Supplementary Lecture J

Beyond Undecidability

Oracle Machines and Relative Computation

We know that virtually all interesting questions about Turing machines—
whether a given TM halts on a given input, whether a given TM accepts a
finite set, and so on—are undecidable. But are all these questions equally
hard? For example, suppose by some magic we were given the power to
decide the halting problem. Could we somehow use that power to decide
if a given TM accepts a finite set? In other words, relative to the halting
problem, is finiteness decidable?

Questions about relative computability can be formalized and studied using
oracle Turing machines. Intuitively, an oracle TM is a TM equipped with
an oracle, a set B to which the TM may pose membership questions and
always receive correct answers after a finite time. The interesting thing
about this definition is that it makes sense even if B is not recursive.

Formally, an oracle Turing machine is a TM that in addition to its ordinary
read/write tape is equipped with a special one-way-infinite read-only input
tape on which some infinite string is written. The extra tape is called the
oracle tape, and the string written on it is called the oracle. The machine
can move its oracle tape head one cell in either direction in each step and
make decisions based on the symbols written on the oracle tape. Other than
that, it behaves exactly like an ordinary Turing machine.

Beyond Undecidability 275

We usually think of the oracle as a specification of a set of strings. If the
oracle is an infinite string over {0,1}, then we can regard it as the charac-
teristic function of a set B C N, where the nth bit of the oracle string is 1
iff n € B. In that way we can study computation relative to the set B.

There is nothing mysterious about oracle TMs. They operate exactly like
ordinary TMs, the only difference being the oracle. Ordinary TMs are equiv-
alent to oracle TMs with the null oracle @, whose characteristic function is
00000 - - -; for such machines, the oracle gives no extra information that the
TM doesn’t already have.

For A, B C T*, we say that A is recursively enumerable (r.e.) in B if there
is an oracle TM M with oracle B such that A = L(M). In addition, if M is
total (i.e., halts on all inputs), we write A <t B and say that A is recursive
in B or that A Turing reduces to B.

For example, the halting problem is recursive in the membership problem,
since halting is decidable in the presence of an oracle for membership. Here’s
how: given a TM M and input z, first ask the oracle whether M accepts z.
If the answer is yes, then M certainly halts on z. If the answer is no, switch
accept and reject states of M to get the machine M’, then ask the oracle
whether M' accepts z. If the answer is yes, then M rejects z, therefore
halts on z. If the answer is still no, then M neither accepts or rejects z,
therefore loops on z. In all cases we can say definitively after a finite time
whether M halts on z.

Likewise, the membership problem is recursive in the halting problem, since
we can determine membership in the presence of an oracle for halting. Given
a TM M and input z, modify M so as never to reject by making the reject
state r into a nonreject state. You can add a new dummy inaccessible
reject state if you like. Call this modified machine M’. Now on any input,
M’ accepts iff it halts, and L(M) = L(M'), so we can determine whether
M accepts z by asking the oracle whether the modified machine M’ halts
on z.

It is not hard to show that the relation <t is transitive; that is, if A is
recursive in B and B is recursive in C, then A is recursive in C. Moreover,
the relation <, refines <r; in other words, if A <, B, then A <t B
(Miscellaneous Exercise 141).

The relation <t is strictly coarser than <, since ~HP «, HP but
~HP <t HP. In fact, any set A Turing reduces to its complement, since
with an oracle for A, on input z one can simply ask the oracle whether
z € A, accepting if not and rejecting if so.

276

Supplementary Lecture J

The Arithmetic Hierarchy

Once we have the notion of relative computation, we can define a hier-
archy of classes as follows. Fix the alphabet {0,1} and identify strings in
{0,1}* with the natural numbers according to the one-to-one correspon-
dence (28.1). Define
20 < {re. sets},
AY ¥ {recursive sets},
20,1 % {sets r.e. in some B € £9},

def . .
A%, = {sets recursive in some B € £},

¢ % {complements of sets in £2}.

Thus 9 is the class of co-r.e. sets. The classes £%, 1%, and AY comprise
what is known as the arithmetic hierarchy.

Here is perhaps a more revealing characterization of the arithmetic hierar-
chy in terms of alternation of quantifiers. Recall from Exercise 1 of Home-
work 11 that a set A is r.e. iff there exists a decidable binary predicate R
such that

A={z |3y R(z,y)}- (J.1)
For example,

HP = {M+#z | 3t M halts on z in ¢ steps},
MP = {M#zaz | 3t M accepts z in t steps}.

Note that the predicate “M halts on z” is not decidable, but the predicate
“M halts on z in ¢ steps” is, since we can just simulate M on input z
with a universal machine for ¢ steps and see if it halts within that time.
Alternatively,

HP = {M+#z | 3v v is a halting computation history of M on z},
MP = {M#z | Jv v is an accepting computation history of M on z}.

Thus the class X is the family of all sets that can be expressed in the form
(J.1).

Similarly, it follows from elementary logic that I1%, the family of co-r.e. sets,
is the class of all sets A for which there exists a decidable binary predicate
R such that

A= {z|Vy R(z,y)}. (J.2)

Beyond Undecidability 277

We argued in Lecture 29 that a set is recursive iff it is both r.e. and co-r.e.
In terms of our new notation,

AY =3In1ml.

These results are special cases of the following theorem.

Theorem J.1 (i) A set A is in IO iff there exzists a decidable (n + 1)-ary predicate R
such that

A={z |3y Yy> Fy3 ... Qyn R(z,91,---,¥)}

where Q = 3 if n is odd, V if n is even.

(ii) A set A is in I iff there exists a decidable (n + 1)-ary predicate R
such that

A= {IL‘ | Vyl Hyz Vy3 Qyﬂ R(z)yl)"')yn)},

where Q =V if n is odd, 3 if n is even.
(iii) A% =30 N1,

Proof. Miscellaneous Exercise 137.]

Example J.2 The set EMPTY %' {M | L(M) = @} is in TI?, since
EMPTY = {M | Vz Vt M does not accept in ¢ steps}.

The two universal quantifiers Vz V¢ can be combined into one using the
computable one-to-one pairing function N> — N given by

(6, 5) (’“2“)+i. (3.3)
J
0 1 2 3 4 5
0[0 1 3 6 10 15
1|2 4 7 11 16
S2ls 8 12 17
39 13 18
4|14 19
5 20
O

Example J.3 The set TOTAL % {M | M is total} is in II3, since

TOTAL = {M | Vz 3t M halts on z in ¢ steps}. O

278 Supplementary Lecture J

Example J.4 The set FIN % {M | L(M) is finite} is in XY, since

FIN = {M | 3n Vz if |z| > n then z ¢ L(M)}
={M | 3n Vz Vt |z| < n or M does not accept z in ¢ steps}.

Again, the two universal quantifiers Vz V¢ can be combined into one using
(J.3). O

Completeness

The membership problem MP o {M#z | M accepts z} is not only un-
decidable but is in a sense a “hardest” r.e. set, since every other r.e. set
<m-reduces to it: for any Turing machine M, the map

T Mz (3.4)
is a trivially computable map reducing L(M) to MP.

We say that a set is r.e.-hard if every r.e. set <p-reduces to it. In other
words, the set B is r.e.-hard if for all r.e. sets A, A <, B. As just ob-
served, the membership problem MP is r.e.-hard. So is any other problem

to which the membership problem <p,-reduces (e.g., the halting problem
HP), because the relation <, is transitive.

A set B is said to be r.e.-complete if it is both an r.e. set and r.e.-hard. For
example, both MP and HP are r.e.-complete.

More generally, if C is a class of sets, we say that a set B is <j,-hard for C
(or just C-hard) if A <, B for all A € C. We say that B is <n-complete
for C (or just C-complete) if B is <p-hard for C and B € C.

Beyond Undecidability 279

COF

EMPTY

*MP

r.e. sets

CO-T.e. sets

recursive sets

Figure J.1. The Arithmetic Hierarchy

One can prove a theorem corresponding to Theorem 33.3 that says that if
A<n Band Be X% then A€ X% andif A <, B and B € A?, then
A € AY. Since we know that the hierarchy is strict (each level is properly
contained in the next), if B is <y-complete for £, then B ¢ 119 (or AY
or £%_,).

It turns out that each of the problems mentioned above is <;,-complete for
the level of the hierarchy in which it naturally falls:

280

Supplementary Lecture J

(i) HP is <m-complete for ¢,

(ii) MP is <m-complete for ©9,
(iii) EMPTY is <p-complete for II?,
(iv) TOTAL is <p-complete for I,
(v) FIN is <m-complete for £, and

(vi) COF is <m-complete for £J.

Since the hierarchy is strict, none of these problems is contained in any
class lower in the hierarchy or <r-reduces to any problem complete for any
class lower in the hierarchy. If it did, then the hierarchy would collapse at
that level. For example, EMPTY does not reduce to HP and COF does not
reduce to FIN.

We prove (v); the others we leave as exercises (Miscellaneous Exercise 142).
We have already argued that FIN € £3. To show that it is <m-hard for T,
we need to show that any set in £ reduces to it. We use the characterization
of Theorem J.1. Let

A={z|3yVz R(z,y,2)}

be an arbitrary set in £3, where R(z,y, 2) is a decidable ternary predicate.
Let M be a total machine that decides R. We need to construct a machine
N effectively from a given z such that N € FIN iff z € A; in other words,
N accepts a finite set iff 3y Vz R(z,y,2). Let N on input w

(i) write down all strings y of length at most |wl;

(ii) for each such y, try to find a z such that ~R(z,y,2) (i.e., such that
M rejects z#y+#z), and accept if all these trials are successful. The
machine N has z and a description of M hard-wired in its finite control.

In step (ii), for each y of length at most |w|, N can just enumerate strings
z in some order and run M on z#y#z until some z is found causing M to
reject. Since M is total, N need not worry about timesharing. If no such
z is ever found, N just goes on forever. Surely such an N can be built
effectively from M and z.

Now if z € A, then there exists y such that for all z, R(z,y, 2) (i.e., for all
z, M accepts z#y#z); thus step (ii) fails whenever |w| > |y|. In this case
N accepts a finite set. On the other hand, if z ¢ A, then for all y there
exists a z such that ~R(z,y, z), and these are all found in step (ii). In this
case, N accepts ©*.

Beyond Undecidability 281

We have shown that the machine N accepts a finite set iff z € A, therefore
the map = — N constitutes a <,-reduction from A to FIN. Since A was
an arbitrary element of 3, FIN is <,,-hard for .

The Analytic Hierarchy and II}

The arithmetic hierarchy is defined in terms of first-order quantification, or
quantification over natural numbers or strings. But it doesn’t stop there: if
we consider second-order quantification—quantification over functions and
relations—we get the so-called analytic hierarchy consisting of classes T},
I1L, Al. The entire arithmetic hierarchy is strictly contained in A}, the low-
est class in the analytic hierarchy. Elements of A} are called hyperarithmetic
sets.

A remarkable theorem due to Kleene says that the sets of natural numbers
definable by one universal second-order quantifier (i.e., the II} sets) are
exactly the sets definable by first-order induction.

The class IT} also has natural complete problems. For example, suppose we
are given a recursive binary relation < on N; that is, a recursive subset of
IN?. A natural question to ask is whether the relation is well founded; that
is, whether there exists no infinite descending chain

ng » M1 > N2 » -
This decision problem is <.,-complete for II}.

These results are getting a bit beyond our scope, so we’ll stop here.

Historical Notes

Oracle Turing machines were first defined by Turing [121]. The arithmetic
and analytic hierarchies were studied by Kleene [68]; see also Rogers [106],
Shoenfield [115], Kleene [69], and Soare [116].

Modern-day complexity theory has its roots in the theory of recursive func-
tions and effective computability. The <t- and <p-reducibility relations,
the concepts of completeness and hardness, and the arithmetic hierarchy all
have their subrecursive counterparts; see Karp [64], Cook [28], and Stock-
meyer [118]. For an introduction to complexity theory, see Hartmanis and
Stearns [57], Garey and Johnson [40], or Papadimitriou [97].

