Theorem

Let X_1 , X_1 , X_2 , X_3 , X_4 , X_5 , with PDFs $Z(X_3, \Theta)$, $Q \in Q \in \mathbb{R}$ and $Z = Z(X_3)$ sufficient statistic $Z(X_3, \Theta)$ the PDF of $Z(X_3)$ and $Z = Z(X_3)$ (or any ofher statistic) for which we suppose that it is independent of $Z(X_3)$.

Then $Z = Z(X_3)$ is an ancillary statistic, meaning that

then V=V(x) is an auciklary statistic, meaning the its distribution is independent of O.

Theorem (Basu)

Let $X_1,...,X_r$ is with PDFs $f(x;\theta)$, $\theta \in \theta \in \mathbb{R}^s$ and I = I(x) sufficient for θ .

Let $g(...;\theta)$ the PDF of T(x) and suggesse that $G = \{g(...;\theta) \mid \theta \in \theta\}$ is complete.

Let V = V(x) a statistic other than T.

If the distribution of V is independent of θ

St the distribution of V is independent of D then V(x) is independent of I(x)

Ixample

Let ZN Gamma (v, θ) with $f_{z}(x) = \frac{1}{\Gamma(v)\theta^{v}} z^{v-1} e^{-z/\theta}$, $x \ge 0$, $v, \theta > 0$ then $T = \frac{2z}{\theta} N \chi_{2v}^{2}$.

 $F_{\tau}(t) = P(T \leq t) = P(\frac{2Z}{\Theta} \leq t) = P(Z \leq \frac{\Theta t}{2}) = F_{Z}(\frac{\Theta t}{2})$

$$\frac{1}{T_1(t)} = \frac{1}{St} F_1(t) = \frac{1}{St} F_2(\frac{9t}{2}) = \frac{9}{2} \frac{1}{42} (\frac{9t}{2}) = \frac{9}{2} \frac{1}{100} \frac{1}{90} \frac{9^{-4t-1}}{2^{-4t}} e^{4t^2}$$

$$= \frac{1}{T(\frac{2}{2})} e^{3t} \cdot t^{-4t} e^{-4t} \cdot So \quad 7 \sim Gamma(\frac{8}{2}, 2) = \frac{1}{100} e^{3t}$$
(If we had $\frac{1}{2}(z) = \frac{9}{T(0)} \cdot 2^{-4t} \cdot e^{-9z}$ then $\frac{1}{2} = \frac{1}{2} = \frac{1}{2$

The taplace transform of a function P(t) is defined as $L(f(t)) = \int_0^\infty f(t) e^{-st} dt = F(s)$, for t > 0.

In our case it is f(t) = g(t) = f(s).

Beause the taplace transform is unique we have: $g(t) = \frac{t^{\nu-2}}{f(u)} = 0$ $\forall t > 0$ $\Rightarrow g(t) = 0$ $\forall t > 0$ Hence, $T = \sum_{i=1}^{\infty} x_i$ is complete.

Example
Let Xu,, Xv v.s. of N(µ,1). Find sufficient and
complete statistic for 4.
Solution
We have shown greviously that $T(X) = ZXi$ is sufficient
For M.
b) $T = \sum_{i=1}^{N} x_i \sim N(y_i, y)$ so $z_{t}(t) = \frac{1}{2\pi} exq \{-\frac{(t-y_i)^2}{2y}\}$
c) Let g(T) a function of T. Then
F[q(7)]=0 YHER =>
=> == Sog(t)exq \(- \frac{1}{2} \) (t-v\(\psi \) \\ \\ \ = 0 \\ \\ \\ \\ \\ \ = 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
$=\int_{-\infty}^{+\infty}g(t)e^{\frac{t^2}{2\nu}}e^{t\mu}e^{-\frac{t^2}{2\nu}}e^{\mu t}dt=0 \forall \mu \in \mathbb{R}$ $=\int_{-\infty}^{+\infty}g(t)e^{\frac{t^2}{2\nu}}e^{\mu t}dt=0 \forall \mu \in \mathbb{R}$
= 1-a(+) = + = 0 VIER
So the Laplace transform of g(t) es is zero ttEIR.
la ca i aa dha ba Dan i
g(t)e $t\% = 0$ $\forall t \in \mathbb{R} \Rightarrow g(t) = 0$ $\forall t \in \mathbb{R}$ and T is complete.
complete.
Example

Let Xy, ..., Xv v.s of N(0,0°). Find sufficient and complete statistic for o°.

Solution

a) From the Pactorization criterion we derive that T=2xi² is sufficient for o².

b) It is: $\chi_{i} \sim \mathcal{N}(0, \sigma^{2}) \Rightarrow \frac{\chi_{i}}{\sigma} \sim \mathcal{N}(0, 1) \Rightarrow$ $\Rightarrow (\frac{\chi_{i}}{\sigma})^{2} = \frac{\chi_{i}}{\sigma^{2}} \sim \mathcal{N}_{i}^{2}$ $\Rightarrow (\frac{\chi_{i}}{\sigma})^{2} = \frac{\chi_{i}}{\sigma^{2}} \sim \mathcal{N}_{i}^{2} \sim$

c) Let g(T) Runction of T. If g(T) = 0 Volvo \Rightarrow $\int_{0}^{\infty} g(t) \cdot t^{\frac{1}{2}-1} \cdot e^{-\frac{1}{2}t} e^{2t} dt = 0$ Volvo \Rightarrow So, since the Laglace transform is anique, it is: $g(t) \cdot t^{\frac{1}{2}-1} = 0$ $\forall t > 0 \Rightarrow g(t) = 0$ $\forall t > 0$ and hence T is complete.

Progosition

If X belongs to the EFD (expan. Ramily of distributions) with I parameter θ and $X_1, ..., X_V$ Y_S of the same distribution as X, specifically: $A(x; \theta) = \exp\{y(\theta) \cdot T(x) - B(\theta)\} \cdot l_1(x)$ then the statistic $Y = \tilde{Z}T(X_1)$ is sufficient and complete for θ .