208 UNDECIDABILITY

The recursion theorem

The second theorem, called the recursion theorem, states that every total recursive
function ¢ mapping indices (integers denoting Turing machines) of partial recur-
sive functions into indices of partial recursive functions has a fixed point x, such
that f,(v) = f,xe(y) for all y. In other words, if we modify all Turing machines in
some manner, there is always some Turing machine M, for which the modified
Turing machine M, computes the same function as the unmodified Turing
machine. At first this sounds impossible, since we can modify each Turing ma-
chine to add 1 to the originally computed function. One is tempted to say that
f(¥) + 1 # f(y). But note that if f(y) is everywhere undefined, then f(y) + 1 does
equal f(y) for all y.

Theorem 8.18 For any total recursive function ¢ there exists an x, such that
fxo(x) :fo(xo)(x) fOI‘ all X.

Proof For each integer i construct a TM that on input x computes f;(i) and then
simulates, by means of a universal TM, the f;(i}th TM on x. Let g(i) be index of the
TM so constructed. Thus for all i and x,

Sao(x) = fr(x): (83)

Observe that g(i) is a total function even if f;(i) is not defined. Let j be an index of
the function ag. That is, j is an integer code for a TM that, given input i, computes
g(i) and then applies o to g(i). Then for x, = g(j) we have

fxo(x) :fa(f)(x)
= frpn(x) by (8.3)
= foain(X) since f; is the function ag

= foxol(X)-

Thus X, is a fixed point of the mapping ¢. That is, TM x, and TM a(x,) compute
the same function. O

Applications of the recursion and S, theorems

Example 89 Let M,, M,, ... be any enumeration of all Turing machines. We do
not require that this enumeration be the “standard” one introduced in Section 8.3,
but only that whatever representation is used for a TM, we can by an algorithm
convert from that representation to the 7-tuple notation introduced in Section 7.2,
and vice versa. Then we can use the recursion theorem to show that for some i, M;
and M;,, both compute the same function.

Let o(i) be the total recursive function defined as follows. Enumerate TM’s
M,, M,, ... until one with integer code i as in (8.2) is found. Note that the states of
the TM must be considered in all possible orders to see if i is a code for this TM,

89 | ORACLE COMPUTATIONS 209

since in the notation introduced in Section 8.3, the order in which the moves for
the various states is written affects the code. Having found that M has code i,
enumerate one more TM, M;,,, and let a(i) be the code for M;, . Then the
recursion theorem applied to this ¢ says there is some x, for which M, and
M, ., define the same function of one variable.

Example 8.10 Given a formal system F, such as set theory, we can exhibit a
Turing machine M such that there is no proof in F that M started on any
particular input halts, and no proof that it does not halt. Construct M, a TM
computing a two-input function g(i, j), such that

1 if there is a proof in F that f(j) is
o Q not defined; that is, there is a proof
gl)= that the ith TM does not halt when given input j;

undefined otherwise.

M enumerates proofs in F in some order, printing 1 if a proof that the ith TM does
not halt on input j is found. Further, we may construct M so that if g(i, j) = 1, then
M halts, and M does not halt otherwise. By the §,,,-theorem there exists ¢ such
that

fa(i)(j) = g(i, j)-

By the recursion theorem, we may effectively construct an integer i, such that
Jio() = Fouiol) = glio, J)-

But g(iy,j) = 1, and is therefore defined, if and only if there is a proof in F that f; ()
is undefined. Thus if F is consistent (i.e., there cannot be proofs of a statement and
its negation), there can be no proof in F that the ioth TM either halts or does not
halt on any particular input j.

8.9 ORACLE COMPUTATIONS

One is tempted to ask what would happen if the emptiness problem, or some other
undecidable problem, were decidable? Could we then compute everything? To
answer the question we must be careful. If we start out by assuming that the
emptiness problem is decidable, we have a contradictory set of assumptions and
may conclude anything. We avoid this problem by defining a Turing machine with
oracle.

Let A be a language, A = X*. A Turing machine with oracle A is a single-tape
Turing machine with three special states ¢, q,, and g,. The state g, is used to ask
whether a string is in the set 4. When the Turing machine enters state ¢, it
requests an answer to the question: “Is the string of nonblank symbols to the right
of the tape head in A?” The answer is supplied by having the state of the Turing

