o and ¢. For points zy,...,z,
and = € B denote by f.(x1,...,x,) the indicator function of the event “x is in the convex hull of
Z1,...,x, . The claim follows from the following deterministic inequality

S h(Er . Ery) =) fy(En, . ), (1)

where z1, ..., x, € B are arbitrary points in general position and the summations are over all 2" choices
of signs (here o is identified with the origin, that is,  and —x are symmetric with respect to o). Indeed,
taking the expectation in (1) over independent random uniform z1, ..., z,, we get 2" f(p) = 2" f(q).
(To be specific, here “general position” means that for any point set A C {£x1,...,+x,,p, ¢}, which
does not contain simultaneosuly z; and —z;, is not contained in an (affine) (|A| — 2)-dimensional
plane. This holds with probability 1.)

To prove (1), we use the following formula for the characteristic function yxp of the convex
polyhedron P C R%: if Py,..., P, are all facets of P, and Q; is the convex hull of 0 and P;, then
Xp = Y E£Xxq,, where the sign is plus if o and P are on the same side of P;, and minus otherwise.
Indeed, for every point p in general position look how the ray op intersects the boundary of P and
realize that for at most two summands the contribution of the RHS at point p is non-zero, and the
total contribution equals 1 when p is inside P and 0 (possibly as 0 = 1 — 1) otherwise. Use this
formula for every polyhedron P with n vertices v, ..., y,, where each y; is +z;. These polyhedrons
are simplicial (all facets are simplices) because of the general position condition. Sum up over all 2"
such P, we get the expression of >, xp as a linear combination of yg, where S are simplices formed
by o and some d points in {£z1,...,+z,} (not containing x; and —z; simultaneously).

For proving (1), it suffices to verify that all coefficients of yg in this linear combination are positive
(since two sides of (1) are the values of the sum ), xp at p and ¢). Let’s find a coefficient of xg,
where, say, S is a simplex with vertices o, 21, ...,24. The plane a through z1, ..., z, partitions R?
onto two parts Ht (containing o) and H~ (not containing o). For every pair {z;, —z;} with i > d,
either both points belong to H', or one belongs to H~ and another to H". xg goes with the plus

sign for P with vertices x4, ..., x4 and other vertices from H*, and with the minus sign for P with
vertices 1, ..., x4 and other vertices from H ™. It is immediate that there are at least as many pluses
as minuses.
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Solutions

Problem 6. Prove that for any function f: Q — Z, there exist a,b,c¢ € Q such that a < b < ¢,
f(b) > f(a), and f(b) > f(c).
(proposed by Mehdi Golafshan & Markus A. Whiteland, University of Liege, Liege)

Solution 1. We can replace f(z) by the function g(z) = f(1 — z), so without loss of generality we
can assume f(0) < f(1).

If f(1) > f(2) then we can choose (a,b,c) = (0,1,2). Otherwise we have f(0) < f(1) < f(2).

If there is some = € (1,2) such that f(x) > f(2) then we can chose (a,b,c) = (1, z,2); similarly, if
there is some = € (1,2) with f(z) < f(1) then choose (a,b,c) = (0,1,2). Hence, in the remaining
cases we have f(1) < f(x) < f(2) for all z € (1, 2).

Now f is bonded on the interval [1,2], so it has only finitely many values on this interval. Since
there are infintely many rational numbers in [0, 1], there is a value y that is attained infinitely many
times. The we can choose 1 < a < b < ¢ < 2 such that f(a) = f(b) = f(c) = y.

Solution 2. Assume towards a contradiction that there is a function f which does not satisfy the
claim: for all rationals a, b, ¢ with a < b < ¢ we have f(b) < f(a) or f(b) < f(c).

Let x and y be arbitrary rationals with © < y. Let I(x,y) = [z,y] N Q. We first observe that
inf f(I(x,y)) = —oo. Indeed, if the infimum was finite, then, as the set f(/(z,y)) is bounded
(sup f(I(x,y)) = max{f(z), f(y)}) and thus finite, there are three points having the same value under
f, which leads to a contradiction regarding our assumption on f.

So, going back to the question at hand, let x, b, y be arbitrary rationals with z < b < y. Applying
the above observation to the set I(x,b), there exists a point a € I(z,b) such that f(a) < f(b).
Similarly, there exists a point ¢ € I(b,y) such that f(c) < f(b). Hence we have the points a, b, ¢ with
a <b<cand f(b) > max{f(a), f(c)}, which contradicts our assumption on f.



Problem 7. Let n be a positive integer. Suppose that A and B are invertible n x n matrices with
complex entries such that A+ B = I (where [ is the identity matrix) and

(A% + B®))(A* + BY) = A + B°.

Find all possible values of det(AB) for the given n.
(proposed by Sergey Bondarev, Sergey Chernov, Belarusian State University, Minsk)

Hint: Find a polynomial p(z) such that p(AB) = 0.

Solution 1. Notice first that AB = A(I — A) = A— A* = (I — A)A = BA, so A and B commute.
Let C' = AB = BA,; then

A*+ B*=(A+ B)?-2AB=1-2C,
A'+ B'=(A+ B)' —4AB(A+ B)* +2A’B? = ] — 4C + 2C?,
AP+ B® = (A+ B)® —5AB(A+ B)* + 5A?B*(A+ B) = I — 5C + 5C?,

SO

0= (A% + B%) — (A* + B} (A* + B*) = (I — 5C + 5C?) — (I — 2C)(I — 4C + 2C?)
=4C* —5C? + C =4C(C - I)(C - 11);

since C' is invertible, we have

(C—I)(C=1I)=0.

Hence, the polynomial p(z) = (z — 1)(z — ;) annihilates the matrix C = AB and therefore all

eigenvalues of C' are roots of p(x), so the possible eigenvalues are 1 and i. The determinant is the
product of the n eigenvalues, so

det(AB) =det C € {13, %, ..., }.
Now show that these values are indeed possible.
If
A:diag(%,...,%,e”/:g,...,em/3> and B :diag(%,...,%,67”/3,...,6*”/3»
X 2 %,k_/ X - S\ Vk
k n— n—

then A+ B =1, AB:diag<}l,...,%,1,---,1> anddet(AB):Zlik.
—_— —

k n—k



Problem 8. Define the sequence x, xo, ... by the initial terms x; = 2, x5 = 4, and the recurrence

relation
n

Tpio = 3Tpy1 — 2@, + - for n > 1.
n

T .
Prove that lim == exists and satisfies
n—oo 21

P

1 n
+ < lim

2 n—o00 2_"

<

NN GV]

(proposed by Karen Keryan, Yerevan State University & American University of Armenia, Armenia)
Hint: Prove that 2z, < 2,41 < 2z, +n.

Solution. Let’s prove by induction that x,.; > 2x,. It holds for n = 1. Assume it holds for n.
Then by the induction hypothesis we have that z,, > 2z,_; > ... > 2""!2; > 0 and

Tpio = 2Tpq1 + (Tpy1 — 20,) + — > 2x041.

Similarly we prove that x, .1 < 2z, + n. Again it holds for n = 1. Assume that the inequality holds
for n. Then using that x,, > 2™ and the induction hypothesis we obtain
Tpro < 3Tpy1 — 20, + 1 <2201 + 22, +n) — 22, + 1 =22, 1 +n+ 1.

X .
Using the previous inequalities we obtain that the sequence y,, = 2—: is increasing and y,11 <

. € .
yn—i—%g...gyl—l—zzzuﬁk<oo,thus7gi)1£10yn:2—Z:ceX1sts.

The recurrence relation has the following form for y,,:

4yn+2 - 2yn+1 = 4yn+1 - 2yn +

By summing up the above equality for n = 1,...,m we obtain
4ym+2—2ym+1:4y2—2y1+i ! :2+i ! - (1)
n=1 2n - Yn n=1 2n - Yn

Now using the facts that y; = 1, y,, increases and lim,,_., 4, = ¢ we obtain 1 < v, < c¢. Hence

S i 2n%yn =L
n=1

[

Thus we get from (1)

, = 1 1
2= i s =2 =2+ Y € (2],

So we have 2¢2 > 2¢ + 1 and 2¢ < 3. Recall that ¢ > 1. Therefore 1 + /3 < 2¢ < 3, which finishes
the proof.



Problem 9. A matrix A = (a;;) is called nice, if it has the following properties:
(i) the set of all entries of A is {1,2,...,2t} for some integer t;

(ii) the entries are non-decreasing in every row and in every column: a;; < a; ;11 and a;; < Giy15;

(iii) equal entries can appear only in the same row or the same column: if a;; = ay, then either
i=korj=1{
(iv) for each s =1,2,...,2t — 1, there exist i # k and j # ¢ such that a;; = s and a;, = s + 1.
Prove that for any positive integers m and n, the number of nice m x n matrices is even.

. . 111 11 3
For example, the only two nice 2 x 3 matrices are (2 9 2) and <2 A 4).

(proposed by Fedor Petrov, St Petersburg State University)

Solution. Define a standard Young tableaux of shape m X n as an m x n matrix with the set of
entries {1,2,...,mn}, increasing in every row and in every column as in (ii).

Call two standard Young tableaux Yi,Y5 friends, if they differ by a switch of two consecutive
numbers z,xr + 1 (the places of x and x + 1 must be not neighbouring, for such a switch preserving
the monotonicity in rows and columns).

For a nice m x n matrix A we construct a standard Young tableaux Y, of shape m x n as follows:
if A has n; entries equal toi (¢ = 1,2,...,2t), we replace them by the numbers from ny+...+n;_1+1
to ny + ... 4+ n; preserving monotonicity.

Note that our Y, has exactly 2t — 1 friends, where 2t is the number of distinct entries in A, and
moreover, every standard Young tableaux with odd number of friends corresponds to a unique nice
matrix. It remains to apply the handshaking lemma (i.e., the sum of the degrees equals twice the
number of edges in this graph).



Problem 10. We say that a square-free positive integer n is almost prime if
n|a® 422 4 4 a® — ka

for all integers z, where 1 = d; < dy < ... < dp = n are all the positive divisors of n. Suppose that r
is a Fermat prime (i.e. it is a prime of the form 22" + 1 for an integer m > 0), p is a prime divisor of
an almost prime integer n, and p = 1 (mod r). Show that, with the above notation, d; =1 (mod r)
forall 1 <i<k.

(An integer n is called square-free if it is not divisible by d? for any integer d > 1.)
(proposed by Tigran Hakobyan, Yerevan State University, Vanadzor, Armenia)

Solution. We first prove the following claims.

Lemma 1. If n is almost prime then ged(n, ¢(n)) = 1.

Proof. Assume to the contrary that ged(n, ¢(n)) > 1 so that there are primes p and ¢ dividing n such
that p = 1(mod ¢q). For 0 < i < p— 2 let h; be the number of positive divisors of n congruent to i
modulo p—1 and similarly for 0 < j < ¢g—1 let v; denote the number of positive divisors of n congruent

to 7 modulo q. Observe that the polynomial F,(x) = 2% + 2% + ...+ 2% — kz defines the zero function
on I, due to the condition of the problem. On the other hand, F,(x) = (hy —k)x + 3, hiz' in Fy[z],
so that p|h; for all 0 <i < p— 2,4 # 1. It follows that 2°W~1 = yy = hg + hy + hyy + ... = 0(mod p)
which is a contradiction (here w(n) means the number of distinct prime divisors of n). Therefore our
assumption was wrong and the lemma is proved. O

Lemma 2. Let q be a prime number and let h be a positive integer coprime to ¢ — 1. If [ is the order
of h modulo ¢ — 1, then there exists a € [F, such that a" = a and

a—a"+a’ — .. + (—1)1_10th71 #0

Proof. Observe that a" = a for any a € F, since ¢ — 1|k — 1. On the other hand, the numbers
RO, Y, ..., h'=1 leave different remainders upon division by ¢ — 1 and therefore the polynomial

fl@)=z—a"+2" -+ (=)

defines a function on F,, which is not identically zero. Hence the existence of an element with the
required properties is proved. O

Lemma 3. If n is almost prime then for any primes p and ¢ dividing n, the order of p modulo ¢ — 1
is an odd number.

Proof. Observe that due to Lemma 1 the order [ of p modulo ¢ — 1 is well defined and assume to the
contrary that [ is an even number. According to Lemma 2 there exists a € F, such that a? = a and
fla) # 0, where f(z) =2z — 2P + 27" — ...+ (=1)""'2P'"". Let us consider the sequence (a;)\_, C F,
defined by ag = a and a;4; = —a? for 0 < i <[ — 1. Notice that since [ is even by the assumption, we
have ¢; = agl = ag. It follows that

-1 -1 -1
d d d d d

E E ai:E g al-—l—g al :E E <ai+1+a§>:0,

i=0 dn =0 \ d2 d|z i=0 d|2

since d is always odd being a divisor of n (Recall that ged(n,¢(n)) = 1 due to Lemma 1, so that
n is odd, except the trivial case n = 2), and a;.; = —a? for all 0 < ¢ <[ — 1. On the other hand,
according to the condition of the problem, ) din ad = ka; in F, for all i, which shows that

-1 -1 -1
kf(a) = kZai = Zkai = ZZ(L? =0
i=0 =0

=0 d|n

b}



in F, which is impossible, since f(a) # 0 by construction and k = 2¢(M)=1 ig coprime to ¢q. The
attained contradiction shows that our assumption was wrong and concludes the proof of the lemma.
O

Let us get back to the problem. Suppose that p|n is prime and r = 22" +1 is a Fermat’s prime such
that p = 1(mod r). If ¢ is any prime divisor of n, then by Lemma 3 we have that ¢' = 1(mod p — 1)
for some odd [, so that ¢' = 1(mod ) and therefore ¢ = ¢&°4""=1) = 1(mod r). Hence d = 1(mod r)
for any divisor d of n. O



