M.V.U.E (Minimum Variance Unbiased Estimator)

<u>Reminder</u> Let $X_1, X_2, Y_1, S_1, \text{with } Y \nvdash s \notimes (x_j \notimes)$ and we want to estimate θ (or g(θ)). An estimator δ = δ (\times is called unbiased estimator of Θ (or g(b)) if 5556 $(0r \pm 105 = q(0))$

Among all unbiased estimators we seek for the one with the minimum variance.

Definition Au estimator $\overline{\delta} = \overline{\delta}(\underline{x})$ is called m.v.u.e. of θ (or glo δ) \leq V (∂ 1) for all unbiased estimators ∂ 1 ∂ 1 ∂ 1 θ (or gl θ Reminder: $MSE : f[(\overline{\partial} - \Theta)^{2}] = V(\overline{\partial}) + b\frac{2}{\overline{\partial}}(\overline{\partial})$

Unbias - Sufficiency Relation Let $T_4 = T_4(\times)$ and $T_4 = T_4(\times)$ unbiased estimators of θ such that $f171 = f1721 = \Theta$ Let $T = T(X)$ sufficient statistic for Θ . We suppose that $71 = 7(7)$ for some function $f(.)$. If sufficiency has any value then we expect $V(T_4) \leq V(T_2)$

Lemma Let $U=U(X)$ and $Y=Y(X)$ such that $fU1=0$ and $osV(U)$

Let $f(v | Y=y] = W(y) = W$, then $f(w]=\theta$ and $V(w)=V(0)$

uith PDFs
p gelu), galy Proof
Suppose that U.Y are continuous random variables, $q(u,v)$ is their joint PDF and $h(u|y)$ the S PDF of $U|Y=y$ We have $f[U(Y=y]=\int_{-\infty}^{+\infty}u h(u|y)du$, so: $f(w) = \int_{-\infty}^{+\infty} w(\gamma) g_1(\gamma) dy = \int_{-\infty}^{\infty} f(u) \left(\gamma = \gamma \log_4(\gamma) \right) dy =$ = $\int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} u \psi(u|y) \partial u \cdot \frac{1}{3} g(y) \partial y = \int_{0}^{0} u \frac{g(u,y)}{g(x,y)} \cdot g_1(y) \partial y =$ $S = \{u\} \{g(u,y)\}\x}$ $\{du = \{u\} \{u\} \}$ S^0 $FIOI=F/m$ We have: $V(O) = \frac{f((U - f(U))^g)}{g} = \frac{f((U - W + W)^g)}{g}$ = $E[(U-w)^{2}] + E[(W-\theta)^{2}] + 2E[(U-w)(W-\theta)]$
and it is $E[(U-w)(W-\theta)] = \sqrt[(U-w)(w-\theta)q(u,y)dx =$ $a = \frac{\delta \delta(\alpha - \omega) (\omega - \theta) \iota(\alpha | \psi) \partial \omega}{}$ = $\delta(\omega - \theta) \alpha(\omega) \frac{\delta \delta(\omega - \omega) \iota(\omega | \psi) \partial \omega}{}$ but $f(u-w(y))h(u|y)du = f(uh(u|y))du - f(w(y))h(u|y)du =$ $10 |V = y | - W(y)$ fululy) du = $10 |Y = y - W(y) = 0$ S_{0} $V(\omega) = \pm 1(U-\omega)^{2} + \pm 1(W-\theta)^{2}$ and $f((w - \theta)^{2}) = V((w) - \sin(ce - f(w - \theta))^{2} = 0$ Finally $V(U) = \pm \left[(U-w)^2 \right] + V(w) \ge V(w)$, since $\int \left\{ (U-w)^2 \right\}$? 0 $(A$ lternatively : $V(G) = V(E\{U|Y\}) + E[V(U|Y)] = V(W) + E[V(U|Y)]$ M $\leq w$ $\leq y$ = ≤ 10 Y = $\leq y$ is a statistic because</u> U is unbiased

Rao-Blackwell Theorem

Let $X_1, ..., X_v$ r.s with PDE $P(x, \theta)$ (discrete or continuous). Let $Y=Y(X)$ sufficient statistic Aar Θ and $U=U(X)$ unbiased estimator of θ . Then, the statistic $W=W(Y)=E[0|Y=y]$ is an unbiased estimator of Θ (so $f(w1=0)$ and $V(w) \le V(U)$

Proof
The work above Example Let $X_4, ..., X_{s}$ is of Benjaulli (O) with PDF $7(x; \theta) =$ $=\Theta^{\times}(1-\Theta)^{\times}$, $\times \in \{0,1\}$, $\Theta \in (0,1)$ We know that $f[x:1=\theta$ and that $T=T(E)=\sum_{i=1}^{\infty}x_i$ is sufficient for O. According to the R-B theorem, the r.v. W= E[X1 12-t] is an unbiased estimator of Θ and $V(w) \le V(v)$. For 1555 $\frac{15}{x}$ $\frac{1}{x}$ $\frac{1}{x}$ = 0 - P(x₁=0 | (= t) + 1 - P(x₁=1 | (= t) = P(x₁=1 | 7 = t) =
= $\frac{P(x_1 = 1, 7 = t)}{P(7 = t)}$ = P(x₁=3 $\sum_{i=2}^{r} x_i = t - 1$)/P(7=+) = $= P(x_1=1) \cdot P(\sum_{i=2}^{x_1} x_i = t-1) / P(\sum_{i=1}^{x} x_i = t) = \frac{\Theta(\frac{v-1}{t-1}) \Theta^{t-1}(1-\Theta)^{v-t}}{(\frac{v}{t}) \Theta^{t}(1-\Theta)^{v-t}} = \frac{(\frac{v-1}{t-1})}{(\frac{v}{t})} = \frac{t}{v}$ $For t=0: f(x_1|_{T=0}) = \sum P(x_1 = x_1 | T=0) = 0$ Hence, $f(x_1) = f(x_2) = \frac{f}{v} = \frac{f}{2}x$; $v = \overline{x}$ $\forall f \in \{0, ..., \frac{f}{2} \}$
 $\forall f \in \{0, ..., \frac{f}{2} \}$

The statistic $T_4(x_4, \frac{2}{3}x_1)$ is also sufficient for θ
 $f[X_1 | T_1=t_1] = P(x_4=x_1 | T_4=t_4) = \frac{P(x_4=x_1, x_2=x_1)}{P(x_2=x_1, \frac{2}{3}x_1=t_4)} =$ = $P(X_4=x_1) P(X_4=x_1) P(\frac{1}{2}x_1 = t_4-x_1) = 0 (\frac{y-2}{4})0 t_4-1(1-\theta)^{1-t_4-1}$
= $P(X_1=x_1) P(\frac{y}{2}x_1 = t_4)$
= $\frac{(y-1)}{(t_4)}0^{t_4}(1-\theta)^{1-t_4-1}$ $=\frac{(\frac{v-2}{f_1+1})}{(\frac{v-1}{f_1})}=\frac{t}{v-1}$, so $w_1=f[x_1|\tau_1]$ u.e. of θ au $V(W)=V(\sum_{i=1}^{v-1}x_{i}/v-1)=\frac{1}{(v-1)^{e}}\cdot(v-1)\cdot\Theta(1-\Theta)=\frac{1}{2(1-\Theta)}=\frac{\Theta(1-\Theta)}{2}=\frac{1}{2(1-\Theta)}\cdot\Theta(1-\Theta)$