,‘.wg,‘mx{&*ax&wamy%w e s e
2
3 m%&&*@»wa&f%v@w%x@anw&wﬁ%

5 i kit
a?waﬁgsﬁw*w«wx«&wﬂ%*@*i“‘”“" ik o o e IR
Ell et e RnmyERLE e T Loy e A
“&xg e Q*?S*Wﬂ_"“‘ﬁ'g A L i - BERG S LR *§§ﬂ§*3“9‘
4 SRR e bt L ¥ i o s
B ) 0 i o e oo R SRS S ik el SRR RE R Se ety ﬁﬁ*gﬁii :
: M'@ o ;: ok vaﬁ*@{* w?maw% Sl s 5 " i e
ay@»ww%&@w@e wEREeEE ;“““‘;@*&www%&%%‘(**‘ e Ak
g AR B B : S s A
bhs o rbabakeeat R L] o o e s EmApdw s EEE R
o RO *@,‘%*&ﬁmw@m: wsms&***% e ;,ﬁ,e‘g\«&ﬁr}% 3 s R i} *ﬁs&
i ot i P L 3 ey s 3
R Lo Fas e EE] biched @‘?wﬂ&m”*

Mu-Recursive Functions

In Chapter 9 we introduced computable functions from a mechanical perspective; the
transitions of a Turing machine produced the values of a function. The Church-Turing Thesis
asserts that every algorithmically computable function can be realized in this manner, but
exactly what functions are Turing computable? In this chapter we will provide an answer
to this question and, in doing so, obtain further support for the Church-Turing Thesis.

We now consider computable functions from a macroscopic viewpoint. Rather than fo-
cusing on elementary Turing machine operations, functions themselves are the fundamental
objects of study. We introduce two families of functions, the primitive recursive functions
and the p-recursive functions. The primitive recursive functions are built from a set of intu-
itively computable functions using the operations of composition and primitive recursion.
The p-recursive functions are obtained by adding unbounded minimalization, a functional
representation of sequential search, to the function building operations.

The computability of the primitive and p-recursive functions is demonstrated by outlin-
ing an effective method for producing the values of the functions. The analysis of effective
computation is completed by showing the equivalence of the notions of Turing computabil-
ity and ye-recursivity. This answers the question posed in the opening paragraph—-the func-
tions computable by a Turing machine are exactly the p-recursive functions.

a3

A family of intuitively computable number-theoretic functions, known as the primitive
recursive functions, is obtained from the basic functions

1. Primitive Recursive Functions



390 Chapter13 Mu-Recursive Functions 13.1  Primitive Recursive Functions 391

i) the successor function s: s{(x) =x + 1 For example, f(xy, ..., x,, ¥ + 1} is obtained by the sequence of computations

i1) the zero function z: z(x) = (0

(n) .

. , () . FGn . 5. O=g(, ..., %)
iii) the projection functions p*/: p" (xy, ..., X)) =x;, 1 <i <n

FO oot D=hxg, .o %0 0, FGp ..oy X O)
FGn e ke D =R, ... %, L FGp X D)

using operations that construct new functions from functions already in the family. The sim.
plicity of the basic functions supports their intnitive computability. The successor function
requires only the ability to add one to a natural number. Computing the zero function is
even less complex; the valoe of the function is zero for every argument. The value of the
projection function p(?) is simply its {th argament.

The primitive recursive functions are constructed from the basic functions by appli-
cations of two operations that preserve computability. The first operation is functiony
composition (Definition 9.4.2). Let f be defined by the composition of the n-variab
function /i with the k-variable functions g1, go. . ... g,. If each of the components o
the composition is computable, then the value of f(xy, ..., x;) can be obtained from %
and gi(xy, ..., a0, g20x1, oL 2 oo oL 8y (en -0 s ). The computability of f follows
from the computability of its constituent functions. The second operation for producing new:
functions is primitive recursion.

Fap . xy+D=ht, . x. Y, e, x, V)

Since A is computable, this iterative process can be used to determine f(xf, ..., %, y+ 1)
for any value of the recursive variable y.

Definition 13.1.2

A function is primitive recursive if it can be obtained from the successor, zero, and projec-
tion functions by a finite number of applications of composition and primitive recursion.

A function defined by composition or primitive recursion from total functions is itself
total. This is an immediate consequence of the definitions of the operations and is left as an
exercise. Since the basic primitive recursive functions are total and the operations preserve
totality, it follows that all primitive recursive functions are total.

Taken together, composition and primitive recursion provide powerful tools for the
construction of functions. The following examples show that arbitrary constant functions,
addition, multiplication, and factorial are primitive recursive functions.

Definition 13.1.1

Let g and # be total number-theoretic functions with n and »# + 2 variables, respectivé
The # - 1-variable function f defined by

1) f(x[,...,xn, 0)=g(x1,...,xn)
W fln .. x,y+D=hGn . %, ¥, FOEL L Xy, ¥

Example 13.1.1

is said to be obtained from g and & by primitive recursion. The constant functions c(';.’) (xy, - .., Xx,) =1 are primitive recursive. Example 9.4.2 defines

the constant functions as the composition of the successor, zero, and projection functions.
The x;’s are called the parameters of a definition by primitive recursion. The variable y is ' d
the recursive variable. _

The operation of primitive recursion provides its own algorithm for computing t
value of f(xy, ..., x,, y) whenever g and / are computable. For a fixed set of parametets

X« s Xy f(x ..o, X, 0) is obiained directly from the function g:

Example 13.1.2

Let add be the function defined by primitive recursion from the functions g(x) = x and
h(x,y,z)y=z+ 1 Then

Flx, oo xn O=glxg, .., 3.
addx,=g{x)=x

The value f(xq, ..., x,, y + 1) is obtained from the computable function / using add(x,y+ D) =h(x, v, add(x, y))=add(x, y) + 1.

The function add computes the sum of two natural numbers, The definition of add(x, )
indicates that the sum of any number with zero is the number itself. The latter condition
defines the sum of x and y + 1 as the sum of x and y (the result of add for the previous
value of the recursive variable) incremented by one.

i) the parameters xy, . . ., x,,
i) v, the previous value of the recursive variable, and

i) flxp. ..., x,, y), the previous value of the function.



392 Chapter 13 Mu-Recursive Functions

The preceding definition establishes that addition is primitive recursive. Both g an

h, the components of the definition by primitive recursion, are primitive recursive sisg

g=p(}) andh=sop(§).

The result of the addition of two natural numbers can be obtained from the prim
itive recursive definition of add by repeatedly applying the condition add(x, y + 1)
add(x, v) + 1to reduce the valoe of the recursive variable. For example, '

add(2,4) =add(2,3)+ 1
=(add2,2) + 1) +1
=((add(2, D+ D+ 1D +1
=((add2, H+D+DH+D+1
=(2+DH+DB+D+1
=6.

When the recursive variable is zero, the function g is used to initiate the evaluation of th
expression. '

xample 13.1.3 | _
Let g and & be the primitive functions g = z and & = add o (93, p'¥). Multiplication c
be defined by primitive recursion from g and & as follows:

mult(x, 0y =g(x} =0

mult (x, y + 1y = h(x, y, mult(x, y)) = mult(x, v) + x.
The infix expression corresponding to the primitive recursive definition is the identi

x+{y+ 1) =x - y + x, which follows from the distributive property of addition and mult:
plication. |

Adopting the convention that a zero-variable function is a constant, we can use De
nition 13,1.] to define one-variable functions using primitive recursion and a two-variable
function 4. The definition of such a function f has the form

i) f(0)=ng, wherenyeN
iy fly+D=h, FO).

Example 13.1.4
The one-variable factorial function defined by

1 ify=0
fact(y) = ﬁ ;

P=}

otherwise

13.1 Primitive Recursive Functions 393

is primitive recursive. Let A{x, y) = muit o (p%), so p(?) =y (x + 1). The factorial
function is defined using primitive recursion from £ by
fact(Q) =1
Jact(y + D =h{y, fact(y)} = fact(y) - (y + D.
Note that the definition uses ¥ + 1, the value of the recursive variable. This is obtained by
applying the successor function to y, the value provided to the function A.
The evaluation of the function facr for the first five input values illustrates how the
primitive recursive definition generates the factorial function.
fact(0) =1
fact(D) =fact(® -0+ 1) =1
fact2y=fact(}- 1+ D=2
Jact(3) =fact(2)y+ 2+ 1) =6
factid) =fact(3) - 3+ 1) =24

The factorial function is usually denoted fact(x) = x!, g

The primitive recursive functions were defined as a family of intuitively computable
functions. The Church-Turing Thesis asserts that these functions must also be computable
ysing our Turing machine approach to functional computation. The Theorem 13.1.3 shows
that this is indeed the case.

Theorem 13.1.3

Every primitive recursive function is Turing computable.

Proof. Turing machines that compute the basic functions were constructed in Section 9.2,
To complete the proof, it suffices to prove that the Turing computable functions are closed
under composition and primitive recursion. The former was established in Section 9.4. All
that remains is to show that the Turing computable functions are closed under primitive
recursion; that is, if f is defined by primitive recursion from Turing computable functions
g and A, then f is Turing computable. -

Let g and & be Turing computable functions and let f be the function

Jon o0, 0=glxy, ..., x,)
f(xla"'sxn’y'l'l)-_"“h(xl"-"xnvyv Fxp .o X, ¥)

defined from g and A by primitive recursion. Since g and s are Turing computable, there
are standard Turing machines G and H that compute them, A composite machine F is
constructed to compute f. The computation of f(xy, xs, ..., x,, ¥) begins with tape
configuration BxBx,B ... Bx,BVB.

1. A counter, initially set to 0, is written to the immediate right of the input. The counter
is used to record the value of the recursive variable for the current computation.



394

Chapter 13 Mu-Recursive Functions

The parameters are then written to the right of the counter, producing the tape co
figuration :

BX|BX,B ... BX,BYBOBX|B%,B ... BX,B.

2. The machine G is run on the final n values of the tape, producing

BX%B%,B ... Bx,ByBOBg (x|, x5, . . ., x,) B.

The computation of G generates g{xq, X», ..., X%,) = f(x, X3, ..., X5, 0).

3. The tape now has the form
BX,BX3B ... BX,BYBiBf(x. X3, . . ., X, )B.

If the counter / is equal to y, the computation of f(x;, Xa, . . ., X,, ¥) is completed hy

erasing the initial n + 2 numbers on the tape and translating the result to tape position

ore. :
4. i < y, the tape is configured to compute the next value of f.

B%BX,B ... BX,ByBi + 1BXB%,B ... BX,BiBf(x}, x5, ..., X, 1)B

The machine H is run on the final n + 2 values on the tape, producing

B%,BX,B ... BX,BYBI + 1BR(xp, K20 - - -+ Zgo b F0s X2r -+ - Xps D) B,

where the rightmost value on the tape is f(xy, x5, ...
continues with the comparison in step 3.

» X, |+ 1. The computati

0 . A . .
.i%& Some Primitive Recursive Functions

A function is primitive recursive if it can be constructed from the zero, successor, and pr
jection functions by a finite number of applications of composition and primitive recursio
Composition permits g and 4, the functions used in a primitive recursive definition, to utilize
any function that has previously been shown to be primifive recursive.

Primitive recursive definitions are constructed for several common arithmetic functions:
Rather than explicitly detailing the functions g and A, a definition by primitive recursion
is given in terms of the parameters, the recursive variable, the previous valve of the
function, and other primitive recursive functions. Note that the definitions of addition and
multiplication are identical to the formal definitions given in Examples 13.1.2 and 13.1.
with the intermediate step omitted. - .

Because of the compatibility with the operations of composition and primitive recur:
sion, the definitions in Tables 13.1 and 13.2 are given using the functional notation. The
standard infix representations of the binary arithmetic functions, given below the function

395

13.2  Some Primitive Recursive Functions

TABLE 13.1 Primitive Recursive Arithmetic Functions
Description Function Definition
Addition add(x, y) add(x,0)=x
Cxty add(x, y+ D) =add(x, y)+ 1

Multiplication mult(x, y} mult(x,0) =0

Xy mult(x, y+ 1} =mult{x, y) +x
Predecessor pred(y) pred(0) =0

predly+ D=y

Proper subtraction sub(x, y) sub(x, ) =x

x=y sub(x, y+ 1) = pred(sub{(x, y))
Exponentation exp{x, y) exp(x, 0y =1

x¥ explx,y+ D =explx,y)-x

names, are used in the arithmetic expressions throughout the chapier. The notation “4- 17
denotes the successor operator.

A primitive recursive predicate is a primitive recursive function whose range is the set
{0, 1}. Zero and one are interpreted as false and true, respectively. The first two predicates
in Table 13.2, the sign predicates, specify the sign of the argument. The function sg is true
when the argument is positive. The complement of sg, denoted cosg, is true when the input
is zero. Binary predicates that compare the input can be constructed from the arithmetic
functions and the sign predicates using composition.

TABLE 13.2 Primitive Recursive Predicates

Description Predicate Definition
Sign sg(x) 5g(0)=0
sg(y+ D=1
Sign complement cosg(x) cosg{O) =1
cosg(y + 1) =0
Less than It(x, y) sgly = x)
Greater than gtix, v) sg(x =)
Equal to eq(x,y)  cosgli(x, y)+ gt(x, ¥))
Not equal to ne(x, v) cosgleq(x, ¥))




396

Chapter 13 Mu-Recursive Functions

Predicates are functions that exhibit the truth or falsity of a proposition. The logic
operations negation, conjunction, and disjunction can be construcied using the arithmetj
functions and the sign predicates. Let p; and p, be two primitive recursive predlcates
Logical operations on p; and p, can be defined as follows:

Predicate Interpretation
cosg(py) not py

PPz prand py
sg{p1+ p2) piorpy

Applying cosg to the result of a predicate interchanges the values, yielding the negatig
of the predicate. This technique was used to define the predicate re from the predicate e
Determining the value of a disjunction begins by adding the truth values of the componer
predicates. Since the sum is 2 when both of the predicates are true, the disjunction is obtaine
by composing the addition with sg. The resulting predicates are primitive recursive sing
the components of the composition are primitive recursive. :

Example 13.2.1

The equality predicates can be used to explicitly specify the value of a function for a finit
set of arguments. For example, f is the identity function for all input values other than 0
1, and 2: ;

2 ifx=0 flx)y=eg(x,0)-2
15 ifx=1 +eg{x,1).5
FD=14 ifx=2 +eq(x,2) -4
x otherwise + gtix, 2) « x.

The function f is primitive recursive since it can be writien as the composition of primifiv
recursive functions eg, gi, «, and +. The four predicates in f are exhaustive and mutually.
exclusive; that is, one and only one of them is true for any natural number, The value of
is determined by the single predicate that holds for the input,

The technique presented in the previous example, constructing a function from exhaus
tive and mutually exclusive primitive recursive predicates, is used to estabhsh the followin
theorem.

Theorem 13.2.1

Let g be a primitive recursive function and f a total function that is identical io g for all but:
a finite namber of input values. Then f is primitive recursive.

397

13.2 Some Primitive Recursive Functions

Proof. Let g be primitive recursive and let f be defined by

1 ifx =n

¥q ifx =n,
flx)y=

Vi if x = My

g{x) otherwise.

The equality predicate is used to specify the values of f forinputn,, . . .
input values, f(x) = g{x). The predicate obtained by the product

, 1. For all other

ne(x, ny) «nelx, ny) - - - -« ne(x, ng)
is true whenever the value of f is determined by g. Using these predicates, f can be written

Fx)=eqx,ny}-yteqlx,ny) -y +---

+nelx, ny) -ne(x, ny) »

+eg(x,ng)-wn
cene(x, i) - g(x).

Thus f is also primitive recursive. ]

The order of the variables is an essential feature of a definition by primitive recursion.
The initial variables are the parameters and the final variable is the recursive variable.
Combining composition and the projection functions permits a great deal of flexibility
in specifying the number and order of variables in a primitive recursive function. This
flexibility is demonstrated by considering alterations to the variables in a two-variable
function.

Theorem 13.2.2

Let g(x, ¥) be a primitive recursive function. Then the functions obtained by

i) (adding dammy variables) f(x, v, 21, 25, . . ., 2,) = g(x, ¥)
it) (permuting variables) f{x, ¥y} = g(y, x)

iii) (identifying variables) f(x) = g(x, x)

are primitive recursive.

Progf, Each of the functions is primitive recursive since it can be obtained from g and the
projections by composition as follows:

D f=go (W™, pit

i) f=go(p3, pP)

1
B 50y

i) f=go(py,p =

Dummy variables are used to make functions with different numbers of variables
compatible for composition. The definition of the composition o (gq, g2} requires that g;



398

Chapter 13 Mu-Recursive Functions

and g, have the same number of variables. Consider the two-variable function f defined k
F(x, ¥) = (x - ¥) + x1. The constituents of the addition are obtained from a multiplicatig
and a factorial operation. The former function has two variables and the latter has on
Adding a dummy variable to the function fact produces a two-variable function fac
satisfying fact'(x, y) = fact(x) = x . Finally, we note that f = add o (muit, fact’) soth
f is also primitive recursive. :

IREEE R

13:3: Bounded Operators

The sum of a sequence of natural numbers can be obtained by repeated applications &
the binary operation of addition. Addition and projection can be combined to construg
a function that adds a fixed number of arguments. For example, the primitive recursiv
function

add o (pV, add o (P, add o (pF, P}))

returns the sum of its four arguments. This approach cannot be nsed when the number'o
summands is variable. Consider the function

;
FO=> gli)=g0) +g+-- +g(.

i=0

The number of additions is determined by the input variable y. The function f is call
the bounded sum of g. The variable i is the index of the summation. Computing a bounde
sum consists of three actions: the generation of the summands, binary addition, and. thi
comparison of the index with the input y.
We will prove that the bounded sum of a primitive recursive function is primitiv
recursive. The technique presented can be vsed to show that repeated applications of an
binary primitive recursive operation is also primitive recursive,

Theorem 13.3.1

Let g(x1, ..., X,, ¥) be a primitive recursive function. Then the functions
y
i) (bounded sum) f(xq, ..., %, )= 2. gk ..., X, 0)
=0
¥
i) (bounded product) f(xp, ..., %, ¥) =[] glxy, ... %, 1)

i=0

are primitive recursive.

Proof. The sum

y
Zg(xl,...,

=0

X 1)

13.3  Bounded Operators 399
is obtained by adding g(xy, ..., x,, y) to
Z glxy, ..., Xy, i)
i=0
Translating this into the language of primitive recursion, we get
Jlxn oo, Oy =g(x, ..., %, 0
JOn o x y+ D= flx, .. x, vy el x, v+ D -

The bounded operations just introduced begin with index zero and terminate when the
index reaches the value specified by the argument y. Bounded operations can be generalized
by having the range of the index variable determined by two computable functions. The
functions / and u are used to determine the lower and upper bounds of the index.

Theorem 13.3.2

Let g beann + 1-variable primitive recursive function and let ! and # be n-variable primitive
recursive functions. Then the functions

[IE TR |
l)f(xl""’xn)= g(xls"'sxn1l)
i=(xq,..,%,)
UK, e Xp)
i) flxy, .-, x0= glxys .o, X, 1)
I=I{x,.,%,)
are primitive recursive.

Proof. Since the lower and upper bounds of the summation are determined by the functions
[ and &, it is possible that the lower bound may be greater than the upper bound. When this
occurs, the result of the summation is assigned the default value zero. The predicate

gt(lxg, ... )

s Xy (XL ..

is true in precisely these instances.

If the lower bound is less than or equal to the upper bound, the sumimation begins with
index I(xy, ..., %,) and terminates when the index reaches u(x, ..., x,). Let ¢’ be the
primitive recursive function defined by

gf(x]: cees Xy }’) :g(xla vees Xps ¥ +l(~xls e xn))-
The values of g’ are obtained from those of g and I(x, . . ., x,):

g X, O =gy, X Mg, L, X))

g x D=glxg, o x, LRI, LX)

FOp Xy, =g Xy, X, YL, L X)),



400

Chapter 13 Mu-Recursive Functions

By Theorem 13.3.1, the function

xmy)ﬂzg(xl,---, o )

i=0
Y+ )

2

Pl

filx -

g ooy Xy, 1)

is primitive recursive. The generalized bounded sum can be obtained by composing f” wi
the functions u and [:

71 € ST

>

i:l(xl,...

xp) A
glxp, - ..

1¥n)

FGo ey, @ X)) = (g e X)) = s X, ).

Multiplying this function by the predicate that compares the upper and lower bounds eﬁsur_
that the bounded sum returns the default value whenever the lower bound exceeds the upp,

_bound. Thus
f(xl, PR

) w(xg, ..., X))

);l(xl,...

. x,) =cosg(gtdixg, .. .,
- f’(xl, .

Since each of the constituent functions is primitive recursive, it follows that f is also
primitive recursive.

A similar argument can be used to show that the generalized bounded product is
primitive recursive. When the lower bound is greater than the upper, the bounded produet
defaults to one. "

s X))

- R 716 ST 8

The value returned by a predicate p designates whether the input satisfies the propéﬁy

represented by p. For fixed values xy, . . ., x,, '
I-LZ[P(xls cens Xy, Z)]
is defined to be the smallest natural number z such that p(xy, ..., x,, 2) = 1. The notati
pzlp(x1s . . ., X, 2)] is read “the least z satisfying p(xy, . . ., x,,, z).” This construction is
called the minimalization of p, and 4z is called the ,u-operator The minimalization of an
n <+ l-variable predicate defines an n-variable fonction '
TG ooy xy) = pz[p(xy, .o 0 Xy, 2]

An infuitive interpretation of minimalization is that it performs a search over the natu
numbers. Initially, the variable z is set to zero. The search sequentially examines the natura
numbers until a value of z for which p(x;. . ... x,, z) = l is encountered.

13.3  Bounded Operators 401

Unfortunately, the function obtained by the minimalization of a primitive recursive
predicata need not be primitive recursive. In fact, such a function may not even be total.
Consider the function

Fix) =pzleg(x, z - 2}].

Using the characterization of minimalization as search, f searches for the first z such that
72 = x. If x is a perfect square, then f(x) retumns the square root of x. Otherwise, f is
undefined.

By restricting the range over which the minimalization occurs, we obtain a bounded
minimalization operator. An n 4 1-variable predicate defines an # 4 1-variable function

b
f(x[’ Ve Ky JJ)Z.‘LZIP(XI’-Hvxn’ Z)]
z if p(xy, ..., x,i)=0for0<i<z<y
= and p(xq, .... %, 2)=1

v+ 1 otherwise.

The bounded p-operator retuins the first natural number z less than or equal to y for which
p(xy, . . -5 Xy, 2) = 1. 1f no such value exists, the default value of v + 1is assigned. Limiting
the search fo the range of natural numbers between zero and y ensures the totality of the
function

Xy, 23]

¥y
f(X], s Ky, Y)E.U’Z[P(xl, LRI

In fact, the bounded minimalization operator defines a primitive recursive function when-
ever the predicate is primitive recursive.

Theorem 13.3.3

Let p{(xy, ..., x,, ¥) be a primitive recursive predicate. Then the function

f(xla v Ay, }’):JZ[P(?% s Xy Z)]

is primitive recursive.

Proaf. The proof is given for a two-variable predicate p(x, y) and easily generalizes to
n-variable predicates. We begin by defining an auxiliary predicate

I ifplx,i)=0for0<i<y
0 otherwise

glx, y) = {

y
=] coss(pix. ).

i=0

This predicate is primitive recursive since it is a bounded product of the primitive recursive
predicate cosg o p.



402  Chapter 13 Mu-Recursive Functions 13.3 Bounded Operators 403

The bounded sum of the predicate g produces the bounded p-operator. To illustrate the
use of g in constructing the minimalization operator, consider a two-variable predicate
with argument r whose values are given in the left column:

e ——
Example 13.3.1

Let p(x, z) be a primitive recursive predicate. Then the functions

0

> g i) =1

i=0

iy fi(x, vg, v} = the first value in the range [vg, v] for which p(x, z) is true,

|

pin,0)=0 g 0= N . . .
it} folx. v} = the second value in the range [0, y] for which p(x, z) is true, and

1 iii} fy(x, y) = the largest value in the range [0, ¥] for which p(x, z) is true
pin. =0 gn,I}=1 Zg(n,z

i=0 are also primitive recursive. For each of these functions, the default is y + 1 if there is no
value of z that satisfies the specified condition.

To show that f] is primitive recursive, the primitive recursive function ge, greater than
or equal to, is used to enforce a lower bound on the value of the function. The predicate
p(x, 2) - ge(z, yp) is true whenever p(x, z) is true and z is greater than or equal to y;. The

bounded minimalization

2
pn,2)=0 g.2)=1 3 gn,i)=3

3
pr,3H=1 ghn 3H=0 Zg(n, i)=3
i=0
4 A, yo, ¥y = fzlp(x, 2) - ge(z, yo))
p, =0 g, H=0 Y g i)=3
i returns the first value in the range [yg, ¥] for which p(x, z) is true.
The minimalization (2] p(x, )] is the first value in [0, y] for which p(x z) is true.
The second value that makes p{x, z) true is the first value greater than ,uz "Ipix, 2’ )] that
satisfies p. Using the preceding technique, the function

5
p(r,5 =1 g 5 =0 Zg(n, i) =3

i=0

. y ¥
The value of g is one until the first number z with p(n, z} = 1is encountered. All subseque falx, ¥) = pz[p(x, 2) - gt (z, iz’ [p(x, 2)]}]

values of g are zero. The bounded sum adds the results generated by g. Thus

¥ .
W Jy+1 dz=y
Zg(nsr’)_{z .

= otherwise.
1=

returns the second value in the range [0, y] for which p is true.

A search for the largest value in the range [0, y] must sequentially examine v, v — 1,
y—2, ..., 1, 0. The bounded minimalization Jz[p (x, ¥y — z)] examines the values in the
desired order; when z =0, p(x, v) is tested, when z = 1, p(x, y — 1) is tested, and so on.
The function f'(x, y) =y =~ ,u),)z[ p(x, y = z)}returns the largest value less than or equal to
y that satisfies p. However, the result of f"is y = (y ++ 1) = 0 when no such value exists. A
comparison is used to produce the proper default value. The first condition in the function

The first condition also includes the possibility that there is no z satisfying p(n, 2} =11In
this case the default value is returned regardless of the specified range.

By the preceding argument, we see that the bounded minimalization of a primiti
recursive predicate p is given by the function

¥ y

Fx, y) = fzlp(x, 2)]= D atx, i), fte ) =eq(y +1, qzlp(s, 2D - (6 + 1) +neq(y + 1, gzlpx, D - £'(x, )
i=0
returns the defanlt y + 11if there is no value in [0, y] that satisfies p. Otherwise, the largest

thy is primitive recursive. )
and consequently is p such value is returned. i

Bounded minimalization f{y) = ,ujjz[ p{x, z)}can be thought of as a search for the firs
value of z in the range 0 to y that makes p true. Example 13.3.1 shows that minimalization
can also be used to find first value in a subrange or the largest value z in a specified rangc
that satisfies p.

Bounded minimalization can be generalized by computing the upper bound of the
search with a function u. If u is primitive recursive, so is the resulting function. The proof
is similar to that of Theorem 13.3.2 and is left as an exercise.



404 Chapter 13 Mu-Recursive Functions

Theorem 13.3.4

Let p be an 1 4 1-variable primitive recursive predicate and let u be an s-variable pnmmv
recursive function. Then the function

w{xy,.
f(xl,... l

s xn) = [p(xla s Ay Z)]

1s primitive recursive.

9134 Division Functions

The fundamental operation of integer division, dfv, is not total. The function div(x,
returns the quotient, the integer part of the division of x by y, when the second argument j
nonzero. The function is undefined when y is zero. Since all primitive recursive function;
are total, it follows that div is not primitive recursive. A primitive recursive division functi
guo is defined by assigning a defanlt value when the denominator is zero:

divix, y) otherwise,

ot =]

The division function guoe is constructed using the primitive recursive eperation of mul
tiplication. For values of y other than zero, quo(x, y) = z implies that z satisfics z . y
x < (z+1) -y Thatis, gue(x, y) is the smallest natural number z such that (z + 1) « y
greater than x. The search for the value of z that satisfies the mequahty succeeds before
reaches x since (x 4+ 1) « y is greater than x. The function

wzlet(z+ D -y, 0]

determines the quotient of x and y whenever the division is defined. The default value
obtained by multiplying the minimalization by sg(y). Thus :

quo(x, y) =sg(y) - zlgt((z+ 1) - v, 0],

where the bound is determined by the primitive recursive function p(z) The previb
definition demonstrates that guo is primitive recursive since it has the form prescribed b
Theorem 13.3.4.

The quotient function can be used to define a number of division-related functions
predicates including those given in Table 13.3. The function rem returns the remainder o
the division of x by y whenever the division is defined. Otherwise, rem(x, 0) = x. Th
predicate divides defined by

1 ifx >0,y >0,and yis a divisor of x

divides(x, y) = { 0 otherwise

is true whenever y divides x. By convention, zero is not considered to be divisible by.af
number. The multiplication by sg(x) in the definition of divides in Table 13.3 enforces t
condition, The default value of the remainder function guarantees that divides(x, 0) =0

405

13.4 Division Functions

TABLE 13.3  Primitive Recursive Division Functions

Description Function Definition

Quotient quo(x, ) 580 - pzlet(z + 1+ y. 2]
Remainder rem{x, y) x = {y-quolx, y))

Divides divides(x, y} eqg(rem(x, ¥y, 0) - sg(x)

.
Number of divisors N divides(x, i)

i=0

ndivisors(x, y)

Prime prime{x) eq(ndivisors(x), 2)

The generalized bounded sum can be used to count the number of divisors of a number,
The upper bound of the sum is obtained from the input by the primitive recursive function
p(i} This bound is satisfactory since no number greater than x is a divisor of x. A prime
number is a number whose only divisors are | and itself. The predicate prime simply checks
if the number of divisors is two.

The predicate prime and bounded minimalization can be used to consiruct a primitive
recursive function pn that ennmerates the primes. The value of pr (i) is the ith prime. Thus,
pn(0) =2, pun(l)=3, pr(2)=35, pn(3) = . The x + 1st prime is the first prime
number greater than pr(x). Bounded minimalization is ideally suited for performing this
type of search. To employ the bounded p-operator, we must determine an upper bound
for the minimalization. By Theorem 13.3.4, the bound may be calculated using the input
value x.

Lemma 13.4.1
Let pn{x) denote the xth prime. Then pa(x + 1) < pr(x)! 4+ 1L

Proof. Each of the primes pr(i), i =0, 1, .. ., x, divides pn(x}. Since a prime cannot
divide two consecutive numbers, either pr{x}! + 1is prime or its prime decomposition con-
tains a prime other than pr(0), pr(l), . . ., palx). Ineither case, pn(x + 1) < pr(x)! -+ L

-]

The bound provided by the preceding lemina is computed by the primitive recursive
function fact(x) < 1. The xth prime function is obtained by primitive recursion as follows:

pn©0) =12

fact(pr(x+1

prlx+1y="" “uz  [prime(z) - gi(z, pn(x)].

Let us take a moment to reflect on the consequences of the relationship between the
family of primitive recursive functions and Turing computability. By Theorem 13.1.3, every



406

Chapter 13 Mu-Recursive Functions

primitive recursive function is Turing computable. Designing Turing machines that expl;
itly compute functions such as pr or andivisers would require a large number of states ap
a complicated transition function. Using the macroscopic approach to computation, the
functions are easily shown to be computable. Without the tedium inherent in constructi
complicated Turing machines, we have shown that many useful functions and pred1cate
are Turing computable.

Goédel Numbering and Course-of-Values Recursion

Many common computations involving natural numbers are not number-theoretic functios
Sorting a sequence of numbers returns a sequence, not a single number. However, there ar
many sorting algorithms that we consider effective procedures. We now introduce primitiv
recursive constructions that allow us to perform this type of operation. The essential feamr_'
18 the ability to encode a sequence of numbers in a single value. The coding scheme utiliz
the unique decomposition of a natural number into a product of primes. Such codes ar
called Gddel numberings atter German logician Kurt Gédel, who developed the techmq ;
A sequence xq, x|, . . ., X,_; of # natural numbers is encoded by
pn(o)xO+1 . pn(l)x1+1 . +1 — 2x0+1 . 3x|+1 .

- pr(n)*n - pr(ny L

Since our numbering begins with zero, the elements of a sequence of length # are numbere

0, 1,...,rn— 1 Examples of the G&del numbering of several sequences are
Sequence Encoding
1,2 2231 =108
0,1,3 213754 = 11,250
0,1,0,1 213?577 = 4,410

An encoded sequence of length # is a product of powers of the first # primes. The choic
of the exponent x; + 1 guarantees that pr(i) occurs in the encoding even when x; is zero

The definition of a function that encodes a fixed number of inputs can be obtame_
directly from the definition of the Giidel numbering. We let

Loy ¥t = T @yt

i=0

gnn(xo, Cee xn) = pn(O)x0+1 .

be the n + 1-variable function that encodes a sequence xg, X, . . . , X,,. The function gn,
can be used to encode the components of an ordered #-tuple. The Godel number associate
with the ordered pair [xg, x1]is grq(xg, x1). '

407

13.5 Gddel Numbering and Course-of-Values Recursion

A decoding function is constructed to retrieve the components of an encoded sequence,
The function

dec(i, x} = ;fz[cosg(divides(x, pn(i)z""l))] =1

returns the ith element of the sequence encoded in the Gédel number x. The bounded
p-operator is used to find the power of pr(i) in the prime decomposition of x. The
minimalization returns the first value of z for which pn(i)**! does not divide x. The ith
glement in an encoded sequence is one less than the power of pa(i) in the encoding. The
decoding function dec(x, i) returns zero for every prime p# (i) that does not occur in the
prime decomposition of x.

When a computation requires n previously computed values, the Godel encoding
function gn,_; can be used to encode the values. The encoded values can be refrieved
when they are needed by the computation.

Example 13, 5 'I

The Fibonacci numbers are defined as the sequence 0, 1, 1, 2, 3, 5, 8, 13,
element in the sequence is the sum of its two predecessors, The function

F(0)=0

fh=1

Ffo+D=fm+fy—-Dlory>1
generates the Fibonacci numbers. This is not a definition by primitive recursion since the
computation of f(y + 1) utilizes both f{y) and f(y — 1). To show that the Fibonacci
numbers are generated by a primitive recursive function, the Godel numbering function

gny is used to store the two values as a single number. An auxiliary function /& encodes the
ordered pair with first component f(y — 1) and second component f{y):

, where an

h(0) = gny(0, ) =232 =18
h(y + 1) = gny(dec(l, h(y)), dec(0, h{y)) + dec(1, h(y})).
The initial value of / is the encoded pair [£(0), f(1)]. The calculation of A(y + 1} begins

by producing the components of the subsequent ordered pair

[dec(l, h(y)), dec(O, h(¥)) +dec(l, RGN]I=1F ), f& =D+ F)]

Encoding the pair with gn, completes the evaluation of A(y + 1). This process constructs
the sequence of Gédel numbers of the pairs [£(0), F(DL [FQD, FOLIF@), F(3, . ...
The primitive recursive function f(y) = dec(0, h{y)) extracts the Fibonacci numbers from
the first components of the ordered pairs. O

The Godel numbering functions gr; encode a fixed number of arguments. A Godel
humbering function can be constructed in which the number of elements to be encoded



408  Chapter 13  Mu-Recursive Functions

is computed from the arguments of the function. The approach is similar to that takeq
constructing the bounded sum and product operations. The values of a one-variable primitj
recursive function f with input 0, 1, . . ., n define a sequence f(0), f(D), ..., f(n)i
length 7 + 1. Using the bounded product, the Godel numbering function .

¥
gnf(x;, cees Xy, y) = l—[ pn(i)f(l)“i"l
=0

encodes the first y + 1values of f. The relationship between a function f and its encodin
function gn ; is established in Theorem 13.5.1. ‘

Theorem 13.5.1

Let f be an n + I-variable function and gn ; the encoding function defined from f. The:
f is primitive recursive if, and only if, gn ¢ is primitive recursive. ' '

Proof If f(x; ..., x,, y) is primitive recursive, then the bounded product

Y
gnf(xl, R y) = 1_[ pn(i)f(xlw-sxmf)'ﬂ
=0

computes the Gidel encoding function. On the other hand, the deceding function can by
used to recover the values of f from the Godel number generated by gn ¢:

fx oo xy Yy =dec(y, gnp(xy, ... X, ¥)).

Thus f is primitive recursive whenever gn ¢ is.

The primitive recursive functions have been introduced because of their intuitive com:
putability. In a definition by primitive recursion, the computation is permitted to use
result of the function with the previous value of the recursive variable. Consider the functio
defined by

Foy=1

fH=f0-1=1

f@Q=f0-2+f(1H-1=3
fB=f0y-3+f(D-2+f(2)-1=8

F@=F -4+ f(H:3+ f2)-24 f(3)-1=21

The function f can be written as
FOy=1

, |
FO+D=2 F@D - +1-i).

i=0

13.5 Godel Numbering and Course-of-Values Recursion 409

The definition, as formulated, is not primitive recursive since the computation of
f(y + 1) utilizes all of the previously computed values. The function, however, is intu-
jtively computable; the definition itself outlines an algorithm by which any value can be
calculated.

When the result of a function with recursive variable y + 1 is defined in terms of
f(O), f(D, ..., f(y),the function f is said to be defined by course-of-values recursion.
Determining the result of a function defined by course-of-values recursion appears to utilize
a different number of inputs for each value of the recursive variable. In the preceding
example, f(2) requires only f(0) and f(1}, while f(4) requires f(0), f(1), f(2), and
f(3). No single function can be used to compute both f(2) and f(4) directly from the
preceding values since a function is required to have a fixed number of arguments.

Regardless of the value of the recursive variable y -+ 1, the preceding resulis can be
encoded in the Godel number gn ¢(y). This observation provides the framework for a formal
definition of course-of-values recursion.

Definition 13.5.2

Let g and h be n + Z-variable total number-theoretic functions, respectively. The
n + l-variable function f defined by

D fle, . x, M =g(xy, ..., x,)
i) fop . xny+ D=k, X Y, grp (X - X YD)

is said to be obtained from g and # by course-of-values recursion.

Theorem 13.5.3

Let f be an # - l-variable function defined by course-of-values recursion from primitive
recursive functions g and /. Then f is primitive recursive.

Proof. We begin by defining gn; by primitive recursion directly from the primitive
recursive functions g and A.

g (g, ..y Xy, 0) = 2 f (i, 0)

e 2881t ]
gnf(xla e Ay Y + 1) = gnf(XI, sy Ky, y) * P”(y + 1)f(x1,.,.,x,,,y+1)+1
=gn (X1, Xy, ¥) ¢ prdy DI T T T

The evalvation of gn (X1, ..., Xy, ¥ + 1) uses only
i) the parameters xg, . . . , X,
ii) y, the previous value of the recursive variable,
i) gn (xg, ..., Xy, ¥). the previous value of gn 4, and
v} the primitive recursive functions %, pn, +, +, and exponentiation.

Thus, the function gn ¢ 18 primitive recursive. By Theorem 13.5.1, it follows that f is also
Primiitive recursive. B



410

Chapter 13 Mu-Recursive Functions

In mechanical terms, the Godel numbering gives computation the equivalent of unlig
ited memory. A single G8del number is capable of storing arry number of preliminary
sults, The Gédel numbering encodes the values f(xg, ..., x,, 0), filxg, -...x,, 1), .
f{xgs - - .4 X, ¥) that are required for the computation of f{xg, . .., x,,, ¥ + 1). The deco
ing function provides the connection between the memory and the computation. Wheney,
a stored value is needed by the computation, the decoding function makes it available,

Example 13.5.2

Let h be the primitive recursive function

h(x,y) =Y dec(i,y) - (x +1=1).
i=0

The function f, which was defined earlier to introduce course-of-values computation, can
be defined by course-of-values recursion from /.

SO =1

,
fG+D=h(y, gnp(y =Y decli, gns(y) (v +1-10)
i=0

¥
=3 SO0

i=0

Computable Partial Functions

PR

i
1
)
B

B

The primitive recursive functions were defined as a family of intuitively computable fun
tions. We have established that all primitive recursive functions are total. Conversely, are'al
computable total functions primitive recursive? Moreover, should we restrict our analysis
of computability to total functions? In this section we will present arguments for a negativ
response to both of these guestions.
We will use a diagonalization argument to establish the existence of a total computable
function that is not primitive recursive. The first step is to show that the syntactic structd
of the primitive recursive functions allows them to be effectively enumerated. The ability
to list the primitive recursive functions permits the construction of a computable function
that differs from every function in the list. ' -

Theorem 13.6.1

The set of primitive recursive functions is a proper subset of the set of effectively computable
total number-theoretic functions.

Proof. The primitive recursive functions can be represented as strings over the alphabé
S5, 0,20 1,2,34,56,7,89 () o {, ) The basic functions s, z, and p7’

411

13.6 Computable Partial Functions

are represented by {5}, (z}, and {pi(j)}. The composition & o (g1, ..., g,} is encoded
{(hy o {{g1)> - -, {8x)}}, where (h} and (g;) are the representations of the constituent
functions. A function defined by primitive recursion from functions g and 7 is represented
by (g} {h}).

The strings in £* can be generated by length: first the null string, followed by strings of
length one, length two, and so on. A straightforward mechanical process can be designed to
determine whether a string represents a correctly formed primitive recursive function. The
enumeration of the primitive recursive functions is accomplished by repeatedly generating
a string and determining if it is a syntactically correct representation of a function. The first
correctly formed string is denoted fy, the next £, and so on. In the same manner, we can
enumerate the one-variable primitive recursive functions. This is accomplished by deleting
all n—va{]i;able (fll)mctions, i > 1, from the previously generated list. This sequence is denoted
PR

The total one-vartable function
g =P +1

is effectively computable. The effective enumeration of the one-variable primitive recursive
functions establishes the computability of g. The value g(i) is obtained by

1) determining the /th one-variable primitive recursive function f (}),
i) computing £ (i), and
iii) adding oneto f (P ().

Since each of these steps is effective, we conclude that g is computable. By the familiar
diagonalization argument,

g # 17 ()
for any i. Consequently, g is total and computable but not primitive recursive. B

Theorem 13.6.1 used diagonalization to demonstrate the existence of computable func-
tions that are not primitive recursive. This can also be accomplished directly by constructing
a computable function that is not primitive recursive. The two-variable number-theoretic
function, known as Ackermann’s function, defined by

) AO, =y+1
i) A(x -+ 1,0)=A(x, 1)
i) Ax+ 1L y+D=A(x, Ax+ 1, y))

_ isone such function. The values of A are defined recursively with the basis given in condition

(i}. A proof by induction on x establishes that A is uniquely defined for every pair of input
values (Exercise 22). The computations in Example 13.6.1 illustrate the computability of
Ackermann’s function.



412

Chapter 13 Mu-Recursive Functions

ampe '!3 6. 'I

The values A(1, 1) and A(3, 0) are constructed from the definition of Ackermann’s functm
The column on the right gives the justification for the substitution,

a) A(L, 1) = A0, A(1, 0)) (iif)
= A0, A0, 1) (ii)
= A(0,2) 6))
=3

b) AR, )= A(l, A2, 0) (iii)
=A(1, AL, 1)) (ii)
=A(l, 3} (@)
= A0, A(L, 2) (iii)
= A0, A0, A(L, D)) (iii)
= A0, A0, 3 (a)
= A0, 4) (i)
=5 (1)

The values of Ackermann’s function exhibit a remarkable rate of growth. By fixing the
first variable, Ackermann’s function generates the one-variable functions

AL,y y=y+2
A2, y) =2y +3
AB. ) =2"" -3
216
Al =22 -3

The number of 2’s in the exponential chain in A(4, y) is y. For example, A4, 0) = 16 — 3
A4, 1) =26 _3 and A(4,2) =22"° — 3. The first variable of Ackermann’s functi
determines the rate of growth of the function values. We state, without proof, the followin
theoremn that compatres the rate of growth of Ackermann’s function with that of the primitiv
recursive functions.

Theorem 13.6.2

For every one-variable primitive recursive function f, there is some i € N such tha

Fli) < AG, §).

Clearly, the one-variable function A{i, {) obtained by identifying the variables of A
not primitive recursive. It follows that Ackermann’s function is not primitive recursive. If1

413

13.6 Computable Partiai Functions

were, then A(i, i), which can be obtained by the composition 4 o (p({}, p({)) would also
pe primitive recursive.

[s it possible to increase the set of primitive recursive functions, possibly by adding
some new basic functions or additional operations, to include all total computable functions?
Unfortunately, the answer is no. Regardless of the set of total functions that we consider
computable, the diagonalization argument in the proof of Theorem 13.6.1 can be used to
show that there is no effective enumeration of all total computable functions. Therefore, we
must conclude that the computable functions cannot be effectively generated or that there
are computable nontotal functions. If we accept the latter proposition, the contradiction
from the diagonalization disappears. The reason we can claim that g is not one of the f;’s
is that g() # £ (). It £ (1) 1, then g(1) = f% (i) + 1 s also undefined. If we wish to
be able to effectively enumerate the computable functions, it is necessary to include partial
functions in the enumeration.

We now consider the computability of partial functions. Since composition and prim-
itive recursion preserve totality, an additional operation is needed to construct partial func-
tions from the basic functions, Minimalization has been informally described as a search
procedure. Placing a bound on the range of the natural numbers to be examined ensures that
the bounded minimalization operation produces total functions. Unbounded minimalization
is obtained by performing the search without an upper limit on the set of natural nambers
to be considered. The function

fx)=pzleg(x, z - z}]

defined by unbounded minimalization returns the square root of x whenever x is a perfect
square. Otherwise, the search for the first natural number satistying the predicate continues
ad infinitum. Although eg is a total function, the resulting function f is not. For example,
f(3) 1. A function defined by unbounded minimalization is undefined for input x whenever
the search fails to return a value.

The introduction of partial functions forces us to reexamine the operations of compo-
sition and primitive recursion. The possibility of undefined values was considered in the
definition of composition. The function z o (g4, . .

-+ &,) 1s undefined forinput x|, . . ., xp
if either
1) gi(xq, ..., x) T forsome 1 < <n;or
it) gi(xy, ..., xp)dforalll<i=mand (g (x, ..., %) . .. &G0 ) 1

An undefined value propagates from any of the g;’s to the composite function.

The operation of primitive recursion required both of the defining functions g and 4 to
be total. This restriction is relaxed to permit definitions by primitive recursion using partial
functions. Let f be defined by primitive recursion from partial functions g and /.

f(xls---1xn50):g(xls---sxn)

f‘(xl,...,xn,y"l’l):h(xls---:xn:y: f(xl’--'7xn=y))



414 Chapter 13 Mu-Recursive Functions 13.7 Turing Computability and Mu-Recursive Functions 415

Determining the value of a function defined by primitive recursion is an iterative procesg
The function f is defined for recursive variable y only if the following condmons
satisfied:

) flrn. . oox,. B ifglx, . o) 4

i) fly, .o x,y+ D] if flxg, o x, ) lfo0si<y
and A(xy, . ... X ¥ XL - L X D

pProof. Since the basic functions are known to be Turing computable, the proof consists of
showing that the Turing compntable partial functions are closed under operations of com-
position, primitive recursion, and unbounded minimalization. The techniques developed in
Theorems 9.4.3 and 13.1.3 demonstrate the closure of Turing computable total functions
gnder composition and primitive recursion, respectively. These machines also establish the
closure for partial functions. An undefined value in one of the constituent computations
causes the entire computation to continue indefinitely.

The proofis completed by showing that the unbounded minimalization of a Taring com-
putable total predicate is Turing computable. Let f(xy, ..., x,) = pz[p(xg, . . . X, V)]
where p(xy, ..., X,, ¥} is a total Turing computable predicate. A Turing machine to com-
pute f can be constructed from P, the machine that computes the predicate p. The initial
configuration of the tape is BxBx;B ... BX,B.

An undefined value for the recursive variable causes f to be undefined for all the subsequen
values of the recursive variable.

With the conventions established for definitions with partial functions, a family g
computable partial functions can be defined using the operations composition, primit v
recursion, and unbounded minimalization.

1. The representation of the number zero is added to the right of the input. The search

Definition 13.6.3 specified by the minimalization operator begins with the tape configuration

The family of p-recursive functions is defined as follows: B
B% Bx,8 ... BX,B0OB.
1) The successor, zero, and projection functions are p-recursive.

The number to the right of the input, call it j, is the index for the minimalization
operator.

ii) If & is an n-variable g-recursive function and gy, . .., g, are k-variable p-recursiy
functions, then f =k o(gy, ..., g,) 1§ p-recursive.

iii) If g and A are n and n -+ 2-variable p-recursive functions, then the function f define: 2. A working copy of the parameters and j is made, producing the tape configuration

from g and % by primitive recursion is p-recursive. - o _
. 8 yPp . _'“ . : BxBxyB ... Bx,BjBxBx,B ... Bx,BjB.
i) If p{xy, ..., x,, ) is a total p-recursive predicate, then f = pz[p(x), ..., x4, 2)]i

p-recursive. 3. The machine P is run with the input consisting of the copy of the parameters and j,

v) A function is u-recursive only if it can be obtained from condition (1) by a finite numbe producing
of applications of the rules in (i}, (iii), and {iv}. o R
P (1), (D, and Gv) | BX\BE,B ... BX,BjBpCay, 57 - %, JIB.
'Condmons (1), (i), anf:l pu) {mp}y thgt all primitive recursive fgnctlons are L-Tecursiv 4. I p(xy, Xas - - .+ % ) = L, the valuc of the minimalization of p is . Otherwise, the
Notice that unbounded minimalization is not defined for ali predicates, but only for tota N ... i ; i
: : pix1, X3, ..., Xy, ) is erased, j is incremented, and the computation continues with
p-recursive predicates. step 2
The notion of Turing computability encompasses partial functions in a natural way.
Turing machine computes a partial number-theoretic function f if A computation terminates at step 4 when the first j for which p(x, ..., x,, j)=11s
_ ) _ ) encountered. If no such value exists, the computation loops indefinitely, indicating that
i} the computation terminates with result f(xy. ..., x,} whenever f(xy, ..., x,) |, an the function £ is undefined. =

ii} the computation does not terminate whenever f(x;. ..., x,) 1.

The Turing machine computes the value of the function whenever possible. Otherwme, th
computation continues indefinitely.

We will now establish the relaiionship between the p-recursive and Turing computabl
functions. The first step is to show that every p-recursive function is Turing computable
This is not a surprising result; it simply extends Theorem 13.1.3 to partial functions.

Turing Computability and Mu-Recursive Functions

Ithas already been established that every p-recursive function can be computed by a Turing
machine. We now turn our attention to the opposite inclusion, that every Turing computable
function is yi-recursive. To show this, a number-theoretic function is designed to simulate
- the computations of a Turing machine. The constraction of the simulating function requires
moving from the domain of machines to the domain of natural numbers. The process of

Theorem 13.6.4
Every p-recursive function is Turing computable.



416  Chapter 13 Mu-Recursive Functions 13.7 Turing Computability and Mu-Recursive Functions 417

translating machine computations to functions is known as the arithmeiization of Tuting
machines.

The arithmetization begins by assigning a number to a Turing machine configuratig
LetM=(Q, %, I', 8, gg. g,) beastandard Turing machine that compuies a one-variah
number-theoretic function f. We will construct a g-recursive function to numericall
simulate the computations of M. The construction easily generalizes to functions of mo
than one variable.

A configuration of the Toring machine M consists of the state, the position of the ta
head, and the segment of the tape from the left boundary to the rightmost nonblank symbg
Each of these components must be represented by a natural number. We will denote the
states and tape alphabet by

A'Turing machine configuration is defined by the state number, tape head position, and
tape number. The configuration number incorporates these values into the single number

gns{state number, tape head position, tape number),

where g, is the Godel numbering function that encodes ordered triples.

Exam

ple 13.7.1

The Turing machine S computes the successor function.

IR 1L

Q=190 91 - - - » I}
F:{B:a0,1=a1,a2,...,ak}

and the nambering will be obtained from the subscripis. Using this numbering, the tap
symbols B and ] are assigned zero and one, respectively. The location of the tape head ¢
be encoded using the numbering of the tape positions.

The configuration numbers are given for each configuration produced by the computation
of the successor of 1. Recall that the tape symbols B and { are assigned the numbers zero
and one, respectively.

State Position Tape Number Configuration Number
‘ I ‘ ‘ | ‘ ‘ qoB11B 0 0 213252 = 450 &n5(0, 0, 450)
The symbols on the tape to the rightmost nonblank square form a string over Z*. Encodin FBgliB 1 1 213252 = 450 gns(1, 1, 450)
the tape uses the numeric representation of the elements of the tape alphabet. The stri - Blq,1B 1 2 213252 — 450 gny(l, 2, 430
a;,a;, . . . a; 1s encoded by the Godel number associated with the sequence iy, iy, . . ., ] + BligB 1 3 21325271 _ 3150 gna{l, 3, 3150)
The number representing the nonblank tape segment is called the tape number. + Blg,11B 9 2 IR = 242550 gny(2, 2, 242550)
The tape number of the nonblank segment of the machine configuration - Bgyl11B 5 1 213252721 1! = 242550 ana(2. 1, 242550)
0 1 2 3 4 5 FqBIIIB 2 0 23527011 = 242550 gna(2, 0, 242550)

0

HEONEE
]

is 213252 = 450, Explicitly encoding the blank in position three produces 2132527 = 315
another tape number representing the tape. Any number of blanks to the right of th
rightmost nonblank square may be included in the tape number. _
Representing the blank by the number zero permits the correct decoding of any tap
position regardless of the segment of the tape encoded in the tape number. If dec(i, z)
and pn(i) divides z, then the blank is specifically encoded in the tape number z. On'tl
other hand, if dec(i, z) = 0 and pn(i) does not divide z, then position 7 is to the right of_th
encoded segment of the tape. Since the tape number encedes the entire nonblank segme
of the tape, it follows that position { must be blank. '

A transition of a standard Turing machine need not alter the tape or the state, but it
must move the tape head. The change in the tape head position‘and the uniqueness of the
Godel numbering ensure that no two consecutive configuration numbers of a computation
are identical.

A function t7y;is constructed to trace the computations of a Turing machine M. Tracing
a computation means generating the sequence of configuration numbers that correspond to
the machine configurations produced by the computation. The value of try(x, i) is the
number of the configuration after ; transitions when M is run with input x. Since the initial
configuration of M is ¢, BX B,

x+1
tru(x, 0) = gna (0, 0, 2 [ T ().

i=1



418  Chapter 13 Mu-Recursive Funciions

The value of try(x, ¥ + 1) is obtained by manipulating the configuration number 17y (x,
io construct the encoding of the subsequent machine configuration. :

The state and symbol in the position scanned by the tape head determine the transitig
to be applied by the machine M. The primitive recursive functions

cs{z) = dec(0, z)
ctp(z) =dee(l, 2)
cts(z) =dec(ctp(z), dec(2, z))

return the state number, tape head position, and the number of the symbol scanned by i
tape head from a configuration number z. The position of the tape head is obtained b
direct decoding of the configuration number. The numeric representation of the scann
symbol is encoded as the czp(z)th element of the tape number. The ¢’s in ¢s, ¢ip, and
stand for the components of the current configuration; current state, current tape position
and current tape symbol.

A transition specifies the alterations to the machine configuration and, hence, th
configuration number. A transition of M is written

8('&’;‘: b) = [qls c, d]s

where g;, q; € Q; b, c€ I';andd € {R, L}. Functions are defined fo simulate the effects
a transition of M. We begin by listing the transitions of M:

8(qy,» bo) = L4 > €05 o]
8q;. b1 =g, €1, d1]

8(q;, > bw) = (4,5 Coms ).

The determinism of the machine ensures that the arguments of the transitions are distinct
The “new state” function

Jo if ¢5(2) = iy and crs(z) = n{bg)
h if c5(z) == iy and cts(z) = n(by)
ns(z) =1 :
Jm if cs(z) =i, and cts(z) = n(b,,)
cs(z) otherwise

returns the number of the state entered by a transition from a configuration with config
uration number z. The conditions on the right indicate the appropriaie transition. Lettin
nib) denote the number of the tape symbol b, the first condition can be interpreted, “TE thy
number of the current state is i (state g, 0) and the current tape symbol is by (number n(bj
then the new state number has number j, (state ¢ ;). This is a direct translation of the initi
transition into the numeric representation. Each transition of M defines one condition in

13.7 Turing Computability and Mu-Recursive Functions 419

The final condition indicates that the new state is the same as the current state if there is no
transition that matches the state and input symbol, that is, if M halts. The conditions define
a set of exhaustive and mutually exclusive primitive recursive predicates. Thus, ns(z) is
primitive recursive. A function nts that computes the number of the new tape symbol can
be defined in a completely analogons manner.

A function that computes the new tape head position alters the number of the current
position as spectfied by the direction in the transition. The transitions designate the direc-
tions as L (left) or R (right). A movement to the left subtracts one from the current position
pumber and a movement to the right adds one. To numerically represent the direction we
use the notation

0 ifd=L
d:
n(@) {2 ifd = R.

The new tape position is computed by

ctp(z) +nldp) ~ 1 if cs{z) = iy and ct5(z) = niby)
ctp(z) +nld) =1 ifcs(z) =i, and cis(z) =n(by)
ntp(z) =4 :
ctp(z) +n(d,) =1 ifcs(z) =i, and cts(z) = n(b,)
ctp(z) otherwise.

The addition of r2(d;) =~ 1 to the current position number increments the value by one when
the transition moves the tape head to the right. Similarly, one is subtracted on a move to the
left.

We have almost completed the construction of the components of the trace function.
Given a machine configuration, the functions ns and ntp compute the state number and tape
head position of the new configuration. All that remains s to compute the new tape number.

A transition replaces the tape symboel occupying the position scanned by the tape head.
In our functional approach, the location of the tape head is obtained from the configuration
number z by the function ctp. The tape symbol to be written at position ctp(z) is repre-
sented numerically by nts(z). The new tape number is obtained by changing the power of
pr(ctp(z}) in the cwrent tape number. Before the transition, the decomposition of z contains
prletp (2@ encoding the value of the current tape symbol at position czp(z). Af-
ter the transition, position ¢#p(z) contains the symbol represented by nzs(z). The primitive
recursive function

nin(z) = quo(ctn(z), pn(ctp(z))™ Y . pricep(z)y @1

makes the desired substifution. The division removes the factor that encedes the current
symbol at position crp(z) from the tape number ctn(z). The result is then multiplied by

- prlctp(z)ys@+ encoding the new tape symbol.

The trace function £y is defined by primitive recursion from the functions that simulate

-the effects of a transition of M on the components of the configuration. As noted previously,



420 Chapter 13 Mu-Recursive Funciions 13.8 The Church-Turing Thesis Revisited 421

where y is the length of the tape segment encoded in the terminal tape number. The bound y is
computed by the primitive recursive function gdin (ttn(x)) (Exercise 17). One is subtracted
from the bounded sum since the tape contains the unary representation of f (x).
Whenever f is defined for input x, the computation of M and the simulation of M
both compute the f(x). If f(x)is undefined, the unbounded minimalization fails to return
a value and simey(x) is undefined. The construction of simy; completes the proof of the
following theorem.

M is in staie ¢, the tape head is at position zero, and the tape has I’s in positions one {
x + 1 at the start of a computation with input x. This machine configuration is encoded
try(x, O)

x+1

tr(x, 0) = g1y (0, 0, 24 - T pn(®®.
i=1

The subsequent machine configurations are obtained using the new state, new tape position 13.7.1
and new tape number functions with the previous configuration as input: Theorem 13.7.

Every Turing computable function is p-recursive,
trv(x, y + 1) = gna(ns(tn(x, y)), ntp(try(x. y), ntn(ry(x, y))). .
Theorems 13.6.4 and 13.7.1 establish the equivalence of the microscopic and macro-

Since each of the functions in #r); has been shown to be primitive recursive, we conchid scopic approaches to computation.

that the £ry; is not only ge-recursive but also primitive recursive. The trace function, howey
is not the culmination of our functional simulation of a Turing machine; it does not retag
the result of a computation but rather a sequence of configuration numbers.

The result of the computation of the Turing machine M that computes the number
theoretic function f with input x may be obtained from the function tiy. We first not
that the computation of M may never terminate; f(x) may be undefined. The questid
of termination can be determined from the values of try,. If M specifies a transition fo
configuration ¢ry{x, i}, then rry(x, i) # try(x, i + 1) since the movement of the hea
changes the Godel number, On the other hand, if M halts after transition i, then 7ry(x, i)
tryp(x, i -+ 1) since the functions szs, ntp, and atn retumn the preceding value when thy
configuration number represents a halting configuration. Consequently, the machine halt
after the zth transition, where z is the first number that satisfies fry;(x, z) = try(x, z +1

Since no bound can be placed on the number of transitions that occur before
arbitrary Turing machine computation terminates, unbounded minimalization is requlre
to determine this vaiue. The p-recursive function

Corollary 13.7.2
A function is Turing computable if, and only if, it is g-recursive.

13.8 The Church-Turing Thesis Revisited

In its functional form, the Church-Turing Thesis associates the effective computation of
fonctions with Turing computability. Utilizing Theorem 13.7.2, the Church-Turing Thesis
can be restated in terms of p-recursive functions.

The Church-Turing Thesis (Revisited) A number-theoretic function is computable if, and
only if, it is p-recursive.

As before, no proof can be put forward for the Church-Turing Thesis. 1t is accepted
by the community of mathematicians and computer scientists becanse of the accumulation
of evidence supporting the claim. Accepting the Church-Turing Thesis 1s tantamount to
bestowing the title “most general computing device” on the Turing machine. The thesis
implies that any number-theoretic function that can be effectively computed by any machine
or technique can also be computed by a Turing machine. This contention extends to
nonnumeric computation as well.

We begin by observing that the computation of any digital computer can be 1nterpreted
as a numeric computation. Character strings are often used to comnunicate with the com-
puter, but this is only a convenience to facilitate the inpui of the data and the interpretation of
the output. The input is immediately translated to a string over {0, I} using either the ASCII
or EBCDIC encoding schemes. After the translation, the input string can be considered the
binary representation of a natural number. The computation progresses, generating another
sequence of (’s and I's, again a binary natural nunber. The output is then translated back to
character data because of our inability to interpret and appreciate the output in its internal
- Tepresentation.

term{x) = pzleq(try(x, z), tryg(x, z + 17

computes the number of the transition after which the computation of M with inpu
terminates. When a computation terminates, the haliing configuration of the machine:
encoded in the value tr;(x, zerm(x}). Upon termination, the tape has the form B f {x)
The terminal tape number, #¢#, is obtained from the terminal configuration number by -

rtn(x) = dec(2, trylx, term(x))).

The result of the computation is obtained by counting the number of /s on the tape 0
equivalently, determining the number of primes that are raised to the power of 2 in.th
terminal tape number. The latter computation is performed by the bounded sum :

¥
simy(x) = | > eq(1, dec(i, 1tn(x)) } = 1,
i=0



422

Chapter 13 Mu-Recursive Functions

Following this example, we can design effective procedures that transform a string
computation to a number-theoretic computation. The Gddel encoding can be used to trang
late strings to numbers. Let & = {ag, a1, . . . , &,} be an alphabet and f be a function frop
* to £*. The generation of a Godel number from a string begins by assigning a uniqu
number to each element in the alphabet. For simplicity we will define the numbering of th
elements of ¥ by their subscripts. The encoding of a string @, @, . . . g; is generated by thi
bounded product

y
L0 AR 0 A pa(n)ntl = l—[ o)t
J=0

where y is the length of the string to be encoded.

The decoding function retrieves the exponent of each prime in the prime decompositig
of the Gédel number. A string can be reconstructed using the decoding function and th
numbering of the alphabet. If x is the encoding of a string a; a;, ... a; over I, thes
dec(j, x) =1i;. The original string can be obtained by concatenating the results of
decoding. Once the elements of the alphabet have been identified with natural numbe;
the encoding and decoding are primitive recursive and therefore Toring computable. . ;

The transformation of a string function f to a numeric function is obtained usin
character to number encoding and number to character decoding: i

- » fl)er”

encoding decoding

’

1reN —— )N

With the help of the Church-Turing Thesis, we will argue that a string function £ i
algorithmically computable if, and only if, the associated numeric function f’ is Turin
computable. We begin by noting that there is an effective procedure to obtain the valueso
f whenever f/is Turing computable. An algorithm to compute f consists of three step

i} encoding the input string # to a number x,
ii} computing f'(x), and
iity decoding f'(x) to produce f (i),

each of which can be performed by a Turing machine.
Now assume that there is an effective procedure to compute f. Using the reversibility 0
the encoding and decoding functions, we will cutline an effective procedure to compute

13.8  The Church-Turing Thesis Revisited 423

uex” I, faez*
decoding encoding
o,
xeEN ----- =[x} eN

The value f’(x) can be generated by transforming the input x into a string #, computing
£ (), and then transforming f () to obtain f'(x). Since there is an effective procedure to
compute f*, the Church-Turing Thesis allows us to conclude that f* is Turing computable.
The preceding argument shows that the implications of the Church-Turing Thesis and
universality of Turing machine computation are not limited to numeric computation or
decision problems. A string function is computable only if it can be realized by a suitably
defined Turing machine combined with a Turing computable encoding and decoding.
Example 13.8.1 cxhibits the correspondence between string and numeric functions.

o

Example 13.8.1

Let Z be the alphabet {a, b}. Consider the function f:E* — E* that interchanges the
a’s and the b’s in the input string. A number-theoretic function f' is constructed which,
when combined with the functions that encode and decode strings over I, computes f.
The elements of the alphabet are numbered by the function #: n{@) =0 and n(h) = 1. A
string u = upity . . . 4, is encoded as the number

)n(ug)-H )n(u1)+l . )n(u,x)—f-l_

pn(Q - pu(l - pufn

The power of pn (i) in the encoding is one or two depending upon whether the ith element
of the string is @ or b, respectively.

Let x be the encoding of a string # over . Recall that gdin(x) returns the length of
the sequence encoded by x. The bounded product

gdln(x)
Fey= T (eatdect, ), 0)« pn(i) - pnG) + eq(deci, x), 1) - pu(i))
i=0

generates the encoding of a string of the same length as the string x. When eg(dec(i, x), 0)
=1, the /th symbol in « is a. This is represented by pr (i)' in the encoding of u. The product

eq(dec(i, x), 0} - pn(i) » pn(i)

contributes the factor pn(i)?to f/(x). Similarly, the power of pa(i) in £/(x) is one whenever
the ith element of x is b. Thus £’ constructs a number whose prime decomposition can be
obtained from that of x by interchanging the exponents 1 and 2. The translation of Fx)to
astring generates f(u}. O



424 Chapter 13 Mu-Recursive Functions Exercises 425

8. Show that the following functions are primitive recursive, You may use the functions
and predicates from Tables 13.1 and 13.2. Do not use the bounded operations.

Exercises

1. Let g{x) =x% and h(x, y,z) =x + y + z, and let f(x, y) be the function deﬁﬁe:
from g and f by primitive recursion. Compute the values f (1, M, (L, D, £(1L2) an
5,0, f65. 0, F65,2).

2. Using only the basic functions, composition, and primitive recursion, show that thy

following functions are primitive recursive. When using primitive recursion, give th
functions g and 5. '

x ifx=y

a) max(x, y) = { y otherwise

x ifx<y
vy otherwise

b} min(x, v) = {

x fx<yandx <:z
c) ming(x, v,z)y=q y iyv<xandy=z
z ifz<xandz<y

1 if xiseven
d = ]
) even(x) { 0 otherwise

a) c(g)
b) pred
¢ fxy=2x+2

3. The functions below were defined by primitive recursion in Table 13.1. Explicitly, giv

the functions g and k that constitute the definition by primitive recursion. e} half (x) =div(x, 2)

2) sg *f) sqr(x) = |V/x]
9. Show that the following predicates are primitive recursive. You may use the functions
b} sub and predicates from Tables 13.1 and 13.2 and Exercise 8. Do not use the bounded
c) exp operators.
4. 2) Prove that afunction f defined by the composition of total functions  and g5, . .. ‘
g, is total, ay le(x, y) = { (1) i)ftlfersw)i)se
b) Prove that a function f defined by primitive recursion from total functions g an;l h

is total.

¢) Conclude that all primitive recursive functions are total. ( otherwise

1 ifx >
b)ge(x,y):{ =y
5. letg=id, h= p(?) + p(g), and let f be defined from g and A by primitive recursion

a) Compute the values f(3,0), f(3, D), and f(3, 2).

b) Give a closed-form (nonrecursive) definition of the function f.

1 fy<x<
cy btw(x, y,z) = { 0 Dtl):erwise i

d) prsq(x) = { L ilxis a perfect square

6. Let g(x, y, z) be a primitive recursive function. Show that each of the followil_lg' 0 otherwise

functions is primitive recursive.
a) f(x,y) =g,y x)
by flx, v,z w)=gx, ¥, x)
¢) flxy=2g(12,x)

7. Let f be the fonction

10. Let ¢ be a two-variable primitive recursive function and define f as follows:

flx, 0 =1(x,0)
Ja, y+ D= fx. ) +tx,y+1)

Explicitly give the functions g and % that define f by primitive recursion.

x ifx=>2

11. Let g and h be primitive recursive functions. Use bounded operators to show that the
0 otherwise.

following functions are primitive recursive. You may ose any functions and predicates
that have been shown to be primitive recursive.

Fo0 = {

a) Give the state diagram of a Turing machine that computes f. & fx,y)= { 1 ifgd)<gx)forallO<i<y

. 0 otherwise
b) Show that f is primitive recursive.




426

12

“13

.

14,

15.

Chapter13 Mu-Recursive Functions

1 ifg()=xforsomed<i=<y
0 otherwise

b) f(X=J’)={

1 ifg@)=h(j)forsome0=<i, j=<y
%) f(y)_{() otherwise

gy <g+ Diorall0=i=<y
otherwise

) f(y)={é

€} nt(x, yy = the number of times g(f) =x intherange 0 =i <y

0 if g(i) does not assume the value x at least
three times in the range 0 <{ <y

J if j is the third integer in the range 0 <i < y
for which g(i) = x

f) thrd(x, y) =

g) Irg(x, v) = the largest value in the range ¢ < i < y for which g(f) = x
Show that the following functions are primitive recursive.

a) ged(x, y) = the greatest common divisor of x and y

b) lcm(x, ¥} = the least common multiple of x and y

¢) pwl(x)= {

1 ifx=2"forsomen
0 otherwise

1 if x is the product of exactly two primes

) rwopr(x) = { 0 otherwise

Let g be a one-variable primitive recursive function. Prove that the function

/) = min(g(0)
=min{g0),....gl)}

is primitive recursive.
Prove that the function

(X100 Xy)

flxp oo ox) = pz [plxn .., X 2)]
is primitive recursive whenever p and # are primitive regairsive.
Compute the Godel number for the following sequence:
a) 3,0
by 0,0,1
¢y 1,0,1,2
d)0,1,1,2,0

Exercises 427

16. Determine the sequences encoded by the following Gédel numbers:
a) 18,000
b) 131,072
¢) 2,286,900
d) 510,510

17. Prove that the following functions are primitive recursive:

1 if x is the Godel number of some sequence
d =
2) gdn(x) { 0 otherwise

b gdin(x) = n ifxis t‘he Godel number of a sequence of length #
0 otherwise

_ | 1 ifxis a G&del number and y occurs in the sequence encoded in x

¢ glx, y) = .
(  otherwise

18. Construct a primitive recursive function whose input is an encoded ordered pair and

whose oufput is the encoding of an ordered pair in which the positions of the elements

have been swapped. For example, if the input is the encoding of [x, y], then the output
is the encoding of {y, x].

19. Let f be the function defined by

1 ifx =0

2 ifx=1
F@ =13 ifx=2

Ffx=3+ fx—1 otherwise.

Give the values f(4), £(5), and f(6). Prove that f is primitive recursive.

*20. Let g; and g, be one-variable primitive recursive functions. Also let k2, and 4, be four-
variable primitive recursive functions. The two functions f) and f, defined by

filx, 0) = g1(x)
Folx, 0) = g2(x)
N,y + D =hix, y, Ay, folx, ¥)
S, y+ D =hy(x, y, filx, ¥), falx, y))

are said to be constructed by simultaneous recursion from gy, g, hy, and h,. The

values fi(x, y -+ 1) and f,(x, y + 1) are defined in terms of the previcus values of
both of the functions. Prove that f; and f, are primitive recursive.



428

21. Let f be the function defined by

22

23.

*24

Chapter 13 Mu-Recursive Functions

fo=1

¥y
Fly+ D= F6Y.

i=0

a) Compute f(1), F(2), and f{3).

b) Use course-of-values recursion to show that f is primitive recursive.
Let A be Ackermann’s function (see Section 13.6).

a) Compute A2, 2).

b) Prove that A(x, y) has a unique value for every x, y € N.

¢} Prove that A(l, y) =y + 2.

d) Prove that A(2, y) =2y + 3.

Prove that the following functions are p-recursive. The functions g and £ are assumed
to be primitive recursive. '

1 if x is a perfect cube
8 cube(x) = 4 otherwise _

B) root(cg, ¢y, ¢;) = the smallest natural number root of the quadratic polynomi
CZ'JC2+C1°X+CU

1 if g(i) = g(i + x) forsomei =0
0= { 4 otherwise
d) 1(x) = { g i)f&‘gl’g\)xli-;:a(i)<xf0ralli >0
&) flx)= { ’1? thﬁg;;;eh(j) = x for someri, jeN
o el G

The unbounded pi-operator can be defined for partial predicates as follows:

joifpx.....x, )=0for0=i<j
and p(xp, ..., X, J3 =1
1 otherwise.

I-LZ[P(xl’ s Xy Z)] -

That is, the value is undefined if p(xy. .. ., X,, i) T forsome occurring before the_ﬁrs
value j for which p(xy, ..., X, j) = 1. Prove that the family of functions obltam_e.
by replacing the unbounded minimalization operator in Definition 13.6.3 with th
preceding jt-operator is the family of Turing computable functions. -

Exercises 429

25. Construct the functions ns, ntp, and n#s for the Turing machine S given in Exam-
ple 13.7.1,

26. Let M be the machine

a) What unary number-theoretic function does M compute?

b) Give the tape numbers for each configuration that occurs in the computation of M
with input 0.
¢) Give the tape numbers for each configuration that occurs in the computation of M
with input 2.
27. Let f be the function defined by

_Jx+1 ifxeven
Fo= { x — 1 otherwise.

a) Give the state diagram of a Turing machine M that computes f.

b) Trace the computation of your machine for input 1 (B11B). Give the tape number
for each configuration in the computation. Give the value of rry(1, 7} for each step
in the computation.

c) Show that f is primitive recursive. You may use the functions from the text that
have been shown to be primitive recursive in Sections 13.1, 13.2, and 13.4.
*28. Let M be a Turing machine and f#y the trace function of M.

a) Show that the function

1 if the yth transition of M with input x prints
a blank

0 otherwise

pri(x, vy} =

is primitive recursive.



430 Chapter 13 Mu-Recursive Functions

b} Show that the function

1 if the final transition of M
lprt(x) = with input x that prints a 1
4 otherwise

is p~recursive.

¢) Inlight of undecidability of the printing problem (Exercise 12.7), explain why Iprt
cannot be primitive recursive. :

29. Give ari example of a function that is not p-recursive. Hint: Consider a language tha
18 not recursively enumerable. :

30. Let f be the function from {a, b}* to {a, b}™ defined by F(u) = u®. Construct th
primitive recursive function f” that, along with the encoding and decoding functions
computes [ :

31. A number-theoretic function is said to be macro-computable if it can be computes
by a Turing machine defined using only the machines S and D that compute th
successor and predecessor functions and the macros from Section 9.3. Prove that every
p-recursive function is macro-computable. To do this you must show that

i) The successor, zeto, and projection functions are macro-computable.

ii) The macro-computable functions are closed under composition, primitive recur
sion, and unbounded minimimalization.

32

+

Prove that the programming language TM defined in Section 9.6 computes the entir
set of p-recursive functions.

Bibliographic Notes

The functional and mechanical development of computability flourished in the 1930s. Godel
[1931] defined a method of computation now referred to as Herbrand-Godel computabilit
The properties of Herbrand-Godel computability and u-recursive functions were developed
extensively by Kleene. The equivalence of p-recursive fonctions and Turing computabil
ity was established in Kleene [1936]. Post machines [Post, 1936] provide an alternative
mechanical approach to numeric computation. The classic book by Kleene [1952] presents
computability, the Church-Turing Thesis, and recursive functions. A further examination of
recursive function theory can be found in Hermes {1965}, Péter [1967], and Rogers [1967}.
Hennie [1977] develops computability from the notion of an abstract family of algorithms.

Ackermann’s function was introduced in Ackermann [1928]. An excellent expos1t10n
of the features of Ackermann’s function can be found in Hennie [1977].






