Theorem

Let $X_1, ..., X_v$ r.s. with PDFs $P(x, \theta)$, $\theta \in \Theta \in \mathbb{R}$ and $T=T(\Sigma)$ sufficient statistic for Θ Let $g(...; \theta)$ the PDF of $T(X)$ and $V=V(X)$ (or any other statistic) for which we suppose that it is independent of $T(\le)$. Then $V=V(x)$ is an aucillary statistic, meaning that its distribution is independent of θ . Theorem Basu Let $X_3, ..., X_{s}$ is with PDFs $\mathcal{F}(x; \Theta)$, $\Theta \in \Theta \subseteq \mathbb{R}^s$ and $I = I(\Sigma)$ sufficient for θ . Let $g(\ldots, \theta)$ the PDF of $\overline{\tau}(\Sigma)$ and suppose that $G = \{g(\cdot, \cdot, \theta) | \theta \in \Theta\}$ is complete. Let $V = V(X)$ a statistic other than I. I the distribution of V is independent of I then $V(x)$ is independent of $I(x)$ Example Let $Z \sim G$ amma (v, θ) with $\frac{1}{4}z(x) = \frac{1}{\Gamma(v)\theta}$ z^{-1} e $\frac{2\theta}{\Gamma(v)\theta}$ \geq $v, \theta > 0$, then $T = {}^{22}/\theta \sim \gamma_{2}^{2}$.
Proof $F_7(t) = P(T \le t) = P(\frac{22}{9} \le t) = P(Z \le \frac{9t}{2}) = F_2(\frac{9t}{2})$

 $\begin{array}{rcl} \n\mathcal{X}_{1}(t) = & \frac{3}{2t} \mathcal{F}_{1}(t) = & \frac{3}{2t} \mathcal{F}_{2}(\frac{\omega t}{2}) = & \frac{9}{2} \mathcal{F}_{2}(\frac{\omega t}{2}) = & \frac{9}{2} \mathcal{F}_{1}(\omega) \cdot e^{\sqrt{3}t} \cdot e^{\sqrt{3}t} \cdot e^{\sqrt{3}t} \n\end{array}$ $(\sqrt{3} \text{ we } \text{ln} \theta)$ $\frac{2}{10}(\text{e}) = \frac{8}{10} \cdot 2^{\frac{1}{10}} \cdot e^{-\theta z}$ then $7=2\theta z \sim \sqrt{2} \cdot 2$ f \times g Let $X_4, ..., X_v$ r.s. of $f_{xg}(\theta)$ with $P(x; \theta) = \theta e^{-\theta x}$, $x>0$, $\theta>0$ Find sufficient and complete statistic Solution
a) Factorization criterion: $\hat{A}(x, \theta) = \iint_{\theta} \hat{A}(x; \theta) = \iint_{\theta} \theta e^{-\theta x} = \theta' e^{-\theta \sum_{i=1}^{n} x_i}$
= $g(7(x), \theta) \cdot h(x)$, $\exists \alpha \quad h(x) = 1$, $g(7(x), \theta) = \theta' \cdot e^{-\theta \sum x_i}$
hence $T(x) = \sum_{i=1}^{n} x_i$ is suddicient $\lambda_{\alpha} \theta$. b) We find the PDF of T:
It is $T = \frac{5}{51}$ Ki ~ Gammalv, 0) so $Z(t) = \frac{e^t}{T(t)} + \frac{e^{-2t}}{e^{-t}}$, to c) Let $q(T)$ a function of T Then:
 $f_{q}(t) = \int_{0}^{\infty} g(t) \cdot f_{1}(t) dt = \int_{0}^{\infty} g(t) \frac{\theta^{v}}{T(u)} \cdot t^{v-1} e^{-\theta t} dt$
and $f_{q}(T) = 0 \implies \int_{0}^{\infty} g(t) \cdot \frac{t^{v-1}}{T(u)} e^{-\theta t} dt = 0$ (*) The taplace transform of a function $f(t)$ is defined as $\hat{L}(f(t)) = \int_{0}^{\infty} f(t) e^{-st} dt = F(s)$, for $f(0)$ In our case it is $\frac{\partial}{\partial t}(t) = q(t) \frac{t^{3-4}}{T(t)}$ Beause the Laglace transform is unique we have: $q(t) \frac{t^{v-a}}{r \omega} = 0$ $\forall t > 0$ \Rightarrow $q(t) = 0$ $\forall t > 0$ Hence, $T = \sum_{i=1}^{n} x_i$ is complete.

Example Let $X_1, ..., X_v$ Y_5, o R $N(\mu, 1)$. Find sufficient and complete statistic for µ Solution
a)We have shown previously that $T(X) = \frac{3}{2}X$ i is sufficient $\frac{408}{4}$ K $T = 2x_i \sim N(y_1, v)$ so $A_t(t) = \frac{1}{\sqrt{2\pi}}exp\{-\frac{1}{2v}\}$ c) Let $g(T)$ a function of T. Then $H_{q}(\tau) = 0 \quad \forall \mu \in \mathbb{R}$ $\Rightarrow \frac{1}{2\pi}\int_{-\infty}^{\infty}g(t)exp\left\{-\frac{1}{2v}(t-v\mu)^{3}\right\}\partial t=0 \quad \forall \mu\in\mathbb{R} \Rightarrow$ $\int_{0}^{2\pi} g(t) e^{2v} e^{t} e^{v} e^{v} \frac{\partial f}{\partial t} = 0$ $\forall \mu \in \mathbb{R}$ δ -ag(t) $e^{2v}e^{\mu t}dt = 0$ $\forall \mu \in \mathbb{R}$ So the Laplace transform of g(t) $e^{2\pi}$ is zero ttelk Hence, since the transform is unique, we have $g(t)e^{-\lambda z} = 0$ $\forall t \in \mathbb{R}$ \Rightarrow $g(t) = 0$ $\forall t \in \mathbb{R}$ and T is complete Example Let $X_1, ..., X_v$ rs of $N(0, \sigma^2)$. Find sufficient and complete statistic for σ^2 . Solution a) From the Factorization criterion we derive that $T=\sum_{i=1}^{n}X_i^2$ is sufficient for σ^2 .

 $b)$ It is: X; $\sim N(O_{o}e)$ \Rightarrow $\frac{N}{\sigma} \sim N(O_{1})$ \Rightarrow $\Rightarrow \left(\frac{x_4}{5}\right)^2 = \frac{x_4^2}{5^2} \sim \frac{12}{5^2}$
au) $Y = \sum_{14}^{x_4^2} \frac{x_4^2}{5^2} = \frac{1}{5^2} \cdot \sum_{i=4}^{x_4} x_i^2 = \frac{1}{5^2} \sim \frac{12}{5^2}$ and $Y = \sum_{i=4}^{n_1} \frac{1}{6} = \frac{1}{6}$
so $T = \frac{2V}{3}$ and we are looking for its PDF $F_{T}(t) = P(T \le t) = P(\sigma^{2} \le t) = P(\forall \le t/\sigma^{2}) = F_{Y}(t/\sigma^{2})$ $f_{\tau}(t) = \frac{1}{2} f_{\gamma}(\frac{1}{2}) = \frac{1}{2} \frac{1}{2^{\gamma/2}} \frac{1}{\Gamma(\frac{1}{2})} \cdot (\frac{1}{2})^{2-2} e^{-\frac{1}{2}t}$ $\frac{1}{(2\sigma^2)^{1/2}\Gamma(\frac{1}{2})}$ $\frac{1}{2}$ $\frac{1}{2}\sigma^2$ c) Let $g(T)$ function of . $\pm 1g(T)$ $S=0$ $\forall s^{2}>0$ $f_{o}^{g}(t) + \frac{4-4}{5}e^{-920}$ of =0 $\frac{1}{6}e^{-92}$ So, since the Laplace transform is unique, it is: $g(t)$ $t^{2-1} = 0$ $\forall t > 0$ \Rightarrow $g(t) = 0$ $\forall t > 0$ and hence I is complete.

Proposition

If X belongs to the EFD (expon. Ramily of distributions) with 1 parameter θ and $x_1, ..., x_v$ r.s of the same distribution as X, specifically $f(x; \theta) = exp{\frac{1}{9}(\theta) \cdot 7(x) - 6(\theta)} \cdot 4(x)$ then the statistic $Y = \sum_{i=1}^{n} T(X_i)$ is sufficient and complete A_{0} θ .