Example

Let X_1 , X_2 r.s. of $U(\theta_1, \theta_2)$, θ_1, θ_2 unknown. Find a sufficient statistic A_{0x} $\theta = (\theta_2, \theta_2)$

Solution $\frac{\partial olution}{\partial (x)} = \frac{1}{\partial 2 - \partial 2} \cdot \frac{1}{\int (\partial 1 - x < \partial 2)}$ where $I(\partial_1 < x < \partial_2) = \{1, \partial_1 < x < \partial_2\}$

where $J(\theta_1 \propto 2\theta_2) = \begin{cases} 1 & \theta_1 < x < \theta_2 \\ 0 & \text{otherwise} \end{cases}$

We benowd: $\prod J(\theta_1 \angle x_1 < \theta_2) = 1 \Rightarrow x_1 \in (\theta_1, \theta_2) \forall_{i=1,...,v}$ $\Rightarrow \theta_1 < x_{(1)} \le x_{(2)} \le ... \le x_{(v)} < \theta_2 \Rightarrow \theta_1 < x_{(3)} \times x_{(1)} \times x_{(2)} < \theta_2$ Hence: $J(x_1; \theta) = (\theta_2 - \theta_1)^T J(\theta_1 < x_{(3)} < \infty) J(-\infty < x_{(v)} < \theta_2)$ $= q(J(x_1); \theta) \cdot h(x_1)$

 $= g(T(X); \theta) \cdot h(X),$ where $T(X) = (X_{CN}, X_{CN}), g(T(X); \Theta) = \overline{A}(X; \Theta), h(X) = 1$ So T(X) is sufficient for Θ .

Completeness

<u>Definition</u> (General)

Let X random variable with PDF $F(x;\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$ and let $g:\mathbb{R} \to \mathbb{R}$ such that g(X) is a vandom variable. We suppose that F[g(X)] exists $Y\theta \in \Theta$ and $f\in P$ ine the family of distributions $F = \{A(x;\theta), \Theta \in \Theta\}$.

The r.v. X (or the family F) is called complete if $\forall g$ we have $: f[g(X)] = 0 \; \forall \theta \in \Theta \Rightarrow g(x) = 0 \; \forall \sigma \in \Theta$ every $x \in \text{except for a set } N \; \text{for which } P(X \in N) = 0 \; \forall \theta \in \Theta$.

Note

For our quyposes: when we have a r.s. $X_1, ..., X_V$ with PDF $R(X; \Theta)$ and a complete statistic T = T(X) with PDF $u_T(t; \Theta)$ and $T = \{u(t; \Theta) \mid \Theta \in \Theta\}$ family of distributions, then: $f(g(T)) = 0 \quad \forall \Theta \in \Theta \Rightarrow g(t) = 0 \quad \forall t$

Example)

Let Yu, Xv v.s. of Poisson (1). Find a sufficient and complete statistic for 1.
Solution

We Know (From Factorization criterion) that $T=T(X)=\tilde{\Sigma}Xi$ sufficient for L. We also Know that $T\sim Poisson(vX)$.

Let $g(\tau)$ function of τ then $f(g(\tau)) = \frac{2}{3}g(\tau)h(\tau) = 0$ $\forall x > 0$ $= f(g(\tau)) = \frac{2}{3}g(\tau)e^{-vx} \frac{(vx)^{\frac{1}{2}}}{\tau!} = 0 \Rightarrow$

 $= e^{-v\lambda} \left[q(0) + q(1)v\lambda + q(2) \frac{(v\lambda)^2}{3!} + \frac{1}{3!} = 0 \right]$

We have a series that converges to 0 42>0, so

all the coefficients must be O. Kence:

g(0) = 0, $g(1) = 0 \Rightarrow g(1) = 0$...

So g(t)=0 Vt=0,1,... and hence T is complete

Frangle

Let X1,..., X, v.s of Bernoulli(q). Find sufficient and complete statistic.

Solution

We can show that $T=T(X)=\tilde{Z}X$; sufficient for q.

Also (because $X_1,...,X_U$ independent) we Know $T\sim B$ in(U,q)

Let q(T) function of T. Then $f(q(T))=\tilde{Z}q(t)h(t,q)=\tilde{Z}q(t)(\tilde{Z})q(t)(\tilde{Z})q(t)q(1-p)$ $=(1-q)^{-1}\tilde{Z}q(t)(\tilde{Z})z^{\frac{1}{2}}$ $=(1-q)^{-1}\tilde{Z}q(t)(\tilde{Z})z^{\frac{1}{2}}$

so $\mathcal{L}[g(\tau)] = 0$ $\forall z \Rightarrow \mathcal{L}[g(\tau)] = 0$

Example

Framine whether the family $f = \{7(x, \theta) \mid \theta \in \theta\}$ is complete or not in the Following cases:

a) $7(x; \theta) = \frac{1}{\theta-\alpha} J(\alpha < x < \theta)$, as $B, \theta \in (a, \infty)$ my $U(a, \theta)$ b) $7(x; \theta) = \frac{1}{\theta-\beta} J(0 < x < \theta)$, se $B, \theta \in (-\infty, \beta)$ my $U(\theta, \beta)$ c) $Y(x; \theta) = \frac{1}{2\theta} J(-\theta < x < \theta)$, $Y(x; \theta) = \frac{1}{2\theta} J(-\theta < x < \theta)$, $Y(x; \theta) = \frac{1}{2\theta} J(-\theta < x < \theta)$, $Y(x; \theta) = \frac{1}{2\theta} J(-\theta < x < \theta)$

Solution
a) Let g(X) function of X with PDF in F. We want $f[g(X)] = 0 \quad \forall \Theta \Rightarrow g(X) = 0 \quad \forall X$ It is: $f[g(X)] = \int_{a}^{b} g(X) \frac{d}{\partial x} dX = 0 \quad \forall \Theta > a$

$\Rightarrow q(\theta) \stackrel{1}{\theta-a} = 0 \forall \theta>q \Rightarrow q(\theta)=0 \forall \theta \in (a,+\infty)$
$\Rightarrow q(x) = 0 \forall x \in (a, 0)$
So 7 is complete
b) Same as a)
c) We will show that I is not complete. Sugarse g(x)=x.
c) We will show that f is not complete. Suppose $g(x)=x$. Then $f[g(x)]=f[x]=S=0 \times \frac{1}{20} dx = \frac{1}{20}(\frac{1}{2}-\frac{1}{20})=0$
and it is not true that g(x)=0 4x, so I is incomplete